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Abstract: Life may have begun in an RNA world, which is supported by increasing evidence of the vital role that RNAs 
perform in biological systems. In the human genome, most genes actually do not encode proteins; they are noncoding 
RNA genes. The largest class of noncoding genes is known as long noncoding RNAs (lncRNAs), which are transcripts 
greater in length than 200 nucleotides, but with no protein-coding capacity. While some lncRNAs have been demon-
strated to be key regulators of gene expression and 3D genome organization, most lncRNAs are still uncharacterized. 
We thus propose several data mining and machine learning approaches for the functional annotation of human 
lncRNAs by leveraging the vast amount of data from genetic and genomic studies. Recent results from our studies and 
those of other groups indicate that genomic data mining can give insights into lncRNA functions and provide valuable 
information for experimental studies of candidate lncRNAs associated with human disease. 
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1  Introduction 
 

The human genome project was a monumental 
undertaking to sequence the entire set of human 
chromosomes, which many scientists believed would 
unlock the secrets of our genome. However, after the 
completion of human genome sequencing, it was 
discovered that humans were somewhere between 
chickens and grapes in terms of the number of protein- 
encoding genes (Pertea and Salzberg, 2010). Ap-
proximately 22 000 human genes were discovered, 
and this outcome was a surprise to the scientific 
community who had estimated about 100 000 genes in 
the human genome (Pertea and Salzberg, 2010). This 
relatively small number of genes corresponds to only 

a few percent of the total human genome, while the 
rest of the noncoding genome does not encode pro-
teins. The noncoding DNA was referred to as “junk 
DNA” due to its lack of protein-coding capacity and 
the presence of pseudogenes, transposons, and repet-
itive regions. 

The advent of high-throughput technologies al-
lowed the genome-wide detection of noncoding RNAs, 
which showed the pervasiveness of transcription in 
the genome. From these genome-wide analyses, it is 
now known that the majority of the genome is ac-
tively transcribed (Hangauer et al., 2013). Why would 
natural selection favor the transcription, which costs 
energy, of “junk DNA” with no biological purpose? 
This question rests on the assumption that “junk DNA” 
has no function, which is now known to be invalid. 
The term “junk DNA” is obsolete after genomic 
analyses discovered that over 80% of the human ge-
nome possesses biochemical functions (ENCODE 
Project Consortium, 2012). Genomics research has 
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not only shed light on the dark matter of the genome, 
but also championed for a redefinition of the term 
“gene,” owing to the vast amount of evidence for 
functional noncoding RNAs. Genes by definition are 
no longer always required to encode proteins, thus 
creating two major classes of genes: those which 
encode proteins are protein-coding genes while those 
that do not are noncoding RNAs. This redefinition is 
of tremendous importance as both noncoding and 
protein-coding genes are functionally intertwined 
within the gene network of the genome. 

High-throughput RNA-sequencing has been used 
to discover tens of thousands of long noncoding RNAs 
(lncRNAs), which are greater than 200 nucleotides in 
length and do not encode proteins. The nucleotide 
length threshold of 200 nucleotides is largely arbi-
trary but does serve an essential purpose in separating 
these transcripts from the well-known small noncoding 
RNAs, such as transfer RNAs (tRNAs), microRNAs 
(miRNAs), and small nucleolar RNAs (snoRNAs). A 
meta-analysis of 7256 human RNA-sequencing pro-
files identified 58 648 lncRNA genes, suggesting that 
68% of the human transcriptome may be lncRNAs 
(Iyer et al., 2015). In total, nearly 99 000 human genes 
were identified, which is close to the estimate of 
100 000 prior to the human genome project, but only 
about 22 000 are protein-coding genes (Iyer et al., 
2015). Therefore, it has become evident that lncRNAs 
are abundant within the human genome with active 
biological functions. 

LncRNAs represent the largest class of noncoding 
genes with several sub-classes based on their genomic 
positions relative to protein-coding genes. In order of 
decreasing prevalence, the major lncRNA sub-classes 
are long intergenic noncoding RNAs (lincRNAs), 
antisense lncRNAs (AS-lncRNAs), sense lncRNAs, 
and bidirectional lncRNAs (Derrien et al., 2012). 
These various lncRNAs generally share common 
features, including being predominantly spliced, ex-
pressed at low levels, tissue-specific, and having 
exonic regions with low levels of interspecies se-
quence conservation (Derrien et al., 2012). Interest-
ingly, lncRNA promoters are conserved at a similar 
level relative to protein-coding genes, suggesting that 
lncRNAs are positively selected and thus are func-
tionally important (Derrien et al., 2012). LncRNAs are 
commonly transcribed by RNA polymerase II and 
generally modified post-transcriptionally as messenger 

RNAs (mRNAs), including 5' capping, polyadenyla-
tion, and splicing (Quinn and Chang, 2016). While 
the biogenesis of lncRNAs may be very similar to 
mRNAs in most cases, a key difference has been 
discovered recently; knockouts of the ribonuclease 
Dicer, responsible for generating miRNAs, resulted  
in the decreased expression levels of hundreds of 
lncRNAs, but not mRNAs (Zheng et al., 2014). An-
other intriguing difference between mRNAs and 
lncRNAs is that some lncRNA transcripts possess 
higher-order structures, such as 3' secondary clover-
leaf structures similar to tRNAs. These 3' secondary 
structures are cleaved by ribonuclease P to form the 
mature lncRNA with a 3' triple helix structure which 
is predicted to increase transcript stability and facili-
tate nuclear retention (Quinn and Chang, 2016). 
 
 
2  Functional mechanisms of lncRNAs 
 

Although many lncRNAs are expressed by the 
human genome, only a few have been functionally 
characterized. The known functions of lncRNAs are 
generally within four major mechanistic themes, 
which are to act as a signal, decoy, guide, or scaffold 
(Wu et al., 2013). These different mechanisms can  
act to regulate other genes at the transcriptional, 
post-transcriptional, translational, or epigenetic levels. 
As shown in Fig. 1, lncRNAs with signaling functions 
act as a molecular marker to indicate specific bio-
logical conditions, and then induce a response such as 
histone modifications. An example is the lncRNA, 
X-inactive specific transcript (XIST), which initiates 
X chromosome inactivation in females for dosage 
compensation. By coating the X chromosome to be 
inactivated, XIST transcripts signal successive epi-
genetic modifications such as DNA methylation, 
histone methylation, and histone ubiquitination (Mor-
ris, 2016). Decoy lncRNAs function through the  
sequence-based competitive binding of molecules. 
This binding is commonly observed in lncRNAs 
acting as miRNA sponges to reduce miRNA efficacy 
(Geisler and Coller, 2013). Guide lncRNAs bind 
proteins such as transcription factors, thereby re-
cruiting these proteins to specific genomic loci 
(Werner and Ruthenburg, 2015). Many lncRNAs can 
function as guides by tethering to chromatin and fa-
cilitating the binding of protein complexes such as 
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polycomb repressive complex 2 (PRC2) and RNA 
polymerase II (Werner and Ruthenburg, 2015). The 
last major functional theme of lncRNAs is to act as 
scaffolds, which mediate the physical interactions 
between proteins and noncoding RNAs, forming ri-
bonucleoprotein complexes. For example, the lncRNA 
HOTAIR directly facilitates the binding of E3 ubiq-
uitin ligases with multiple substrates for ubiquitina-
tion, thereby acting as a scaffold for protein ubiqui-
tination (Yoon et al., 2013). It is important to note 
that one lncRNA is not confined to a single func-
tional mechanism and can exhibit multiple functions 
simultaneously. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Like proteins, lncRNA functionality is depend-
ent on proper subcellular localization. While most 
lncRNAs are shown to be enriched in the nucleus, 
some also localize and function in the cytoplasm 
(Cabili et al., 2015; Chen, 2016; Carlevaro-Fita and 
Johnson, 2019). As shown in Fig. 2, lncRNAs play 
important roles in nuclear chromatin organization, 
epigenetic modification, transcriptional regulation, 
and RNA splicing (Sun et al., 2018). For instance, 
MALAT1 and NEAT1 are enriched predominantly in 

nuclear speckles and paraspeckles, respectively, and 
are involved in nuclear architecture organization and 
RNA splicing (Clemson et al., 2009; Tripathi et al., 
2010). In the cytoplasm, lncRNAs can regulate gene 
expression at post-transcriptional levels through mod-
ulating translational efficiency, acting as miRNA 
sponges, affecting RNA stability, and facilitating the 
subcellular transport of ribonucleoprotein complexes 
(Rashid et al., 2016). However, the factors that govern 
lncRNA subcellular localization are mostly unknown. 
A previous study identified a nuclear retention motif 
in the lncRNA BMP/OP-responsive gene (BORG) 
through a mutational screen (Zhang et al., 2014). 
Interestingly, the number of copies of this motif pre-
sent in lncRNAs correlated with the nuclear to cyto-
plasmic transcript ratio, whereas mutations of the 
motif resulted in the loss of nuclear retention. 
 
 
3  Genomic data mining and machine learn-
ing for functional annotation of lncRNAs 
 

The functional characterization of lncRNAs using 
experimental approaches, such as gene knockouts, is 
not straightforward and can be highly time-consuming 
(Cao HF et al., 2018). The current methodology for 
functional genomics is designed primarily for protein- 
coding genes. The laborious process of characterizing 
lncRNA functions can be facilitated by genomic data 
mining, which utilizes genomic data to extract hidden 
knowledge regarding a specific biological question. 
Biological knowledge is gained by using data mining 
algorithms which identify patterns and relationships 
within the data. Genomic data mining typically con-
sists of three major steps, including dataset acquisition, 
data integration, and the application of data mining 
algorithms. Dataset acquisition involves querying  
the available databases for biological data which are 
relevant to the hypothesis at hand. Data integration is 
the aggregation of diverse or heterogeneous datasets 
so that generalizable knowledge can be extracted. 
Lastly, data mining algorithms are applied to the 
integrated data for knowledge discovery and ad-
dressing biological questions. While still a relatively 
new discipline, genomic data mining is of great im-
portance and will continue to grow in demand pro-
portionally to the vast amount of genomic data being 
generated. 

Fig. 1  Mechanistic themes of lncRNA functions 
LncRNAs are shown in purple acting as a signal, decoy, 
guide, or scaffold. Signal lncRNAs act in response to a 
stimulus to induce gene regulation, such as repression, in a 
spatiotemporal manner. Decoy lncRNAs act as competitive 
inhibitors, such as miRNA sponges, thereby preventing the 
degradation of the targeted mRNA. Guide lncRNAs bind 
complexes such as chromatin-modifying enzymes and fa-
cilitate the targeting of specific genomic loci either in cis or 
trans. Scaffold lncRNAs act as a molecular glue to facilitate 
the interaction of multiple proteins into a ribonucleoprotein 
complex. Modified from Wang and Chang (2011) 
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As a major subfield of data mining, machine 
learning algorithms create models by learning from 
data on their own without explicit instructions. Ma-
chine learning requires a task, a means of scoring the 
performance of the algorithm on the task, and expe-
rience upon which to learn. The experience itself is 
data, and the nature of the data determines the type of 
machine learning. If the data instances have labels 
(known values of the response variable), the task is 
said to be supervised learning; if the data are unlabeled, 
then it is unsupervised learning. Because supervised 

learning can extract generalizable knowledge from 
labeled data, the resulting model can be used to pre-
dict the response variable for new data instances with 
unknown labels. In contrast, unsupervised learning 
does not require labeled data, but may identify hidden 
structures within the unlabeled data for clustering 
data instances into representative groups. 

With the growing size and complexity of ge-
nomic data, machine learning algorithms are needed 
to discover knowledge in a timely and efficient manner. 
Although both supervised and unsupervised learning 
algorithms are widely used for genomic data mining, 
supervised learning is often preferred due to its ca-
pability to learn novel complex patterns and make 
biologically relevant predictions. Two of the most 
popular supervised learning algorithms are the sup-
port vector machine (SVM) and random forest (RF). 
Both algorithms are easy to implement with a small 
number of parameters, but can achieve high accuracy 
for both linear and non-linear problems. SVM and  
RF have been used for a diverse array of biological 
problems ranging from the classification of lncRNAs 
to the prediction of lncRNA–protein interactions and 
autism spectrum disorder (ASD)-associated lncRNAs 
(Muppirala et al., 2011; Cogill and Wang, 2016; Pian 
et al., 2016). 

While conventional machine learning algorithms 
such as SVM and RF can achieve high prediction 
accuracy for most biological problems, recently a new 
set of advanced algorithms, known as deep learning 
algorithms, have shown a better performance for com-
plex problems (Ching et al., 2018). Deep neural net-
works with multiple layers of artificial neurons are 
commonly used for deep learning of complex patterns. 
The number of neuronal layers gives the depth of a 
deep learning model, with each layer transforming its 
inputs to derive new and more sophisticated features. 
The automatic learning of feature representation is 
regarded as the main advantage of deep learning over 
conventional machine learning which restricts inputs 
to human-engineered features. Potential issues with 
deep learning include the requirement of large da-
tasets to learn generalizable knowledge due to the 
copious number of parameters that need to be learned. 
However, in the age of big data, this is becoming less 
of a concern, which is why deep learning will likely 
become the next frontier of machine learning in 
computational genomics. 

Fig. 2  LncRNA functions in the cellular context 
1: LncRNAs can bind chromatin-modifying enzymes and 
facilitate histone modifications such as the trimethylation 
of histone 3 at lysine 27 (me3K27) to induce gene silencing. 
2: LncRNAs can form an RNA-DNA triplex which blocks 
accessibility to gene promoter regions. 3: LncRNAs facili-
tate the organization of nuclear structures such as paraspeckles. 
4: LncRNAs can bind pre-mRNAs to affect alternative 
splicing. 5: LncRNAs can interact with mRNAs and ribo-
somes to regulate translation. 6: LncRNAs are capable of 
sequestering miRNAs as a miRNA sponge, thereby pre-
venting the degradation of targeted mRNAs. 7: LncRNAs 
may be processed by Dicer to produce endogenous small 
interfering RNAs (siRNAs). 8: LncRNAs can also function 
in the subcellular localization of proteins to complexes such 
as the proteasome. Modified from Rashid et al. (2016) 
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We propose six major approaches of genomic 
data mining for the functional annotation of human 
lncRNAs (Fig. 3). These approaches, as discussed in 
detail in the following sections, apply machine learning 
and data mining techniques to the ever-increasing 
amount of publicly available data from human genetic 
and genomic studies. The findings are not only useful 
for lncRNA functional annotation, but they also pro-
vide valuable information for experimental studies of 
candidate lncRNAs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4  Disease association of lncRNAs 
 

LncRNAs have been implicated in many human 
diseases. This involvement is not surprising as they 
are versatile regulators of gene expression with known 
roles in tissue development. Mutations in lncRNAs 
can alter their functional efficacy, thereby causing 
aberrant downstream consequences. Interestingly, more 
than 90% of disease-associated single nucleotide pol-
ymorphisms (SNPs) are found within noncoding re-
gions of the human genome (Maurano et al., 2012; 
Ricaño-Ponce and Wijmenga, 2013). These SNPs 
may alter the expression levels of lncRNAs (Kumar  
et al., 2013). In addition, copy number variants (CNVs) 
have also been shown to change the expression levels 
of lncRNAs associated with cancer (Xu et al., 2017). 

Many lncRNAs are specifically expressed in 
neuronal tissues, and thus may be associated with 
brain disorders (Derrien et al., 2012). In mammals, 
lncRNAs have important roles in neural differentia-
tion and synaptic plasticity (Wu et al., 2013; Clark 

and Blackshaw, 2014). Therefore, it is not surprising 
that lncRNAs are implicated in neurodegenerative, 
psychiatric, and neurodevelopmental disorders. In 
previous studies, lncRNAs have been shown to be 
associated with two of the most predominant neuro-
logical disorders, intellectual disability (ID) and ASD 
(van de Vondervoort et al., 2013; Ziats and Rennert, 
2013; Cajigas et al., 2015; Wang Y et al., 2015). ID 
and ASD are clinically and genetically heterogeneous 
complex disorders, affecting up to 3% and 1% of  
the human population, respectively (Srivastava and 
Schwartz, 2014). ID is characterized by diminished 
intellectual capacity and adaptive reasoning, whereas 
ASD is recognized by impaired social communica-
tions and restrictive or repetitive behavior. Both dis-
orders originate in early childhood, and involve a 
large number of genes, many of which are associated 
with the synaptic transmission pathway (Verpelli et al., 
2013; de Rubeis et al., 2014). However, in most cases 
of ID or ASD, the specific genetic factors of the dis-
orders are still unable to be determined (O'Roak et al., 
2012; Kiser et al., 2015). Until recently, only protein- 
coding genes were studied for their involvement in ID 
and ASD. It is thus likely that many of these genetic 
factors may reside in lncRNAs. 

We have developed an SVM model for the  
expression-based prediction of ASD risk genes (Cogill 
and Wang, 2016). The SVM model, trained using 
brain developmental gene expression profiles of known 
ASD risk genes (protein-coding), demonstrated the 
ability to classify and prioritize ASD candidate genes 
accurately. This model was then used to predict ASD- 
associated candidate lncRNAs based on their devel-
opmental expression patterns. Of brain-expressed 
lncRNAs, 63 were predicted as ASD-associated can-
didates with high confidence, and the lncRNAs pre-
viously related to brain development and neurode-
velopmental disorders were also prioritized highly in 
the candidate gene list (Cogill and Wang, 2016).  
Our study proposed a novel approach for knowledge 
transfer from known ASD risk protein-coding genes 
to lncRNAs, which should facilitate experimental 
investigation into these candidate lncRNAs. Moreover, 
the general machine learning strategy may also be 
applied to other diseases such as ID and cancer. The 
disease association of lncRNAs has also been studied 
using gene co-expression network analysis, as dis-
cussed in the next section. 

Fig. 3  Genomic data mining approaches proposed for 
the functional annotation of human lncRNAs 
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5  Expression pattern analysis 
 

A well-known property of lncRNAs is their tis-
sue and developmental specificity. Thus, the expres-
sion pattern of a lncRNA can be used to help under-
stand its biological function. Expression pattern anal-
ysis is especially useful for lncRNAs because they do 
not encode proteins. With the RNA transcript as the 
functional unit, the biological function of a lncRNA 
may be investigated by examining the expression 
differences between various groups of samples, such 
as diseased versus control tissues or fetal brains ver-
sus adult brains. The two most common expression- 
based approaches are differential expression analysis 
and co-expression network analysis, both of which 
have been used to investigate lncRNAs (Liao et al., 
2011; Necsulea et al., 2014; Chaudhary et al., 2017; 
Gudenas et al., 2017; Cogill et al., 2018). 

Differential expression analysis identifies genes 
that show statistically significant differences in ex-
pression levels between two or more conditions and is 
commonly used to find genes associated with a dis-
ease, tissue type, or experimental treatment. Gene 
co-expression network analysis is a clustering method 
which enables the inference of a gene’s biological 
function based on the strength of connections to other 
genes with a known function. As shown in Fig. 4, this 
method is used to cluster genes by their expression 
profiles into gene groups, known as gene modules. 
These gene modules can then be functionally anno-
tated through gene set enrichment analysis, which 
uses a statistical test to check if the overall functional 
enrichment is different from what would be expected 
by chance. Thus, gene co-expression network analysis 
leverages the biological knowledge of known genes 
to gain insight into the uncharacterized genes through 
a guilt-by-association heuristic. 

We have used differential expression analysis 
and co-expression network analysis for identification 
and functional annotation of candidate lncRNAs as-
sociated with ASD (Gudenas et al., 2017; Cogill et al., 
2018). Various genomic datasets were integrated and 
then used to identify and prioritize a list of high- 
confidence candidate lncRNAs that were differen-
tially expressed in the ASD brain, co-expressed with 
known ASD risk genes during neurodevelopment, 
and co-located with ASD-associated CNVs (Gudenas 
et al., 2017). Gene co-expression network analysis  

 
 

 
 
 
 
 
 
 
 
 

 
 

 
 

also identified two distinct groups of lncRNA mod-
ules showing elevated prenatal and postnatal expres-
sion patterns, respectively (Cogill et al., 2018). The 
functional analysis of these modules revealed that the 
prenatal modules were enriched with transcriptional 
regulators, while the postnatal modules were associ-
ated with synapse formation. Thus, our findings pro-
vide insight into the genetic etiology of ASD and the 
important functions of lncRNAs during early brain 
development. In addition, gene co-expression network 
analysis was also used to identify candidate lncRNAs 
associated with ID (Gudenas and Wang, 2015) and 
cancer (Cogill and Wang, 2014). 
 
 
6  Subcellular localization 
 

The subcellular localization of a lncRNA can 
reveal insight into its biological function (Chen, 2016; 
Carlevaro-Fita and Johnson, 2019). Gene regulation by 
lncRNAs at the transcriptional, post-transcriptional, 
or epigenetic level is performed within the nucleus, 
whereas translational control, binding miRNAs and 
producing endogenous siRNAs are some lncRNA 
functions exclusive to the cytoplasm (Rashid et al., 
2016; Sun et al., 2018). Therefore, predicting the 
subcellular localization of lncRNAs can provide useful 
information about their biological functions. 

We have recently developed a deep neural net-
work model, called DeepLncRNA, to predict the 
subcellular localization of a lncRNA from its tran-
script sequence (Gudenas and Wang, 2018). The model 
was constructed using a comprehensive dataset of 

Fig. 4  Schematic diagram of gene co-expression network 
analysis 
Genes are clustered by their correlation of co-expression with 
other genes, resulting in gene modules shown in different 
colors. Within each gene module, nodes represent genes 
while edges represent correlations. The length of an edge is 
inversely proportional to the correlation of co-expression 
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nuclear and cytosolic lncRNAs compiled through 
large-scale analysis of RNA-seq data from the  
ENCODE project (ENCODE Project Consortium, 
2012). DeepLncRNA achieved superior performance 
when compared with conventional machine learning 
algorithms such as SVM and RF. The high accuracy 
of DeepLncRNA suggests that lncRNA transcripts 
may contain sequence motifs essential for subcellular 
localization. DeepLncRNA also compares favorably 
with two other models, lncLocator and iLoc-LncRNA 
(Su et al., 2018), for predicting lncRNA subcellular 
localization. LncLocator uses a stacked autoencoder 
to derive high-level sequence features for an ensem-
ble of SVM and RF models to predict five subcellular 
localizations (Cao Z et al., 2018), whereas iLoc-LncRNA 
utilizes pseudo K-tuple nucleotide composition (PseKNC) 
features to train a multi-class SVM model (Su et al., 
2018). However, both iLoc-LncRNA and lncLocator 
were constructed using a relatively small dataset of 
lncRNAs (<1000) from various organisms. In contrast, 
DeepLncRNA has been constructed using a large 
number of human lncRNAs (>8000), and thus may be 
particularly suitable for the functional annotation of 
human lncRNAs. 
 
 
7  Functional motif discovery 
 

LncRNAs function in various biological pro-
cesses, and the functional versatilities may rely on 
their abilities to form different structures and diverse 
molecular interactions with DNA, RNA, and proteins 
(Guttman and Rinn, 2012; Zampetaki et al., 2018). 
However, lncRNA structure prediction is a research 
area still in its infancy, mainly due to the scarcity of 
experimentally validated lncRNA structures. Since the 
primary sequence ultimately dictates the structure,  
the determinants of lncRNA functionality should be 
present within the lncRNA transcript sequence. While 
generally not well conserved at the sequence level, 
lncRNAs sharing the same function often show sim-
ilarities in a combination of sequence motifs and 
structural elements (Achar and Sætrom, 2015). Therefore, 
finding the motifs present in lncRNA transcripts can 
provide useful information for functional annotation. 

Several well-known RNA motifs are present in 
lncRNAs and may be critical for their functions. For 
instance, G-rich lncRNAs can contain G-quadruplexes 

(G4s), in which four guanines are organized in a planar 
arrangement to form stacks of G-quartets (Cammas 
and Millevoi, 2017). G4s often affect cellular activi-
ties through interaction with G4-binding proteins and 
other recruited protein regulators (Brázda et al., 2014). 
Besides their known regulatory role in RNA metabo-
lism, G4s may also be involved in transcription, re-
combination, and telomere homeostasis (Cammas and 
Millevoi, 2017). Another example of functional motifs 
is the kissing complex, a form of RNA pseudoknot, in 
which base pairs are formed between the unpaired 
nucleotides of two hairpin loops. RNAs with the kiss-
ing complex can bind to the KH2 domain of Fragile-X 
mental retardation protein (FMRP), and thus may be 
the targets for FMRP-mediated translational regula-
tion (Darnell et al., 2005). In addition, sequence mo-
tifs can be associated with specific lncRNA higher- 
order structures such as the AUGC tetraloop motif (Li 
et al., 2016). However, it is likely that most of the 
functional motifs in lncRNAs remain to be discovered 
and characterized. The high functional diversity but 
low sequence conservation of lncRNAs can make it 
challenging to analyze functional motifs. The recent 
development of deep learning techniques, such as 
convolutional neural networks, should greatly facilitate 
lncRNA motif discovery and functional annotation. 
 
 
8  RNA modifications 
 

Post-transcriptionally modified nucleotides such 
as N6-methyladenosine (m6A), 5-methylcytosine (m5C), 
and pseudouridine (Ψ) are known to be critical for 
proper RNA function. In human ribosomal RNAs 
(rRNAs), there are 91 pseudouridines and 10 meth-
ylated nucleotides. These chemical modifications can 
influence molecular interactions and conformations 
of rRNAs (Wang and He, 2014). tRNAs also undergo 
extensive post-transcriptional modifications to ensure 
their proper structure and function (Jackman and 
Alfonzo, 2013). More importantly, m6A methylation 
is probably the most prevalent modification in mam-
malian RNAs, and it is a dynamic process mediated 
by methyltransferases and demethylases (Wang and 
He, 2014; Song and Yi, 2017). In mRNAs, m6A 
modification sites are distributed mainly near the stop 
codon, but also in other regions (Ke et al., 2015; 
Linder et al., 2015). A consensus motif, DRACH 
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(D=A/G/U, R=A/G, H=A/C/U), has been identified 
for RNA m6A modification, but not all adenosines 
within this motif are methylated. This dynamically 
regulated modification is involved in many aspects  
of mRNA metabolism, such as alternative splicing, 
degradation, and translation (Wang X et al., 2014, 
2015; Liu et al., 2015). 

Relatively less is known about the nucleotide 
modifications in lncRNAs. It has been shown that the 
lncRNA XIST has at least 78 m6A residues which are 
essential for XIST function in X chromosome inacti-
vation (Patil et al., 2016). Several other lncRNAs, 
including MALAT1, TUG1, and NEAT1, also contain 
multiple m6A sites, but their roles are still unclear 
(Wang and He, 2014). Further research is needed to 
elucidate the patterns and roles of lncRNA nucleotide 
modifications; genomic data mining methods can 
facilitate this endeavor. Although several machine 
learning models have been developed to predict m6A 
sites from mRNA sequences (Zhou et al., 2016; 
Zhang and Hamada, 2018; Zou et al., 2019), it re-
mains to be determined whether these models can also 
be used for lncRNA functional annotation. 
 
 
9  RNA–protein interactions 
 

Many functions of lncRNAs are mediated by 
their interactions with RNA-binding proteins (Ferrè  
et al., 2016). For instance, some lncRNAs regulate 
chromatin status by interacting with chromatin mod-
ifiers such as PRC2 (Davidovich and Cech, 2015; Jin 
et al., 2018). LncRNAs can be involved in organizing 
3D genome architecture by interacting with proteins 
such as the CCCTC-binding factor (CTCF) (Sun et al., 
2013; Kung et al., 2015). RNA–protein interactions 
are also essential for the lncRNA NEAT1 to organize 
nuclear paraspeckles (Clemson et al., 2009). Moreo-
ver, lncRNAs may interact with transcription factors 
to modulate their regulatory activities on gene ex-
pression (Ponting et al., 2009; Wang and Chang, 
2011). The importance of lncRNA–protein interac-
tions is further evidenced by their involvement in 
human diseases, including cancer (Huarte et al., 2010; 
Yang et al., 2018) and neurological disorders (Guo  
et al., 2018; Li et al., 2019). 

Several machine learning models have been 
developed to predict lncRNA–protein interactions from 

their sequences. The model RPISeq was shown to 
predict lncRNA–protein interactions with an accuracy 
of 80% from lncRNA and protein sequence pairs 
using SVM and RF algorithms (Muppirala et al., 
2011). LncPro used a structure-based approach to 
predict lncRNA–protein interactions by first deriving 
structure-based features from the lncRNA and protein 
sequences, and achieved a prediction accuracy similar 
to RPISeq (Lu et al., 2013). Moreover, with the addi-
tion of a stacked denoising autoencoder, a type of 
deep neural network, the IPminer model was able to 
achieve an accuracy of 89% for predicting lncRNA– 
protein interactions from their sequences (Pan et al., 
2016). While the above models achieved high accu-
racy on some specific datasets, it has not yet been 
demonstrated whether they can be used to predict 
novel lncRNA–protein interactions. Further studies 
are needed to thoroughly evaluate these models for 
functional annotation of lncRNAs. 
 
 
10  Concluding remarks 
 

In this review, we have discussed several ap-
proaches of genomic data mining for the functional 
annotation of human lncRNAs. The human genome 
encodes a large number of noncoding RNAs, mostly 
lncRNAs, which are involved in gene regulation and 
3D genome organization necessary for cellular func-
tion and development. However, most lncRNAs are 
still functionally uncharacterized as experimental 
approaches remain difficult and costly. With the rapid 
accumulation of genomic data, machine learning and 
data mining algorithms have been utilized to develop 
novel and integrative approaches for the functional 
analyses of lncRNAs and the resulting knowledge can 
provide biological insights into their regulatory roles 
in development and disease. Since lncRNAs do not 
encode proteins, these genomic data mining ap-
proaches are based on their expression patterns and 
transcript sequences. In future, as experimentally 
determined 3D structures of lncRNAs accumulate, 
structure-based strategies will likely fill in some of the 
missing pieces for deciphering lncRNA functionality. 
The genomic and functional annotation of lncRNAs is 
a very challenging task, which has only just begun, 
and this endeavor will certainly enhance our under-
standing of human biology and disease. 
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中文概要 
 
题 目：利用基因组数据挖掘对人类长非编码 RNA 进行

功能注释 
概 要：越来越多证据表明 RNA 在生物系统中扮演着重

要的角色，而这些发现支持了生命起源于 RNA
的假设。在人类基因组中，大部分的基因并不编

码蛋白质，被称为非编码 RNA 基因。长非编码

RNA（lncRNA）是其中最大的一类，其转录本长

度大于 200 个核苷酸。虽然一些 lncRNA 已被证

明是调控基因表达和 3D 基因组结构的重要元

件，但是大部分 lncRNA 还未被研究和注释。本

课题组利用大量基因组数据，提出一些基于数据

挖掘和机器学习的方法，对人类 lncRNA 进行功

能注释。我们与其他同领域课题组的近期研究结

果表明，基因组数据挖掘可帮助加深对 lncRNA
功能的理解，并为与疾病相关 lncRNA 的实验研

究提供重要信息。 
关键词：长非编码RNA（lncRNA）；功能注释；基因组数

据挖掘；机器学习 


