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Abstract

A spatially resolved version of the density-functional method for solvation thermodynamics is 

presented by extending the free-energy functional previously established in the 1-dimensional, 

energy representation and formulating a new expression in a mixed 4-dimensional representation 

(3 dimension for position and 1 dimension for energy). The space was further divided into a set of 

discrete regions with respect to the relative position of a solvent molecule from the solute, and the 

spatially-decomposed energetics of solvation was analyzed for small molecules with a methyl, 

amine, or hydroxyl group and alanine dipeptide in solvent water. It was observed that the density 

of the solvation free energy is weakly dependent on the solute site in the excluded-volume region 

and is distinctively favorable in the first shells of the solute atoms that can readily form hydrogen 

bonds with water. The solvent-reorganization term reduces faster with the separation from the 

solute than the direct interaction between the solute and solvent, and the latter governs the 

energetics in the second shell and outer regions. The sum of the contributions to the free energy 

from the excluded volume and first shell was found to be deviate significantly from the total sum 

over all the regions, implying that the solvation free energy is not spatially localized near the 

solute in a quantitative sense. Still, a local description was shown to be valid as confirmed by the 

correlation of the total value of free energy with the corresponding value obtained by integrating 

the free-energy density to the second shell. The theoretical framework developed in the present 

work to spatially decompose the solvation free energy can thus be useful to identify stabilizing or 

destabilizing regions of solvent proximate to a solute and to analyze the role that the displacement 

of interfacial water plays in the thermodynamics of molecular association.
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Introduction

Solvation free energy quantifies the influence of solvent on the stability of a solute. It is a 

thermodynamic variable, and describes the effect of solute-solvent interaction as a whole. A 

molecular picture is established, on the other hand, by identifying chemically important 

groups of atoms and pursuing local structure and energetics around them. The focus is then 

the solvent molecules located proximately to the solute, and a theoretical framework is 

required to bridge the spatially resolved information to a spatially averaged observable such 

as free energy. The scheme of spatial decomposition meets this requirement. It expresses a 

thermodynamic, transport, or spectroscopic quantity as a spatial integral of relevant, 

molecular correlation functions and sets a basis for specifying the important regions that 

determine the observable. The spatial decomposition was conducted to analyze the 

energetics and volumetrics of hydration1-4 and was adopted to investigate the ion-pair 

contribution to the electrical conductivity and the solvation-shell contributions to dynamic 

and spectroscopic observables.5-16

The spatially resolved energetics receives much attention recently in connection to ligand 

design for proteins.17-28 The inhomogeneous solvation theory sets a basis for investigating 

the energy and entropy of water molecules at the biomolecular surface, and a practical 

strategy has been proposed to identify the locations of water that are to be displaced by 

ligands possibly with improved affinities. The empirical scheme based on the accessible 

surface area and the method of 3D-RISM (three-dimensional reference interaction site 

model) can also be viewed as ones with spatial (regional) decomposition.29-32 A set of 

thermodynamic parameters are assigned to or determined for each group of atoms 

(functional group), and in this procedure, the space around the solute is effectively divided 

by specifying the contributions from the atom groups. The density functional theory (DFT) 

is an alternative scheme for expressing the solvation free energy as an integral over the 

space.33-43 The local signature for assessing the solvent’s effect on the solute stability is then 

the indirect (solvent-mediated) part of the solute-solvent potential of mean force,35,42,44 

which describes the solvent-solvent correlation modified by the presence of the solute.

The present work performs the spatial decomposition of the solvation free energy on the 

basis of the endpoint density-functional formula. In the DFT formalism, the solvation free 

energy is expressed as a functional of the solvent density around the solute,33,34 and with 

introduction of approximations, the free energy can be evaluated from distribution functions 

in pure solvent and in the solution system of interest; note that these two are the initial and 
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final (endpoint) states of solute insertion. When the solute is placed at the origin with fixed 

orientation, the solvent distribution around it can be represented as a function of the position 

and orientation of the solvent molecule. Such a six-dimensional representation is not 

numerically advantageous, however, and a scheme of dimensionality reduction is required 

for implementing a density-functional method in practice. In previous works,35,41,44-47 an 

endpoint DFT was formulated by adopting the pair-interaction energy between the solute 

and solvent as the one-dimensional coordinate for the distribution functions. This is called 

energy-representation method, and was applied to a variety of system including protein and 

lipid membrane.41,48-53 The solute-solvent configuration is then projected onto the energy 

coordinate, and thus the spatial information of the solvent around the solute is lost. To 

restore a spatially decomposed view of the solvation free energy within the DFT framework, 

therefore, it is necessary to formulate a representation that retains both the spatial 

information and the numerical feasibility.

In the present work, we formulate a functional for the solvation free energy by adopting a 

mixed representation with the position and energy. The energy refers to the pair energy 

between the solute and solvent and acts as a proxy for the solvent orientation relative to the 

solute. The coordinate for the distribution functions is then 4-dimensional with further 

reduction possible by the division of the space into a set of discrete regions, and a DFT 

expression can be developed in parallel to the cases of the six-dimensional (full position and 

orientation) and one-dimensional (energy) representations.42 We provide a formalism based 

on the Kirkwood charging formula and conduct the spatial decomposition for the free 

energies of solvation in water of small molecules with a methyl, amine, or hydroxyl group 

and of alanine dipeptide at representative conformations.

When the solvation free energy is spatially decomposed, the contribution from a region 

and/or an atomic group can be identified, for example, as hydrophobic or hydrophilic in 

solvent water in terms of its sign. This is a useful feature for quantitatively assessing the role 

of each contribution in the solvation effect, whereas the decomposed values are not 

observable in general. In the present work, we treat the solute-solvent interaction in each 

region examined and discuss the hydrophobicity or hydrophilicity of the methyl, amine, 

hydroxyl, and phenyl groups in small molecules and of the atomic sites in alanine dipeptide. 

Another feature of the spatial-decomposition analysis is that the extent of spatial localization 

can be addressed for the free energy of solvation. The total value of the free energy is then 

compared to the partial contribution from the excluded-volume, first-shell, and second-shell 

regions of the solute, and it is seen that the solvation free energy is not localized in the sense 

that the partial contribution deviates significantly from the total. Still, a good correlation is 

observed between the partial and total values, showing that a local view is adequate for 

describing the free-energetics of solvation.

Theory

In this section, we describe the DFT formalism for the solvation free energy Δμ. We briefly 

summarize the developments in the six-dimensional (full position and orientation) and one-

dimensional (energy) representations and provide a spatially-decomposed expression for Δμ. 

We suppose that the solute and solvent are both rigid and that the solution is at infinite 
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dilution with a single-component solvent. Actually, we will note at the end of the section 

that the supposition of rigidity is not necessary. The following developments can also be 

extended straightforwardly when the solute is at finite concentration and/or the solvent is a 

mixed one with more than a single species.

The solvation free energy Δμ is the free-energy change for turning on the solute-solvent 

interaction. When the solute is located at the origin with fixed orientation, Δμ is expressed as

exp( − βΔμ) =
∫ dX exp ( − β {∑l v(xl) + U(X)})

∫ dX exp ( − βU(X)) , (1)

where xl is the configuration of the lth solvent molecule, X denotes the solvent configuration 

collectively, U(X) is the total energy among the solvent, v(x) is the pair-interaction potential 

between the solute and solvent, and β is the inverse of kBT with the Boltzmann constant kB 

and the temperature T. Note that x is a six-dimensional coordinate representing the position 

and orientation of the solvent molecule relative to the solute. To formulate an endpoint DFT 

expression for Δμ, we introduce a set of intermediate states connecting the initial and final 

states of the insertion process of the solute, where the initial and final states are the pure-

solvent system without solute and the solution system of interest, respectively. Let λ be the 

coupling parameter identifying the state and uλ(x) be the solute-solvent interaction potential 

at the coupling parameter λ. When λ = 0, the system is the pure solvent and u0 = 0 (no 

solute-solvent interaction). The solute molecule at λ = 0 is a virtual particle, and is located 

in the system as a test particle. When λ = 1, the solute interacts with the solvent at full 

coupling and u1 = v, where v is the solute-solvent interaction of interest. Δμ is then given by 

the Kirkwood charging formula of

Δμ = ∫
0

1
dλ∫ dx

∂uλ(x)
∂λ ρλ

f (x) (2)

where ρλ
f  is the one-body distribution of the solvent around the solute at the coupling 

parameter λ. It is the ensemble average of the instantaneous distribution of x defined as

ρ f (x) = ∑
l

δ(x − xl), (3)

with the superscript f meaning that the function is represented over the full coordinate of 

position and orientation, and an ensemble average at λ is written as

〈⋯〉λ =
∫ dX(⋯) exp ( − β {∑l uλ(xl) + U(X)})

∫ dX exp ( − β {∑l uλ(xl) + U(X)}) . (4)
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The solvation free energy Δμ consists of the solute-solvent interaction energy and the 

solvent-reorganization term. The latter is the free-energy penalty corresponding to the 

change in the solvent distribution upon insertion of the solute, and is introduced from the 

Kirkwood charging formula Eq. 2 through partial integration as

Δμ = ∫ dxv(x)ρ f (x) − ∫
0

1
dλ∫ dxuλ(x)

∂ρλ
f (x)

∂λ (5)

where ρf (x) denotes ρλ
f (x) at λ = 1 and is the density of solvent in the solution system of 

interest. The second term of Eq. 5 is the density-functional and is the free energy of solvent 

reorganization. To separate it further to the solute-solvent pair contribution and the term 

incorporating the solvent-solvent correlations, we define the indirect (solvent-mediated) part 

ωλ
f (x) of the potential of mean force as

ρλ
f (x) = ρ0

f (x) exp −β uλ(x) + ωλ
f (x) (6)

where ρ0
f  stands for ρλ

f  at λ = 0. Equation 5 can then be modified into42,44,47

Δμ = ∫ dxv(x)ρ f (x) − kBT∫ dx ρ f (x) − ρ0
f (x) − ρ f (x) log ρ f (x)

ρ0
f (x)

+ ∫
0

1
dλ∫ dxωλ

f (x

)
∂ρλ

f (x)
∂λ

(7)

This is an exact expression. Its first term is the average sum of the solute-solvent interaction 

energy at λ = 1, and the second term is the pair entropy that quantifies the deviation of the 

solvent distribution in the solution system (λ = 1) from that in the pure solvent (λ = 0). The 

third term corresponds to the change in the solvent-solvent correlations upon gradual 

insertion of the solute with the coupling parameter λ. As noted in Refs. 42 and 43, the 

integrand of Eq. 7 is of o(1/V) at large distances from the solute, where V refers to the 

system size and o(1/V) denotes a quantity that vanishes faster than 1/V in the 

thermodynamic limit (V → ∞). There is then no contribution to the integral from the bulk 

far from the solute, and the integral value of Eq. 7 is assured to be independent of the choice 

of ensemble (for example, canonical vs. isothermal-isobaric). This is because the ensemble 

dependence arises from the presence of an O(1/V) correlation in the bulk region. 3

The difficulty in using Eq. 7 at the computation of Δμ is the high dimensionality of the full 

coordinate (position and orientation) x. To make feasible the DFT route to Δμ, a formulation 
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is required which expresses Δμ only in terms of distribution functions over a coordinate of 

reduced dimension. The method of energy representation was formulated as a DFT scheme 

over a one-dimensional coordinate.35,44 In this method, the solute-solvent pair interaction 

v(x) in the solution system of interest plays the key role and the instantaneous distribution of 

its value ϵ is introduced as

ρe(ϵ) = ∑
l

δ(ϵ − v(xl)), (8)

where the sum is taken over the solvent molecules and the superscript e is attached to 

emphasize that a function is represented over the energy coordinate. A density-functional 

treatment can then be implemented by restricting the set of solute-solvent interaction 

potentials uλ (x) to those which are constant over equi-energy surfaces of v(x). With this 

setup, uλ is a composite function with the form of uλ(v(x)) and can be written as uλ(ϵ) when 

ϵ denotes the value of v(x). At the endpoints (λ = 0 and 1), u0(ϵ) = 0 and u1(ϵ) = ϵ since 

v(x) is the potential function in the solution system of interest.

The Kirkwood charging formula in the energy representation is then given by

Δμ = ∫
0

1
dλ∫ dϵ

∂uλ(ϵ)
∂λ ρλ

e(ϵ) (9)

where ρλ
e is the distribution function in the presence of uλ and is the ensemble average of Eq. 

8 through Eq. 4. The indirect part ωλ
e(ϵ) of the potential of mean force can also be defined in 

parallel to Eq. 6 as 35,42,44,47

ρλ
e(ϵ) = ρ0

e(ϵ) exp ( − β {uλ(ϵ) + ωλ
e(ϵ)}) (10)

and Eq. 9 reduces to

Δμ = ∫ dϵϵρe(ϵ) − kBT∫ dϵ ρe(ϵ) − ρ0
e(ϵ) − ρe(ϵ) log ρe(ϵ)

ρ0
e(ϵ)

+ ∫
0

1
dλ∫ dϵωλ

e(ϵ)
∂ρλ

e(ϵ)
∂λ

(11)

where ρ0
e(ϵ) and ρe(ϵ) denote ρλ

e(ϵ) at λ = 0 and 1, respectively. Equation 11 is exact and it 

has a similar structure to Eq. 7. The first term is equal to the average sum of the solute-

solvent interaction energy in the solution (λ = 1), and the second term expresses the pair 

entropy in the energy representation. The third term takes into account the effects of solvent-
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solvent correlations, and was approximated by a combined Percus-Yevick (PY)-type and 

hypernetted-chain (HNC)-type relationship in previous works.44,47,49 As in Eq. 7, the 

solvent-reorganization term in Eq. 11 is the sum of the second and third terms. It should be 

noted that although Eq. 7 is not easy to implement due to the high dimensionality of the full 

coordinate x, Eq. 11 is straightforward to handle since the energy coordinate ϵ is one-

dimensional.

A notable feature of Eq. 8 is that the spatial information of the solvent around the solute is 

projected out. To restore the spatial resolution at the lowest possible dimensionality, a mixed 

space-energy representation can be proposed by using the solute-solvent pair energy ϵ as a 

proxy for the solvent orientation relative to the solute and defining the instantaneous 

distribution as

ρm(r, ϵ) = ∑
l

δ(r − rl)δ(ϵ − v(xl)), (12)

where r is the position of a solvent molecule and the superscript m means the mixed 

representation. Equation 12 is a marginal distribution of Eq. 3 obtained by projecting the full 

coordinate x to (r, ϵ). A typical choice of r can correspond to the center of mass of the 

solvent molecule or the oxygen site in the case of water. A DFT expression for Δμ can be 

formulated in a similar manner as above by considering the set of solute-solvent interactions 

with the form of uλ(r, ϵ); u0(r, ϵ) = 0 at λ = 0 and u1(r, ϵ) = ϵ holds at λ = 1. uλ can depend 

explicitly on the position r only at the intermediate states (0 < λ < 1). When the ensemble 

average of Eq. 12 at the coupling parameter λ is written as ρλ
m(r, ϵ) and ρ0

m(r, ϵ) denotes 

ρλ
m(r, ϵ) at λ = 0, the indirect part ωλ

m(r, ϵ) of the potential of mean force can be introduced as

ρλ
m(r, ϵ) = ρ0

m(r, ϵ) exp ( − β {uλ(r, ϵ) + ωλ
m(r, ϵ)}) (13)

in the mixed representation. The Kirkwood charging formula then reads as

Δμ = ∫
0

1
dλ∫ drdϵ

∂uλ(r, ϵ)
∂λ ρλ

m(r, ϵ) (14)

and modifies further into42

Δμ = ∫ drdϵϵρm(r, ϵ) − kBT∫ drdϵ ρm(r, ϵ) − ρ0
m(r, ϵ) − ρm(r, ϵ) log ρm(r, ϵ)

ρ0
m(r, ϵ)

+ ∫
0

1
dλ∫ drdϵωλ

m(r, ϵ)
∂ρλ

m(r, ϵ)
∂λ

(15)
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where ρm (r, ϵ) means ρλ
m(r, ϵ) at λ = 1 for notational brevity. It should also be noted that the 

distribution function ρλ
pos(r) of the solvent position r satisfies

ρλ
pos(r) = ∫ dϵρλ

m(r, ϵ), (16)

and ρλ
e(ϵ) in the 1-dimensional, energy representation is related to ρλ

m(r, ϵ) through

ρλ
e(ϵ) = ∫ drρλ

m(r, ϵ) (17)

by virtue of Eqs. 8 and 12. Equations 16 and 17 show that ρλ
pos(r) and ρλ

e(ϵ) are marginal 

distributions of ρλ
m(r, ϵ), which is the solvent density around the solute in a mixed 

representation of position and energy. In the following, ρλ
pos(r) at λ = 1 is denoted as ρpos(r).

As is so for Eqs. 7 and 11, Eq. 15 is an exact expression. The spatial decomposition of Δμ 
can then be conducted by rewriting Eq. 15 as

Δμ = ∫ drΔμ(r) (18)

Δμ(r) = ∫ dϵϵρm(r, ϵ) − kBT∫ dϵ ρm(r, ϵ) − ρ0
m(r, ϵ) − ρm(r, ϵ) log ρm(r, ϵ)

ρ0
m(r, ϵ)

+ ∫
0

1
dλ∫ dϵωλ

m(r, ϵ)
∂ρλ

m(r, ϵ)
∂λ .

(19)

Δμ(r) is a free-energy density at r. When the first term of Eq. 19 is divided by the spatial 

density ρpos(r), the quotient is the average sum at λ = 1 of the interaction energy with the 

solute of the solvent molecules located at the position r. Actually, Δμ(r) is not zero even 

when ρpos(r) is vanishingly small. ρpos(r) is exactly zero when the solute-solvent interaction 

energy is infinite at r, and is numerically zero in a simulation of finite length when r is 

contained in the excluded-volume domain. In either case, Δμ(r) does not vanish and will be 

unfavorable (positive) to reflect the excluded-volume effect.

In numerical implementations, the spatial position is expressed with finite bins. A molecular 

picture may also be obtained by focusing on the solvation shells around chemically 

important groups of atoms. When the space is divided into a set of discrete regions, the 

contribution from each region to Δμ can be formulated in the DFT framework by introducing
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ρd(ϵ; i) = ∑
l

Θ(rl; i)δ(ϵ − v(xl)), (20)

where Θ(r; i) is the characteristic function for the ith region in the space and is taken to 

satisfy

∑
i

Θ(r; i) = 1

Θ(r; i)Θ(r; j) = 0 for i ≠ j

(21)

for any position r in space. With Eq. 21, Θ(r; i) at a given r is unity for a single i and 

vanishes for the other i’s. The division of the space is then unique. A position in space is 

always contained in one of the regions and can never belong to multiple regions. Equation 

20 is actually a marginal distribution of Eq. 3 since it is obtained through the projection from 

the full coordinate x in Eq. 3 to the continuous position and energy (r, ϵ) in Eq. 12 and a 

further marginalization expressed as

ρd(ϵ; i) = ∫ drΘ(r; i)ρm(r, ϵ) = ∫
region i

drρm(r, ϵ) . (22)

An example of division is shown in Fig. 1. Three centers A, B, and C are specified, and the 

space is first divided into three regions in terms of the distances from A, B, and C with the 

boundaries given by the dashed lines. Each of the three regions is then divided with respect 

to the distance from the center, and the example of Fig. 1 consists of 12 regions represented 

by distinct colors. The regions in Fig. 1 satisfy Eq. 21 by construction, and may not be 

spherical in spite of the distance criteria used for the division. In RESULTS AND 

DISCUSSION section, we will divide the space as above. The centers A, B, and C in Fig. 1 

do not have to refer to three atomic positions. They may only be three sites arbitrarily chosen 

within a solute molecule, that is not necessary to be a triatomic one. When A, B, and C are 

positions of atoms, the shells around them can be used to define the regions. Each region 

may be a non-spherical part of a (spherical) shell, though, and when the molecule is not 

triatomic, the shell structures around the atoms other than A, B, and C are not reflected to 

introduce the regions in Fig. 1. A position in space is specified only with the distances from 

A, B, and C, and its distances with the other atoms are disregarded. It should be remarked 

again that the regions can be introduced arbitrarily as far as Eq. 21 is assured. The radial 

distances from a set of specific atoms are only a convenient option for division with Eq. 21. 

When the solute is a protein, for example, its cavity or active site may be adopted as a 

region. A grid can be employed, too, since it satisfies Eq. 21.

The DFT expression for Δμ in the disretized space-energy representation is formulated in 

parallel to that in the continuous representation based on Eq. 12. The indirect part ωλ
d(ϵ; i) of 

the potential of mean force is defined as
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ρλ
d(ϵ; i) = ρ0

d(ϵ; i) exp −β uλ(ϵ; i) + ωλ
d(ϵ; i) (23)

and the Kirkwood charging formula is

Δμ = ∑
i
∫

0

1
dλ∫ dϵ

∂uλ(ϵ; i)
∂λ ρλ

d(ϵ; i) . (24)

In these equations, ρλ
d(ϵ; i) is the ensemble average of Eq. 20 in the presence of uλ(ϵ; i), 

where uλ(ϵ; i) is the solute-solvent interaction at the coupling parameter λ in region i. u0(ϵ; 

i) = 0 and u1(ϵ; i) = ϵ are satisfied at the endpoints (λ = 0 and 1), and the explicit 

dependence of uλ on i appears only at the intermediate states. Equation 24 is then rewritten 

as

Δμ = ∑
i

Δμ(i) (25)

Δμ(i) = ∫ dϵϵρd(ϵ; i) − kBT∫ dϵ ρd(ϵ; i) − ρ0
d(ϵ; i) − ρd(ϵ; i) log ρd(ϵ; i)

ρ0
d(ϵ; i)

+ ∫
0

1
dλ∫ dϵωλ

d(ϵ; i)
∂ρλ

d(ϵ; i)
∂λ ,

(26)

where ρd(ϵ; i) denotes ρλ
d(ϵ; i) at λ = 1. Δμ(i) is the contribution from region i to the (total) 

free energy Δμ of solvation. The first term of Eq. 26 is the averaged interaction energy of the 

solvent in region i with the solute in the solution (λ = 1), and the rest is the solvent-

reorganization term as in Eqs. 7, 11, and 19. Actually, the energy-representation expression 

for Δμ in a mixed solvent (solvent system involving more than a single species) without 

spatial decomposition47,49 has the form of Eqs. 25 and 26. In other words, distinct regions in 

space can be viewed as distinct species of a mixed solvent in the energy-representation 

formalism.

Equations 25 and 26 are exact, and the structure of the latter is similar to those of Eqs. 7, 11, 

and 19. The integration over the coupling parameter λ is involved in the third term of Eq. 

26, and needs to be approximated to formulate an endpoint expression. In the present work, 

we employ the combined PY-type and HNC-type relationship as adopted in previous works 

to approximate the third term of Eq. 11 in the (one-dimensional) energy-representation 

method.44,47,49 The approximate expression for Δμ is given in Appendix A.

At the beginning of the present section, we suppose that the solute and solvent are rigid. This 

supposition is actually not necessary. When the solute and/or solvent is flexible, our 
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developments are valid when all the intramolecular degrees of freedom are incorporated into 

x. The problem is then the high dimensionality of x, whereas in the energy representation 

introduced by Eq. 8, the coordinate of the distribution functions is kept one-dimensional 

even with intramolecular degrees of freedom of the solute and/or solvent. This is a useful 

feature of the energy-representation formalism, and ϵ in the mixed space-energy 

representation serves as a proxy for all the variables other than the position, including the 

orientation and the intramolecular flexibility. The dimension is at least 2 for the orientation, 

and grows for the intramolecular part with the number of intramolecular degrees of freedom 

in the solute and/or solvent molecule. Equations 8, 12, and 20 are thus marginal distributions 

of Eq. 3 over coordinate sets with (largely) reduced dimension since many (usually infinite) 

orientational and intramolecular configurations are projected to a single value of ϵ.

Methods

The solvent in the present work was TIP3P water,54 and the solute species were ethane, 

methylamine, methanol, toluene, aniline, phenol, and alanine dipeptide. The force field for 

the solutes was OPLS-AA/L,55,56 and in the following, those solutes except for alanine 

dipeptide are called small solutes. The N- and C-termini of alanine dipeptide were capped 

with -CO-CH3 and -NH-CH3, respectively, and the peptide was treated as a neutral species. 

The system configurations were generated through all-atom molecular dynamics (MD) 

simulation using GROMACS 2016.3,57,58 and to obtain the solvation free energy Δμ, three 

kinds of MD were conducted for each solute species: the solution system of interest, pure 

solvent (pure water), and an isolated solute in vacuum. The force fields were the same 

among the three systems, and an isothermal MD of the isolated solute was performed at 300 

K to prepare a set of intramolecular configurations. The solution and pure solvent were 

simulated in the isothermal-isobaric (NPT) ensemble at 300 K and 1 bar with the periodic 

boundary condition and minimum image convention. The unit cell of MD was then cubic, 

and contained 2000 water molecule with a single solute for the solution. The simulation 

length was 5 and 2 ns for the solution and pure solvent, respectively, with the sampling 

interval of 0.1 and 1 ps. See Appendix B for the detailed procedures of MD simulation.

4 conformational states were examined for alanine dipeptide by using a restraining potential, 

whereas the small solutes were simulated without any restraint. The structure of alanine 

dipeptide is shown in Fig. 2 with the dihedral angles ϕ and ψ, and the conformations are 

denoted as follows.59-70

αR: ϕ = − 65°, ψ = − 45°

PII: ϕ = − 65°, ψ = 145°

αL: ϕ = 45°, ψ = 65°

C7
ax: ϕ = 55°, ψ = − 85°

(27)

Alanine dipeptide was restrained by using flat-bottomed potential functions operative on ϕ 
and ψ; the restraint was harmonically active with a force constant of 0.1 kcal/mol/degree2 
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when the dihedral angle deviates from the corresponding reference listed in Eq. 27 by more 

than 10°. The intramolecular contribution to the relative stability of each conformation was 

also determined by performing an replica-exchange MD of alanine dipeptide isolated in 

vacuum, as described in Appendix B.

Results and Discussion

Small Solutes

Figure 3 shows the radial distribution functions g(r) of water around the small solutes 

examined; the abscissa r refers to the distance of the oxygen site of a solvent water molecule 

from the methyl carbon (C), amine nitrogen (N), hydroxyl oxygen (O), or the center of mass 

of the 6 carbon atoms forming the phenyl ring (Ph). A sharper first peak appears at a shorter 

distance for N and O than for C and Ph. This simply reflects the hydrogen bonding with 

water, and the peak is stronger around O than around N. A clear second peak is present for N 

of methylamine and O of methanol. Aniline and phenol have a bulky phenyl group next to 

the amine or hydroxyl group, and the peak structure of g(r) is less distinct. The major peak 

for Ph is located broadly at ~5 Å, with a small shoulder observed only for toluene at ~3 Å. 

Ph is taken to be the center of the phenyl ring, and with this setup, the water coordination is 

seen mainly at farther distances than in the cases of atomic C, N, and O. Actually, g(r) 
around C or Ph is affected by the interaction of the neighboring site with water. The first 

peak for C is weaker around ethane than around methylamine and methanol, and the major 

peak for Ph exhibits a similar tendency.

Let R be the minimum of the distances of the C, Ph, N and O sites in the solute with the 

oxygen site of the solvent water molecule. On the basis of this R and Fig. 3, we divide the 

space into a set of regions as listed in Table 1. The solute molecule has two sites for which 

distances with a solvent molecule are considered, and the space is first divided into two 

regions each of which is closer to one of the sites. The two regions are then divided further 

in terms of the values of R, and the number of regions is 9 for ethane and toluene and 10 for 

methylamine, methanol, phenol, and aniline. The scheme of division is actually similar to 

that in Fig. 1, and as illustrated in Fig. 1, the regions in Table 1 satisfy Eq. 21 and are not 

spherical. The region with the smallest R for each site corresponds to the excluded volume. 

It is the spatial region in which water overlaps with a solute atom and the solute-solvent 

interaction energy is prohibitively large. Upon dissolution of the solute, a number of solvent 

molecules need to be displaced from the region to be occupied by the solute, and the free-

energy penalty corresponding to this displacement is denoted as the excluded-volume effect. 

The second and third regions of R around each site in Table 1 refer to the first and second 

shells, respectively. A small shoulder is present at ~3 Å for Ph of toluene, and is treated as 

part of the first shell in Table 1. The far-separated region is where the solvent molecule is 

separated by more than 10 Å from all of the C, Ph, N, and O sites in the solute, and it is 

defined as a single region with R > 10 Å. A notable feature of our spatial-decomposition 

scheme is that it is not necessary to introduce a region with respect to the position of a solute 

atom. Ph is the center-of-mass site of 6 carbon atoms, for example, and does not correspond 

to the position of a specific atom. A “coarse-grained” unit such as the phenyl group may be 

employed for the decomposition, and the regions can be defined in accordance with the 
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spatial resolution of interest. We divided the space with Table 1 to highlight the roles of such 

atomic groups as methyl, phenyl, amine, and hydroxyl.

The contribution Δμ(i) from region i to the solvation free energy was evaluated from Eq. 26 

with the approximate form in Appendix A. It should be noted that the volume is different 

among the regions, and to correct the effect of this difference, we also computed the free-

energy density Δμ(i)/v(i). v(i) refers to the volume of region i and was computed at test-

particle insertion of the solute of which the intramolecular motions were sampled in vacuum 

(see METHODS section). Figure 4 shows Δμ(i)/v(i) for the small solutes examined; the 

numerical value of Δμ(i)/v(i) is listed in Supporting Information. It is evident that Δμ(i)/v(i) 
is unfavorable (positive) in the excluded-volume region for each site. The solvent molecules 

need to be displaced from that region to avoid the overlap with the solute, and this 

displacement corresponds to the unfavorable density of free energy in Fig. 4. Actually, 

Δμ(i)/v(i) in the excluded-volume region is weakly dependent on the site and the solute 

species. The free-energy density in the excluded volume is not affected strongly by the 

chemical structure of the solute, though it is larger for Ph. When the solvent water is located 

outside the excluded-volume region, Αμ(i)/v(i) is favorable (negative) and reduces in 

magnitude toward outer regions except at the Ph site of phenol. The Αμ(i)/v(i) value in the 

first shell is distinctively more favorable around the amine N and the hydroxyl O than 

around the methyl C and the phenyl Ph, as expected from the hydrogen bonding with water. 

The free-energy density is comparable in magnitude only between the excluded-volume 

regions and the first shells of N and O, and is smaller in the other regions.

The negative Αμ(i)/v(i) signifies the attractive interaction between the solute and the solvent 

water, and to see the repulsive and attractive effects in more detail, we further examine the 

energetics on the basis of Eq. 26. Its first term, denoted as u(i) hereafter, is the average sum 

of the interaction energy of the solute with the solvent molecules located in region i in the 

solution system of interest, and the rest of the right-hand side of Eq. 26 describes the free-

energy change due to the solvent reorganization. Figure 4 then depicts the energy density 

u(i)/v(i); see Supporting Information for the numerical value of u(i)/v(i). The energy density 

vanishes in the excluded-volume region since there is no solvent in that region when the 

solute-solvent interaction is operative in the solution system. u(i)/v(i) is favorable, on the 

other hand, throughout the regions outside the excluded volume. The magnitude of u(i)/v(i) 
decreases in outer shells, reflecting simply that the intermolecular interaction is weaker at 

farther distances. When compared among the first- or second-shell contribution, Αμ(i)/v(i) in 

Fig. 4 depends on the site and solute species in fair correspondence with u(i)/v(i), as shown 

in the correlation plot in Supporting Information. The preference order is parallel between 

Αμ(i)/v(i) and u(i)/v(i) within each of the first and second shells, and the distinction between 

the first shell and outer regions will be seen next with regard to the solvent reorganization; 

(Αμ(i) – u(i)) is equal to the second and third terms of Eq. 26 and is called solvent-

reorganization term.

Figure 4 shows Αμ(i)/v(i) ≥ u(i)/v(i), and accordingly, the solvent-reorganization term is 

unfavorable (positive). The effect of solvent reorganization is particularly strong in the 

region adjacent to the solute. Αμ(i)/v(i) is less than half of u(i)/v(i) in magnitude in the first 

shell of each site, and the direct interaction between the neighboring solute and solvent 
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molecules is negated by more than half extent due to the solvent reorganization. Actually, 

the solvent-reorganization term diminishes with the distance from the solute faster than 

u(i)/v(i). Around the C and Ph sites, Δμ(i)/v(i) is significantly different from u(i)/v(i) only in 

the excluded volume and first shell and Δμ(i)/v(i) ≃ u(i)/v(i) holds in the second-shell and 

outer regions. The contribution from the solvent reorganization to the free energy vanishes 

essentially beyond the first shell of the nonpolar site. Around the N and O sites, the 

difference between Δμ(i)/v(i) and u(i)/v(i) persists to longer distances. It is appreciable in the 

second shell, indicating that the solvent-reorganization effect in the solvation free energy is 

not localized when the solute-solvent interaction is strong.4 The decays of the direct-

interaction and solvent-reorganization terms are further discussed at the end of Appendix A 

on the basis of the mathematical expression for the free-energy functional.

According to Fig. 4, Δμ(i)/v(i) and u(i)/v(i) at the methyl C site are more favorable (more 

negative) for methylamine and methanol than for ethane. This is consistent with a structural 

result in Fig. 3, and indeed, the radial distribution function around C has a stronger peak 

structure when the polar amine N or hydroxyl O is bonded than when the nonpolar methyl 

group is attached. At the phenyl Ph site, on the other hand, Δμ(i)/v(i) and u(i)/v(i) in the first 

shell are larger in magnitude for toluene than for aniline and phenol. It is considered that the 

strengthened energetics for toluene corresponds to the shoulder present at short distances. 

Around the N and O sites, Δμ(i)/v(i) and u(i)/v(i) are more favorable in the first shell for 

methylamine and methanol than for aniline and phenol and are less in the second shell and 

outer regions. The favorable interaction of N or O with water is observed at farther distances 

near a bulky phenyl group.

Δμ(i) and u(i) are depicted in Fig. 5. Their signs are of course coincident with those of 

Δμ(i)/v(i) and u(i)/v(i) in Fig. 4. In the excluded-volume region, the dependence of Δμ(i) on 

the site and solute species is governed by the volume of the region v(i) since it was observed 

in Fig. 4 that Δμ(i)/v(i) is almost constant throughout the excluded-volume regions. Within 

methylamine, methanol, aniline, or phenol, v(i) of the excluded volume is larger around C or 

Ph than around N or O as shown in Supporting Information, and the excluded-volume 

contribution to the solvation free energy Δμ(i) is correspondingly larger at the nonpolar site. 

Outside the excluded-volume region, Δμ(i) and u(i) decay more slowly with the separation 

from the solute than the densities Δμ(i)/v(i) and u(i)/v(i), reflecting the fact that v(i) 
increases toward outer regions. At the C and Ph sites, the sum of Δμ(i) over the first shell, 

second shell, and outer region is overwhelmed by the excluded-volume Δμ(i). Although the 

former sum contributes favorably to the solvation free energy, it cancels the latter only 

partially. The excluded-volume contribution is overturned by the first-shell contribution for 

N of methylamine and for O of methanol and phenol, and it is negated by the sum of the 

first- and second-shell contributions for N of aniline. A favorable (negative) free energy of 

solvation is thus carried by the amine or hydroxyl group for the polar compounds examined 

in the present work.

According to Fig. 5, the contribution to the solvation free energy is appreciable also from the 

second shell. This is due to the factor of v(i), and the solute-solvent energetics is not 

spatially localized in the first solvation shell. In Ref. 4, the excess partial molar energy was 

addressed for a series of ions in water and the contribution from the proximate region of the 
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solute was examined by taking its correlation to the total value of the excess energy. Figure 6 

provides the correlation plot of the total sum of Δμ(i) over all the regions around each solute 

against the partial sums over the excluded-volume and first-shell regions and over the 

excluded-volume to second-shell regions. The preference order of the total sum is well 

reproduced by the partial sum to the second shell. The difference of the partial sum from the 

total is positive for all of the small solutes and amounts to 1–2 kcal/mol. This amount of 

attractive interaction is spread in the outer regions beyond the second shell, where the 

solvent-reorganization term is small as seen in Fig. 5 and the tables for the small solutes in 

Supporting Information. The direct interaction between the solute and solvent outside the 

second shell thus needs to be taken into account to quantitatively evaluate the solvation free 

energy. The correlation to the total sum of Δμ(i) is worse for the partial sum over the 

excluded-volume and first-shell regions. The partial sum to the first shell correlates to the 

total only separately over ethane, methylamine, and methanol and over toluene, aniline, and 

phenol. Even the sign of the total sum is often not reproduced by the partial sum, which 

means that the first-shell contribution is not always enough to overturn the unfavorable 

contribution from the excluded volume. Figure 6 thus shows that the solvation free energy is 

not localized in the excluded-volume to second-shell regions, while the preference order of 

solvation is governed by the contributions to the second shell. The free-energetics of 

solvation can be described by the interactions within the second nearest neighbor through 

correlations.

Alanine Dipeptide

We now turn to alanine dipeptide. Figure 7 depicts the radial distribution functions g(r) of 

water around the C1, N1, C2, C3, and N2 atoms in Fig. 2 at the 4 conformations listed in Eq. 

27 and Fig. 2. The peak structure is clearer around C1 and C3 than around C2. This 

corresponds to the amide structure in alanine dipeptide, and the N1 and N2 atoms may stay 

at ~3 Å due to the hydrogen bonding between the amine and water. It is further seen among 

the 4 conformations that the hydration structure is least distinct for C7
ax. At the C7

ax

conformation, the carbonyl oxygen at C1 forms an intramolecular hydrogen bond with the 

amine hydrogen at N2 and the coordination of a water molecule is prohibited with the two 

amide groups. A peak is not present at ~3 Å around N2, in particular, and the first peaks are 

also weak for C1 and C3. When αR and αL are compared, the latter has the first peaks of C2 

and C3 at shorter distances. The steric hindrance is weaker for αL, and in addition, the peak 

structure is strongest for PII around N2.

We then divide the space on the basis of Figs. 2 and 7. R is the minimum of the distances of 

the C1, N1, C2, C3, and N2 atoms in alanine dipeptide with the oxygen site of the solvent 

water molecule, and the space is divided similarly to those in Fig. 1 and in Table 1 for the 

small solutes. 5 regions are first introduced by identifying the closest one of the 5 atoms, and 

as shown in Table 2, the division is done further around C1, N1, C2, C3, and N2 in terms of 

R. The number of regions is then 26 for all of the 4 conformations. The excluded volume, 

first shell, and second shell are introduced around each of C1, N1, C2, C3, and N2, and the 

solvent molecule is far-separated when R > 10 Å holds from all of those atoms. In the 

second paragraph of “Small Solutes” subsection, we noted that it is not necessary to set the 

spatial region with respect to the position of a solute atom. We remark further at this point 
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that only a partial set of solute atoms may be employed to define the regions. The main-

chain atoms of C1, N1, C2, C3, and N2 were chosen for the analyses in the present subsection 

since they specify the ϕ and ψ angles in Fig. 2 and we examine the dependence on the 

conformation identified by ϕ and ψ through Eq. 27. The space is still divided uniquely, as 

noted with respect to Eq. 21. Each position in space belongs to one and only one of the 

regions, and there is no double-counting. For example, any position within the excluded-

volume and first-shell regions around the methyl groups bonded to C1, C2, and N2 is 

contained in one of the regions in Table 2. Since these methyl groups are not employed to 

introduce the spatial regions in Table 2, they are not referenced when a position in space is 

assigned to a region in the table.

Figure 8 shows Δμ(i)/v(i) and u(i)/v(i) for alanine dipeptide at the 4 conformations of Eq. 27; 

the numerical values of Δμ(i)/v(i) and u(i)/v(i) are provided in Supporting Information. As 

was observed for the small solutes in Fig. 4, Δμ(i)/v(i) in the excluded-volume region is 

unfavorable (positive) for each of the C1, N1, C2, C3, and N2 atoms and depends weakly on 

the atomic site and the conformation of alanine dipeptide. u(i)/v(i) is favorable outside the 

excluded volume, on the other hand, and its magnitude decreases monotonically with the 

separation from the solute atom. Actually, Δμ(i)/v(i) is monotonic only in the second-shell 

and outer regions when seen throughout the sites and conformations. The first shells of the 

C1, C2, and N2 atoms overlap with the excluded-volume regions of the neighboring methyl 

groups, and these overlaps contribute unfavorably to the first-shell Δμ(i)/v(i) for those atoms 

(note that any position around the methyl groups belongs uniquely to one of the regions in 

Table 2 and not to a distinct region other than those in the table, as mentioned in the 

preceding paragraph).

Δμ(i)/v(i) and u(i)/v(i) are distinctively favorable in the first shells of the N1 and C3 atoms. A 

similar tendency was observed in the first shells of the N and O atoms in Fig. 4, and the 

hydrogen-bond availability with the solvent water is reflected. The region around the C2 

atom is hydrophobic in the sense that Δμ(i)/v(i) is positive in its first shell. Indeed, C2 is the 

Cα atom of the alanine residue and the unfavorable interaction from the methyl sidechain is 

reflected in the energetics in the first shell; note that alanine is regarded as a hydrophobic 

amino acid. When compared over the 5 atomic sites and 4 conformations of alanine 

dipeptide, the preference order of Δμ(i)/v(i) corresponds fairly to that of u(i)/u(i) in the first 

or second shell, as seen in the correlation plot in Supporting Information. This feature holds 

separately for the first- and second-shell contributions, and is common to the case for the 

small solutes described in the preceding subsection. The solvent-reorganization term 

behaves similarly, too. It is always unfavorable (Αμ(i)/v(i) ≥ u(i)/u(i)) and is large in the first 

solvation shell. The decay with the separation from the solute is faster than of u(i)/v(i), and 

the effect is small beyond the second shell.

Figure 9 depicts Δμ(i) and u(i) of alanine dipeptide. In the excluded-volume region, Δμ(i) is 

larger at the terminal atoms of C1 and N2 than of N1, C2, and C3 due to the volume size v(i). 
Outside the excluded-volume region, u(i) reduces monotonically in magnitude with the 

distance from the solute around the C1, N1, and C3 sites. The monotonic dependence is 

observed only beyond the second shell around the C2 and N2 atoms, on the other hand, and 

the steric hindrance due to the neighboring methyl group is evidenced there as a factor to 

Ishii et al. Page 16

J Chem Theory Comput. Author manuscript; available in PMC 2020 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



weaken the interaction with the first-shell water. Actually, Δμ(i) is non-monotonic also 

around C1. Although Fig. 8 shows that the magnitude of Δμ(i)/v(i) is larger in the first shell 

than in the second shell except for the C7
ax conformation, the larger v(i) of the second shell 

leads to the less favorable Δμ(i) in the first shell. The sum of Δμ(i) over the excluded-volume 

to outer regions is plotted for each atom in Fig. 10. At the C2 site, the sum is unfavorable 

(positive) and the contribution from the excluded volume is larger in magnitude than that 

from the rest. The region around C2 is thus hydrophobic as a whole, while the other atoms 

provide hydrophilic environments with the negative sums of Δμ(i) over the excluded-volume 

to outer regions.

To address the extent of localization of the solvation free energy, the correlation plot is 

provided in Fig. 11 for the Δμ(i) sum over all the regions around alanine dipeptide against 

the partial sums over the excluded-volume and first-shell regions of all the atomic sites and 

over the excluded-volume to second-shell regions. The partial sums correlate well with the 

total sum. Although they deviate significantly from the total, the conformation dependence 

of the total free energy of solvation is well reproduced. Actually, the sum of the excluded-

volume and first-shell contributions is positive and the sum to the second shell is different 

from the total by several tens of %. The solvation free energy is thus not spatially localized 

near the alanine-dipeptide solute in view of its value, whereas a local description is valid to 

describe the free-energetics of conformational variation by virtue of the correlations 

evidenced in Fig. 11.

Figure 10 shows the sum of Δμ(i) over the excluded-volume to outer regions for each atom, 

and when compared among the 4 conformations of αR, PII, αL, and C7
ax, it is evident that the 

Δμ(i) sum depends on the conformation strongly at the C1, C3, and N2 atoms. Although 

Δμ(i)/v(i) in Fig. 8 is more favorable in the first shells of N1 at the αR and αL conformations 

than at PII and C7
ax, the corresponding volumes v(i) are smaller at the former conformations 

and the contribution from N1 is minor in determining the conformation dependence of the 

total free energy of solvation. The hydrophobic region around the C2 atom also makes a 

minor contribution. Figure 9 shows that Δμ(i) around C2 depends weakly on the 

conformation in each region and does not reflect the conformational difference. When the 

contributions from C1, C3, and N2 are compared, the excluded-volume Δμ(i) are similar 

among the 4 conformations and the difference in the Δμ(i) sum for each of C1, C3, and N2 

comes from the first-shell and second-shell contributions. The total sums of Δμ(i) and u(i) 

(the sums over all the regions and the atoms) are the least favorable (most positive) with C7
ax

among the conformations examined, and this is due to the contributions from the C1 and N2 

atoms. Indeed, the C7
ax conformation has an intramolecular hydrogen bond between the 

carbonyl oxygen at C1 and the amine hydrogen at N2 and the hydration structures around C1 

and N2 are weakest as was seen in Fig. 7. The most favorable conformation is αL, for which 

the C1 and C3 contributions are larger in magnitude than for the others. The carbonyl groups 

on C1 and C3 are the closest for αL, and the interaction of a water molecule that is proximate 

to C1 or C3 is further strengthened by the interaction with C3 or C1, respectively; note that 

the interaction energy of a solvent molecule with the whole solute is counted when the 
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spatial region is assigned through Eq. 20 to construct the distribution function. Still, the 

hydration structures represented by the radial distribution functions in Fig. 7 are not distinct 

at the αL conformation. The orientational features are averaged out in Fig. 7, while they are 

sensitively reflected in the energetics shown in Figs. 8, 9, and 10. The preference order of 

the αR and PII conformations is governed by the balance between the C3 and N2 

contributions. Although the free-energy density Δμ(i)/v(i) and the solute-solvent energy 

density u(i)/v(i) around the C3 atom are comparable between the two conformations in Fig. 

8, the C3 contributions in Fig. 9 are more favorable for αR than for PII since the space 

assigned to C3 is larger with the former.

According to Fig. 10, the total value of the solvation free energy (total sum of Δμ(i)) is in the 

order of αL < αR < PII < C7
ax. The interaction with water stabilizes the αL conformation 

most, and to determine the overall stabilities of the 4 conformations, the intramolecular 

contribution needs to be added. The preference order is then 

PII > αR(1.2) > αL(5.3) > C7
ax(6.9) by counting both the intra- and intermolecular effects, 

where the value in parenthesis is the free-energy difference relative to PII in kcal/mol. When 

the solvation free energy is computed without spatial decomposition through Eq. 11, the 

order is PII > αR(1.3) > αL(5.4) > C7
ax(6.8), and when the exact calculation is done as 

described in Supporting Information, we have PII > αR(0.7) > αL(4.7) > C7
ax(6.4). The order of 

conformational preference is thus unchanged with the spatial decomposition and the 

approximation of the energy-representation method.

Conclusion

A spatial-decomposition formula was developed for the solvation free energy. The density-

functional method was adopted in the mixed representation of position and energy, and a 

free-energy functional was formulated with distribution functions of the relative position and 

pair interaction energy of the solute with the solvent. The free energy of solvation was then 

analyzed in solvent water for small molecules with methyl, amine, or hydroxyl group and for 

alanine dipeptide at 4 conformations. The radial distribution functions were employed to 

define the excluded-volume, first-shell, second-shell, and outer regions around a set of sites 

within the solute molecule, and it was observed that the density of the solvation free energy 

in the excluded-volume region depends weakly on the site and on the species or structure of 

the solute. In the first or second shell, the preference order is in fair correspondence between 

the free-energy density and the density of the direct interaction between the solute and 

solvent. The difference of the solvation free energy from the solute-solvent energy is the 

solvent-organization term, and it reduces in magnitude toward outer regions faster than the 

direct interaction. The extent of spatial localization of the free-energetics of solvation was 

examined by comparing the total free energy of solvation with the partial sum consisting of 

the excluded-volume, first-shell, and second-shell contributions. It was seen that the 

solvation free energy is not spatially localized in the sense that the partial sum deviates 

significantly from the total value. Still, a good correlation was found between the partial and 

total free energies and a local description of the solvation free energy can be justified on the 

basis of the correlation.
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In the present paper, we formulated the spatial-decomposition analysis of the solvation free 

energy and provided illustrative results for small solutes and alanine dipeptide in solvent 

water. The formulation is based on the density-functional method over the position and 

energy coordinates, and is parallel to that in the one-dimensional energy-representation 

formalism for a mixed solvent (solvent system with more than a single species) when the 

space is divided into discrete regions. Actually, the division scheme is arbitrary and may be 

prepared according to the analysis contents sought. A set of atomic groups can be 

introduced, for example, to divide the space in terms of the closest distance within the set. In 

such a case, the solvation free energy is expressed as a sum of the contributions from the 

atomic groups and is in formal correspondence to the accessible-surface-area scheme.29 As 

done in the analysis of alanine dipeptide, furthermore, it is possible to adopt only the atomic 

sites that are used to describe the conformation.

The key equation for the spatial-decomposition analysis is Eq. 26, and its first and second 

terms (those without the integration over the coupling parameter λ) is rewritten as

∫ dϵϵρd(ϵ; i) − kBT∫ dϵ ρd(ϵ; i) − ρ0
d(ϵ; i) − ρd(ϵ; i) log ρd(ϵ; i)

ρ0
d(ϵ; i)

= − kBT∫ dϵ ρd(ϵ; i) − ρ0
d(ϵ; i) − ∫ dϵρd(ϵ; i)ωd(ϵ; i)

= − kBT Nd(i) − N0
d(i) − Nd(i)〈ωd〉i

(28)

where ωd(ϵ; i) denotes the indirect part of potential of mean force in the solution system (λ 
= 1), ⟨ωd⟩i is its average in region i, and Nd(i) and N0

d(i) are the average numbers of solvent 

molecules contained in region i for the solution and the pure solvent (λ = 0), respectively; 

the indirect part of potential of mean force was defined by Eq. 23 and ω1
d is written as ωd for 

notational brevity. In a previous work,43 we discussed the role of interfacial water in protein-

ligand binding and categorized the thermodynamic signature of water in terms of the local 

density and the indirect part of potential of mean force in the 6-dimensional representation 

over the position and orientation. A lower-dimensional alternative for the signature may be 

proposed on the basis of Eqs. 26 and 28, that are formulated by adopting the energy as a 

proxy for the orientation and are numerically easier to handle. As noted in 

INTRODUCTION, the spatially resolved energetics of water is considered to be useful for 

ligand design,17-28,31,32,43 and the present work employed the DFT in the mixed 

representation of position and energy to elucidate which region of solvent (water) leads to 

stabilization or destabilization of the solute. It is thus expected that the spatial-

decomposition extension of the energy-representation formalism can be a basis for 

addressing the role of water toward modification of ligand affinities.
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Appendix A: Approximate functional for free energy

The approximate form for the solvation free energy Δμ is given by a set of definitions and 

equations listed as

ωd(ϵ; i) = − kBT log ρd(ϵ; i)
ρ0

d(ϵ; i)
− ϵ (29)

χ0
d(ϵ; i, η; j) = 〈ρd(ϵ; i)ρd(η; j)〉0 − 〈ρd(ϵ; i)〉0〈ρd(η; j)〉0 (30)

σ0
d(ϵ; i) = − kBT

ρd(ϵ; i) − ρ0
d(ϵ; i)

ρ0
d(ϵ; i)

+ kBT∑
j
∫ dη χ0

d −1(ϵ; i, η; j) ρd(η; j) − ρ0
d(η; j) (31)

β∫
0

1
dλ∫ dϵωλ

d(ϵ; i)
∂ρλ

d(ϵ; i)
∂λ = αd(ϵ; i)Fd(ϵ; i) + 1 − αd(ϵ; i) F0

d(ϵ; i) (32)

Fd(ϵ; i) =
βωd(ϵ; i) + 1 + βωd(ϵ; i)

exp ( − βωd(ϵ; i)) − 1
(when ωd(ϵ; i) ≤ 0)

1
2 βωd(ϵ; i) (when ωd(ϵ; i) ≥ 0),

(33)

F0
d(ϵ; i) =

−log 1 − βσ0
d(ϵ; i) + 1 +

log 1 − βσ0
d(ϵ; i)

(βσ0
d(ϵ; i)

(when σ0
d(ϵ; i) ≤ 0)

1
2 βσ0

d(ϵ; i) (when σ0
d(ϵ; i) ≥ 0),

(34)
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αd(ϵ; i) =

1 (when ρd(ϵ; i) ≥ ρ0
d(ϵ; i))

1 −
ρd(ϵ; i) − ρ0

d(ϵ i)
ρd(ϵ; i) + ρ0

d(ϵ; i)

2

(when ρd(ϵ; i) ≤ ρ0
d(ϵ; i)),

(35)

where ωd(ϵ; i) = ω1
d(ϵ; i) for the brevity of notation and ⟨⋯⟩0 means the ensemble average in 

the pure solvent (λ = 0). ⟨⋯⟩0 is implemented by virtually placing the solute molecule as a 

test particle without disturbing the solvent configuration. χ0
d describes the solvent-solvent 

correlation at two-body level over the coordinates introduced by the solute at λ = 0, where 

the instantaneous distribution of Eq. 20 (or Eq. 3, 8, or 12) is constructed for the solvent 

molecule against the solute virtually present in the system. σ0
d is the solvent-mediated part of 

the response function of the solute-solvent distribution to the solute-solvent interaction at λ 
= 0, and the procedure for (pseudo-)inverting χ0

d is described later with respect to Eq. 42. 

The first lines of Eqs. 33 and 34 are the PY-type expressions, and the second lines are HNC-

type. Equations 33 and 34 are the combined PY-type and HNC-type approximations written 

in terms of ωd(ϵ; i) and σ0
d(ϵ; i) respectively, and are mixed with the weighting function αd of 

Eq. 35. Equations 29-31 and 33-35 define the variables in their left-hand sides, and with Eqs. 

25 and 26, Eq. 32 evaluates Δμ approximately through a combined PY-type and HNC-type 

relationship.

In the currently employed version of the energy-representation method (in one dimension),
44,47 the third term of Eq. 11 is further turned into a simpler form by adopting a specific 

uλ(ϵ) with which ρλ
e(ϵ) varies linearly with the coupling parameter λ; no approximation is 

involved at this point. The integration over λ is then performed analytically with PY-type 

and HNC-type approximations for the λ dependence of the indirect part of the potential of 

mean force ωλ
e(ϵ) of Eq. 10. In the PY-type approximation, (exp( − βωλ

e(ϵ)) − 1) is taken to be 

linear with respect to λ, and in the HNC-type, ωλ
e(ϵ) is linear with λ. No special treatment is 

necessary for the direct interaction potential. The value ϵ of the solute-solvent pair 

interaction energy is adopted as the abscissa for the distribution functions, and the 

approximations are formulated only in terms of the λ dependence of ωλ
e(ϵ). The 

approximation in the present work is expressed as Eqs. 32-35, and its formulation is also 

done with the λ dependence of ωλ
d(ϵ; i) of Eq. 23.

As in the one-dimensional case,44,47 uλ(ϵ; i) is chosen so that ρλ
d(ϵ; i) varies linearly with λ. 

The integral over λ in the third term of Eq. 26 then simplifies to

∫ dϵ ρd(ϵ; i) − ρ0
d(ϵ; i) ∫

0

1
dλωλ

d(ϵ; i) (36)

Ishii et al. Page 21

J Chem Theory Comput. Author manuscript; available in PMC 2020 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and the derivative at λ = 0 is related to σ0
d(ϵ; i) of Eq. 31 as

∂ωλ
d(ϵ; i)
∂λ λ = 0

= σ0
d(ϵ; i) . (37)

The PY-type and HNC-type approximations are formulated by adopting the linear 

dependencies on λ of (exp( − βωλ
d(ϵ; i)) − 1) and ωλ

d(ϵ; i), respectively. When the linear 

dependence is expressed with the derivative at λ = 0, the PY-type and HNC-type 

relationships are given by

exp( − βωλ
d(ϵ; i)) = 1 − βλσ0

d(ϵ; i) (38)

and

ωλ
d(ϵ; i) = λσ0

d(ϵ; i) (39)

respectively, since ωλ
d(ϵ; i) = 0 at λ = 0 by definition of Eq. 23. When the linearity is written 

in terms of the value at λ = 1,

exp( − βωλ
d(ϵ; i)) = 1 + λ exp( − βωd(ϵ; i)) − 1 (40)

and

ωλ
d(ϵ; i) = λωd(ϵ; i) (41)

are PY-type and HNC-type, respectively, where ωλ
d(ϵ; i) at λ = 1 is denoted as ωd(ϵ; i) of Eq. 

29. The integration over λ in Eq. 36 can be carried out analytically with Eqs. 38-41, and the 

approximate form of Eqs. 32-35 is obtained by using the PY-HNC combination and the 

weighting function which are parallel to those in the one-dimensional formulation.44,47

In our simulation setup, χ0
d has a non-degenerate, null eigenvalue. Its pseudo-inverse, 

expressed as χ0
d −1

 in Eq. 31, was then obtained by referring to the procedure in Appendix 

B of Ref. 46 and Appendix B of Ref. 47. An auxiliary variable u‒ was determined up to an 

additive constant through
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∑
j
∫ dηχ0

d(ϵ; i, η; j)u‒(η; j) = − kBT ρd(ϵ; i) − ρ0
d(ϵ; i) , (42)

and the additive constant was fixed by setting u‒(ϵ, i) = 0 at the discretized energy coordinate 

corresponding to ϵ = 0 for the farthest region i from the solute (the far-separated regions in 

Tables 1 and 2).

It was observed in RESULTS AND DISCUSSION section that the solvent-reorganization 

term reduces faster with the separation from the solute than the direct-interaction term 

between the solute and solvent. This observation can be justified on the basis of Eq. 26 by 

considering that the indirect part of the potential of mean force ωλ
d decays faster than the 

direct interaction. ρd then converges to ρ0
d at the rate corresponding to the dependence of the 

direct interaction on the distance from the solute, given that ρd is related to ρ0
d through Eq. 

23 (note that u1 = ϵ and ρ1
d = ρd). Accordingly, the solvent-reorganization term of Eq. 26 

(second and third terms) is of higher order than the first term with respect to (ρd − ρ0
d) since 

ρd − ρ0
d − ρd log(ρd ∕ ρ0

d)  is of second order.

The computed value of the (total) solvation free energy Δμ can be different between Eqs. 11 

and 25 when the combined PY-type and HNC-type approximation is introduced. The 

difference is thus a measure of the performance of the approximate treatment since Eqs. 11 

and 25 themselves are exact. The Δμ value obtained through the energy-representation 

method without spatial decomposition is listed in Supporting Information, as well as the 

(numerically) exact one from the method of Bennett acceptance ratio.71,72 When the 

approximate Δμ with and without the spatial decomposition is compared, the difference is 

within 0.1 kcal/mol for the small solutes and is 0.4–0.6 kcal/mol for alanine dipeptide. The 

relative free energies among the 4 conformations still agree within 0.2 kcal/mol. When the 

comparison is done between the approximate and exact Δμ, the deviation is seen to be within 

1.1 and 1.6 kcal/mol for the small molecules and for the 4 conformations of alanine 

dipeptide, respectively.

Appendix B: Detailed procedures of simulation

As noted in METHODS section, MD was performed for the solution system of interest, pure 

solvent (pure water), and an isolated solute in vacuum. The solution system was simulated in 

the NPT ensemble by locating a single solute and 2000 water molecules in the MD unit cell; 

the cell size was ~39 Å. The leap-frog stochastic dynamics algorithm was employed to 

integrate the equation of motion at a time step of 2 fs and an inverse friction constant of 2 ps,
73 and the pressure was regulated by the Parrinello-Rahman barostat at a coupling time of 2 

ps and isothermal compressibility of 4.5 × 10−5 bar−1 with the isotropic coupling.74 Each 

water molecule was kept rigid with SETTLE, and the LINCS method was used for the solute 

molecule to fix the lengths of all the bonds.75,76 The electrostatic interaction was handled by 

the smooth particle-mesh Ewald (PME) scheme at a real-space cutoff of 12 Å, a spline order 
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of 4, a relative tolerance of 10−5 (inverse decay length of 0.26 Å−1), and a reciprocal-space 

mesh size of 48 for each of the x, y, and z directions.77 The Lennard-Jones (LJ) interaction 

was truncated with the switching function in a range of 10-12 Å.78 The geometric mean was 

adopted both for the energy and length parameters to combine the LJ interaction between 

unlike pairs of atoms, and the truncation was done on atom-atom basis for LJ as well as for 

the real-space part of PME. The long-range correction for LJ was not included in MD and 

was incorporated into the calculations of the solvation free energy and solute-solvent 

interaction energy by supposing that the solvent water is of bulk distribution beyond 10 Å 

from any atom within the solute molecule. The pure-solvent system was only of 2000 water 

molecules, and the other MD setups were identical to those described above for the solution 

system.

To simulate the isolated solute in vacuum, a single solute molecule was subject to an 

isothermal MD for 200 ns at a sampling interval of 0.1 ps. In this simulation, the solute 

center of mass was fixed at the origin and the electrostatic potential was treated as its bare 

form of 1/r without cutoff; the other procedures were the same as those for the solution and 

pure solvent. The solute was inserted as a test particle into the pure-solvent system at 

random position and orientation, and the insertion was done without disturbing the solvent 

configuration after the MD of pure water had been performed independently. The number of 

insertions was 1000 per pure-water configuration sampled, leading to the generation of 2 × 

106 solute-solvent configurations in total for the free-energy calculation. Actually, the MD 

of the isolated solute was carried out for 200 ns simply to prepare 2 × 106 intramolecular 

configurations that were sampled at an interval of 0.1 ps and were used for test-particle 

insertion.

For alanine dipeptide, a replica-exchange MD was also performed in vacuum to determine 

the intramolecular contribution to the free energy of each conformation. A single molecule 

was simulated at 9 temperatures of 300, 350, …, 650, and 700 K with an exchange interval 

of 1 ps,79 and the simulation length was 4 μs at each temperature. No restraint was 

employed, and the other simulation setups were the same as those described in the preceding 

paragraph. The reweighting was then conducted to obtain the probability for finding each 

conformation of Eq. 27 with allowances of ±10°; for example, the probability of −75° ≤ ϕ ≤ 

−55° and −55° ≤ ψ ≤ −35° was evaluated for αR.
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Figure 1: 
An example of division of the space. The three regions with the boundaries written as 

dashed lines are closest to the centers A, B, and C, respectively, from left to right, and are 

further divided into the regions shown with distinct colors. The white part corresponds to the 

“far-separated” region in RESULTS AND DISCUSSION section.
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Figure 2: 

Structure of alanine dipeptide, with 4 conformational states of αR, PII, αL, and C7
ax. The C1, 

N1, C2, C3, and N2 atoms refer to carbon and nitrogen atoms on the main chain (and the 

termini), and in the subsection of “Alanine Dipeptide”, the space is divided in terms of the 

distances from C1, N1, C2, C3, and N2. The dihedral angles ϕ and ψ correspond to 

C1─N1─C2─C3 and N1─C2─C3─N2, respectively, and are 180° at the trans 

conformations.

Ishii et al. Page 30

J Chem Theory Comput. Author manuscript; available in PMC 2020 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Radial distribution functions g(r) of water around ethane, methylamine, methanol, toluene, 

aniline, and phenol, where r is the distance of the oxygen site of a solvent water molecule 

from the methyl carbon, amine nitrogen, hydroxyl oxygen, or the center of the phenyl ring. 

C denotes the carbon atom in the methyl group for ethane, methylamine, methanol, and 

toluene, and g(r) from the two C sites for ethane were averaged on the basis of symmetry. Ph 

refers to the center-of-mass position of the 6 carbon atoms in the phenyl ring for toluene, 

aniline, and phenol, and N and O are the amine nitrogen for methylamine and aniline and the 

hydroxyl oxygen for methanol and phenol, respectively. g(r) in the plot is shifted upward by 

4 and 2 for C and Ph, respectively. The dotted lines drawn vertically in the figure correspond 

to the boundaries of the regions listed in Table 1.
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Figure 4: 
Densities of the solvation free energy Αμ(i)/v(i) and of the solute-solvent interaction energy 

u(i)/v(i) in the regions around the solute introduced in Table 1. The LJ long-range correction 

is added to Αμ(i) and u(i) in the far-separated region in Table 1, and Αμ(i)/v(i) and u(i)/v(i) 
in the far-separated region are not shown since that region is unbounded and the densities 

were not determined. The bars representing the values of Αμ(i)/v(i) and u(i)/v(i) are stacked 

for each solute, and the green bars refer to the outer regions for the methyl carbon (C) and 

the phenyl center (Ph) and the outer region 1 for the amine nitrogen (N) and the hydroxyl 

oxygen (O). The values are multiplied by a factor of 2 in the second shell, by a factor of 5 in 

the outer regions of C and Ph, and by factors of 5 and 20 in the outer regions 1 and 2 of N 

and O, respectively. u(i)/v(i) in the excluded volume is not plotted because it is simply zero. 

The numerical values of Αμ(i)/v(i) and u(i)/v(i) are listed in Supporting Information.
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Figure 5: 
Solvation free energy Δμ(i) and the solute-solvent interaction energy u(i) in the regions 

around the solute introduced in Table 1. The bars representing the values of Δμ(i) and u(i) 
are stacked for each solute, and u(i) in the excluded volume is not plotted because it is 

simply zero. The LJ long-range correction is added to Δμ(i) and u(i) in the far-separated 

region in Table 1, and is not shown in this figure. The numerical values of Δμ(i) and u(i) are 

listed in Supporting Information.
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Figure 6: 
Correlations of the sum of Δμ(i) over all the regions around the solute molecule against the 

sums over the excluded-volume and first-shell regions of all the sites and over the excluded-

volume to second-shell regions. A single point in the figure corresponds to a single solute 

species, and with the linear regression of the partial sum to the second-shell region against 

the total sum, the slope is 0.88 with a correlation coefficient of 0.99.
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Figure 7: 
Radial distribution functions g(r) of water around the C1, N1, C2, C3, and N2 atoms labelled 

in Fig. 2, where r is the distance from the oxygen site of a solvent water molecule. In the 

plot, g(r) is shifted upward by 4, 3, 2, and 1 for C1, N1, C2, and C3, respectively, and the 

dotted lines drawn vertically in the figure correspond to the boundaries of the regions listed 

in Table 2.
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Figure 8: 
Densities of the solvation free energy Αμ(i)/v(i) and of the solute-solvent interaction energy 

u(i)/v(i) in the regions around alanine dipeptide introduced in Table 2. The LJ long-range 

correction is added to Αμ(i) and u(i) in the far-separated region in Table 2, and Αμ(i)/v(i) 
and u(i)/v(i) in the far-separated region are not shown since that region is unbounded and the 

densities were not determined. The bars representing the values of Αμ(i)/v(i) and u(i)/v(i) 
are stacked for each of C1, N1, C2, C3, and N2, and are shown for the conformations of αR, 

PII, αL, and C7
ax from left to right. The values in the outer regions 1 and 2 are multiplied by 

factors of 5 and 10, respectively, and u(i)/v(i) in the excluded volume is not plotted because 

it is simply zero. The molecular structure of alanine dipeptide is provided with the ϕ and ψ 
values in Fig. 2, and the numerical values of Αμ(i)/v(i) and u(i)/v(i) are listed in Supporting 

Information.
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Figure 9: 
Solvation free energy Δμ(i) and the solute-solvent interaction energy u(i) in the regions 

around alanine dipeptide introduced in Table 2. The bars representing the values of Δμ(i) and 

u(i) are stacked for each of C1, N1, C2, C3, and N2, and are shown for the conformations of 

αR, PII, αL, and C7
ax from left to right. u(i) in the excluded volume is not plotted because it is 

simply zero. The LJ long-range correction is added to Δμ(i) and u(i) in the far-separated 

region in Table 2, and is not shown in this figure. The molecular structure of alanine 

dipeptide is provided with the ϕ and ψ values in Fig. 2, and the numerical values of Δμ(i) 
and u(i) are listed in Supporting Information.
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Figure 10: 
Sum of Δμ(i) over the excluded-volume to outer regions for each of the C1, N1, C2, C3, and 

N2 atoms at the αR, PII, αL, and C7
ax conformations of alanine dipeptide, with the 

contribution from the far-separated region in Table 2 and the total sum value of Δμ(i). The LJ 

long-range correction is added to Δμ(i) in the far-separated region.
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Figure 11: 
Correlations of the sum of Δμ(i) over all the regions around alanine dipeptide against the 

partial sums over the excluded-volume and first-shell regions of all the atomic sites and over 

the excluded-volume to second-shell regions. A single point in the figure corresponds to a 

single conformation of alanine dipeptide. With the linear regression against the total sum, 

the slope is 0.54 and 0.75 for the sums to the first and second shells, respectively, with 

correlation coefficients of 0.99 and 1.00
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Table 1:

Division of the space into regions for the small solutes

atom in the solute region distance (Å)
a

C (ethane, methylamine, methanol, and toluene)
b

excluded volume R < 2.8

first shell 2.8 < R < 5.5

second shell 5.5 < R < 8.0

outer region 8.0 < R < 10.0

Ph (toluene, aniline, and phenol)
c

excluded volume R < 2.7

first shell second shell 2.7 < R< 6.3

second shell 6.3 < R < 8.5

outer region 8.5 < R < 10.0

N and O (methylamine, methanol, aniline, and phenol)
d

excluded volume R < 2.4

first shell 2.4 < R < 3.4

second shell 3.4 < R < 6.0

outer region 1 6.0 < R < 8.0

outer region 2 8.0 < R < 10.0

far-separated
e R > 10.0

a
R is the minimum of the distances of the C, Ph, N and O sites in the solute with the oxygen site of the solvent water molecule.

b
C is the carbon atom in the methyl group of ethane, methylamine, methanol, and toluene.

c
Ph is the center of mass of the 6 carbon atoms in the phenyl ring of toluene, aniline, and phenol.

d
N is the amine nitrogen of methylamine and aniline, and O is the hydroxyl oxygen of methanol and phenol.

e
The solvent water is separated by more than 10 Å from all of the C, Ph, N, and O sites in the solute.
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Table 2:

Division of the space into regions around alanine dipeptide

atom
a region distance (Å)

b

C1 and C2

excluded volume R < 2.8

first shell 2.8 < R < 4.3

second shell 4.3 < R < 6.0

outer region 1 6.0 < R < 8.0

outer region 2 8.0 < R < 10.0

C3

excluded volume R < 2.8

first shell 2.8 < R < 4.3

second shell 4.3 < R < 6.8

outer region 1 6.8 < R < 8.6

outer region 2 8.6 < R < 10.0

N1 and N2

excluded volume R < 2.5

first shell 2.5 < R < 3.5

second shell 3.5 < R < 5.5

outer region 1 5.5 < R < 8.0

outer region 2 8.0 < R < 10.0

far-separated
c R > 10.0

a
The C1, N1, C2, C3, and N2 atoms are labelled in Fig. 2.

b
R is the minimum of the distances of the C1, N1, C2, C3, and N2 atoms in Fig. 2 with the oxygen site of the solvent water molecule.

c
The solvent water is separated by more than 10 Å from all of the C1, N1, C2, C3, and N2 atoms in alanine dipeptide.
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