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SUMMARY

Diffuse intrinsic pontine gliomas (DIPGs) are incurable childhood brainstem tumors with frequent 

histone H3 K27M mutations and recurrent alterations in PDGFRA and TP53. We generated 

genetically engineered inducible mice and showed that H3.3 K27M enhanced neural stem cell 

self-renewal while preserving regional identity. Neonatal induction of H3.3 K27M cooperated with 
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activating PDGFRα mutant and Trp53 loss to accelerate development of diffuse brainstem gliomas 

that recapitulated human DIPG gene expression signatures and showed global changes in H3K27 

post-translational modifications, but relatively restricted gene expression changes. Genes 

upregulated in H3.3 K27M tumors were enriched for those associated with neural development 

where H3K27me3 loss released the poised state of apparently bivalent promoters whereas 

downregulated genes were enriched for those encoding homeodomain transcription factors.

Graphical Abstract

INTRODUCTION

Diffuse intrinsic pontine gliomas (DIPGs) are incurable brainstem tumors arising almost 

exclusively in children, with peak incidence between 6–8 years. These devastating tumors 

comprise approximately half of all pediatric high-grade gliomas (HGGs) (Jones and Baker, 

2014). Recurrent, somatic mutation in histone H3 is a molecular hallmark distinguishing 

pathogenesis of HGG in children and adults (Schwartzentruber et al., 2012; Wu et al., 2014). 

Histone H3 K27M mutations occur in ~80% of DIPGs, and other HGGs arising in midline 

brain structures such as the thalamus. Diffuse midline glioma, H3 K27M-mutant is now 

recognized as a distinct entity by the World Health Organization classification system (Louis 

et al., 2016). In contrast, histone H3 G34R/V mutations are mutually exclusive with H3 

K27M and occur in ~15% of cortical HGGs in older adolescents and young adults (Jones 

and Baker, 2014).
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The genetic configuration of H3 K27M mutations implies a strongly dominant mode of 

action. 75% of K27M mutations occur in H3F3A, one of 15 genes encoding histone H3 

variants. H3 K27M expression in the context of primary tumors or heterologous cell types, 

confers a dominant and profound decrease in H3K27me3, a posttranslational modification 

(PTM) associated with transcriptional repression (Bender et al., 2013; Chan et al., 2013; 

Herz et al., 2014; Lewis et al., 2013; Venneti et al., 2013). Although the K27M-mediated 

loss of H3K27me3 is context-independent, the high frequency association of H3 K27M with 

diffuse midline gliomas of childhood indicates that it only confers a selective advantage in 

specific developmental settings.

In addition to H3 mutations, DIPGs also contain alterations targeting canonical cancer 

signaling pathways, most frequently p53 loss of function and PDGFRα activation through 

gene amplification and/or mutation. Numerous other lower frequency mutations contribute 

to significant inter- and intratumoral DIPG heterogeneity (Mackay et al., 2017). Diffuse 

midline gliomas with K27M mutation, including DIPGs, also show distinct DNA 

methylation patterns when compared with other HGGs (Bender et al., 2013). This highlights 

the unique biology of K27M mutant gliomas, however, it is difficult to disentangle the 

effects of H3 K27M mutation from the signatures of midline developmental origin.

Experimental systems to study H3 K27M have relied on exogenous overexpression of H3.3 

K27M along with different combinations of cooperating mutations to induce knockdown or 

deletion of Trp53 and/or activation of PDGFR signaling, and most did not target brainstem 

or midline brain structures. Mutants were virally transduced into neural progenitor cells 

(NPCs) induced from human embryonic stem (ES) cells or neural stem cells (NSCs) isolated 

from embryonic mouse forebrain and generated low or high-grade glioma, respectively, 

when implanted into brain (Funato et al., 2014; Mohammad et al., 2017). In utero 
electroporation of constructs encoding various mutants into mouse embryos evaluated 

cooperating effects of H3.3 K27M with other mutations in a limited number of hindbrain 

tumors, but predominantly targeted the cortex due to technical challenges with hindbrain 

delivery (Pathania et al., 2017). In an alternate approach, overexpressed H3.3 K27M in 

combination with Trp53 deletion and overexpression of PDGF-B, a PDGFRα ligand not 

typically mutated in human tumors, were introduced by in vivo retroviral transduction into 

neonatal brainstem using RCAS-tVA (Cordero et al., 2017). The varying levels of expression 

that can result from viral transductions or electroporation of different constructs contributes 

heterogeneity to each of these systems. This can be significant, as overexpression of the 

wild-type (WT) H3.3 was associated with altered neurogenic properties, showing important 

functional consequences of histone dosage, independent of K27M mutation (Pathania et al., 

2017). Despite this limitation, all of these models showed that H3.3 K27M was insufficient 

to drive oncogenic transformation in the absence of other mutations but cooperated with 

other mutations to drive tumors. However, none of the models evaluated genomic occupancy 

of H3K27me3 in tumors or cells from brainstem or midbrain and minimal information is 

available about changes in genomic occupancy of other H3 PTMs in response to H3.3 

K27M.

In this study, we set out to determine the consequence of H3.3 K27M mutations in different 

brain regions, how H3.3 K27M-mediated depletion of H3K27me3 impacts other aspects of 
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epigenetic regulation, and how this connects with changes in transcription and oncogenic 

activity.

RESULTS

H3.3 K27M Promotes Self-Renewal and Mediates Global H3K27me3 Depletion but Discrete 
Transcription Changes

To study H3.3 K27M in the context of developing brain, we generated conditional knock-in 

mice, H3f3aLSL-K27M-Tag/+, in which H3.3 K27M is expressed from the endogenous H3f3a 
locus following Cre recombinase (Cre)-mediated excision of a loxP-flanked transcriptional 

STOP cassette (LSL). We included a C-terminal FLAG-HA tandem epitope tag immediately 

upstream of the termination codon to allow detection of the mutant protein (Figure S1A,B). 

A second mouse line, H3f3aLSL-WT-Tag/+, with identical construction but without the K27M 

mutation, was generated for controlled comparisons.

To investigate the role of H3.3 K27M in NSCs, we bred H3f3aLSL-K27M-Tag/+ or 

H3f3aLSL-WT-Tag/+ mice to Nestin-Cre mice (Tronche et al., 1999), which constitutively 

express Cre in neural stem and progenitor cells throughout the central nervous system 

beginning at ~E10.5. NSCs were isolated from hindbrain or forebrain (H- or F-NSC, 

respectively) of the resulting embryos at E15.5. Analysis of these NSCs over multiple 

passages in neurosphere growth conditions showed that H3.3 K27M promoted increased cell 

growth compared with H3.3 WT, regardless of origin location (Figure S2A,B). Clonogenic 

growth assays with H-NSCs showed H3.3 K27M significantly enhanced self-renewal 

capacity compared to H3.3 WT, and generated larger spheres, reflecting a modest increase in 

proliferation (Figure 1A,B). Interestingly, while the renewal capacity for H3.3 WT was 

similar from passages 3 through 9, H3.3 K27M cells displayed progressively enhanced 

clonogenic growth. Both genotypes began losing self-renewal by passage 11 (Figure 1A).

Consistent with reported effects of H3.3 K27M, chromatin immunoprecipitation with high 

throughput sequencing (ChIP-seq) combined with spike-in normalization revealed a 

profound global H3K27me3 reduction in H3.3 K27M compared to H3.3 WT NSCs (Figure 

S2C,D). However, RNA-seq analysis showed differences in the transcriptomes of H3.3 

K27M and WT NSCs were relatively modest and selective rather than global (Figure 1C, 

Figure S2E, Table S1). To assess whether global loss of the transcriptional repression-

associated PTM H3K27me3 could result in a global increase in all transcription, we also 

normalized the RNA-seq to a spike-in control, which confirmed the absence of an overall 

gain in transcription. Integrated analysis showed that the bulk of both up and downregulated 

genes have a similar decrease in H3K27me3 at their promoters (Figure 1D, S2F).

H3.3 K27M Does Not Disrupt Regional Expression Signatures

NSC expression signatures differentiating hindbrain and forebrain origin were not 

dramatically changed by loss of H3K27me3 (Figure 1E), and the majority of genes that were 

differentially upregulated in H3.3 WT H- or F-NSCs were also differentially upregulated in 

H3.3 K27M NSCs (Figure S3A). Gene Ontology (GO) analysis of these expression 

signatures showed similar enrichment in H3.3 WT or H3.3 K27M NSCs for regional 
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development, including telencephalon regionalization in forebrain (p = 1.6E-08), and 

nervous system development and homeodomain transcription factors in hindbrain (p = 

1.3E-07 and 3.7E-07, respectively, Table S2). For example, in situ hybridization data from 

the Allen Brain Atlas (Thompson et al., 2014) showed expression of Foxg1, which is not 

expressed in hindbrain, or Irx2, which is not expressed in forebrain, remains silenced in 

H3.3 K27M H- and F-NSCs respectively, even with substantial loss of H3K27me3 at these 

loci (Figure 1F,G). Although global transcription was mostly unaffected by loss of 

H3K27me3, we detected specific H3.3 K27M-mediated gene expression changes including 

upregulation of genes involved in neural development and proliferation (Figure S3B, Table 

S1, S3). The most significant H3.3 K27M induced changes included increased expression of 

genes important for regulating NPC proliferation and differentiation such as Lin28b, Igf2bp2 
and Plag1 (Figure 1H, Table S1). These data indicate that H3.3 K27M contributes to 

programming enhanced self-renewal and a proliferative, progenitor cell state, while driving 

only selective changes in the transcriptome.

H3.3 K27M Accelerates Formation and Penetrance of Medulloblastoma Induced by Trp53-
Deficiency

To model the contribution of H3.3 K27M to gliomagenesis in children, we bred 

H3f3aLSL-K27M-Tag/+ or H3f3aLSL-WT-Tag/+ mice with tamoxifen-inducible Nestin-CreERT2 

mice (Zhu et al., 2012). The resulting Nestin-CreERT2;H3f3aLSL-K27M-Tag/+ or Nestin-
CreERT2;H3f3aLSL-WT-Tag/+ mice (hereafter H3.3 K27M or H3.3 WT) were induced 

postnatal day 0 and 1 to activate the knock-in alleles in neonatal NSCs/NPCs. H3.3 K27M 

alone failed to cause brain tumor formation, and induction of either H3.3 K27M or H3.3 WT 

alleles did not cause obvious abnormalities or premature death within 1 year of age (Figure 

2A,B). To evaluate cooperative oncogenic activity, H3.3 K27M or H3.3 WT mice were bred 

with Trp53flox mice (Jonkers et al., 2001) (hereafter p53cKO). Neonatal deletion of Trp53 
induced highly penetrant brain tumors, with mice developing macroscopically visible 

cerebellar medulloblastomas in 59%, supratentorial HGG in 27%, and both concurrently in 

the remainder. H3.3 WT expression combined with p53cKO did not significantly alter tumor 

location, histopathology or latency (Figure 2A,C). In contrast, H3.3 K27M combined with 

p53cKO significantly accelerated brain tumor development (Figure 2B) and increased 

medulloblastoma frequency (Figure 2D, p = 0.0004). The histopathology of all evaluated 

supratentorial tumors was HGG and most developed as large masses with extensive 

infiltration of adjacent cerebral tissues. Pleomorphic cells occasionally showing astrocytic or 

oligodendroglial differentiation were associated with brisk mitotic activity and, in rare cases, 

areas of necrosis (Figure 2E). All histologically assessed tumors arising in the cerebellum 

appeared embryonal and were classified as medulloblastoma, with classic (Figure 2F) or 

large cell anaplastic morphologies at similar frequencies in all genotypes. Expression of the 

epitope-tagged knock-in H3.3 WT or H3.3 K27M was detected by nuclear FLAG 

expression, with H3.3 K27M;p53cKO tumors also showing the expected loss of H3K27me3, 

regardless of tumor histology (Figure 2G,H).
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Activating PDGFRα Mutant Cooperates with Trp53 Deficiency to Preferentially Accelerate 
Spontaneous High-Grade Gliomas

PDGFRα is the most frequently mutated receptor tyrosine kinase in pediatric HGG (Mackay 

et al., 2017). Therefore, to model cooperative effects of pediatric HGG mutations, we 

generated LSL-PDGFRAV544ins transgenic mice with Cre-inducible expression of a mutant 

human PDGFRα containing a 15 amino acid duplication in the transmembrane domain 

(PDGFRAV544ins, Figure S4A,B). This alteration occurred as a heterozygous mutation in 

DIPG resulting in ligand-independent activation of PDGFRα (Paugh et al., 2013). Nestin-
CreERT2;LSL-PDGFRAV544ins (hereafter PDGFRA) mice induced at P0 and P1 to express 

PDGFRAV544ins in neonatal NSCs/NPCs and their subsequent progeny, did not exhibit 

obvious abnormality, or reduced lifespan when observed for over 1 year (Figure 3A). In 

contrast, PDGFRA;p53cKO mice developed brain tumors faster than p53cKO mice, and 

substantially shifted the tumor spectrum to HGG (96%) including a significant increase of 

tumors involving the brainstem (52%, p < 0.0001) (Figure 3A,B). The cooperative effects of 

PDGFRA show that Trp53 loss alone is not sufficient for efficient gliomagenesis from 

brainstem neonatal NSCs/NPCs compared to the supratentorial compartment. Brainstem 

HGGs showed moderate nuclear pleomorphism, variable astrocytic differentiation, mitotic 

activity, extensive infiltration and strong nuclear Olig2, consistent with the pathology of 

human DIPG. Tumor cells also expressed robust cytoplasmic PDGFRα. However, consistent 

detection of H3K27me3 shows that these tumors did not acquire a somatic H3 K27M 

mutation or employ another genetic or epigenetic mechanism to suppress levels of this PTM 

(Figure 3C).

H3.3 K27M Accelerates Spontaneous DIPG from Postnatal Neural Progenitors

H3F3A, TP53 and PDGFRA are the most commonly mutated genes in human DIPGs, and 

can occur in varying combinations (Buczkowicz et al., 2014; Fontebasso et al., 2014; Taylor 

et al., 2014; Wu et al., 2014). To assess the cooperative oncogenic effect of these mutations, 

we bred the respective engineered mice to Nestin-CreERT2 to generate H3.3 

K27M;PDGFRA;p53cKO and H3.3 WT;PDGFRA;p53cKO mice. Mutations were induced at 

P0 and P1, resulting in highly penetrant brainstem and supratentorial HGGs in H3.3 

WT;PDGFRA;p53cKO. Importantly, H3.3 K27M accelerated HGG development and 

significantly increased the proportion of HGGs arising in the brainstem from 59% to 95% (p 

< 0.0001) (Figure 4A,B). Tumors were diffusely infiltrative HGGs with similar 

histopathology to human DIPG for both H3.3 WT and K27M. Tumor cells showed robust 

expression of cytoplasmic PDGFRα, and also expressed Olig2. Expression of the knock-in 

H3.3 WT or H3.3 K27M was detected by FLAG in all tumors tested. While H3.3 WT 

tumors contained strong H3K27me3 expression, H3.3 K27M tumors consistently displayed 

marked loss of H3K27me3 (Figure 4C). Interestingly, H3K27me3 levels in H3.3 WT mouse 

DIPGs were noticeably higher than in H3.3 WT mouse NSCs and comparable to the levels 

found in human H3 WT HGG xenografts (Figure 4D), likely reflecting differences in 

H3K27me3 associated with developmental context.
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Gene Expression in Spontaneous Mouse H3.3 K27M DIPGs Significantly Resembles That 
in Human H3.3 K27M DIPG

Gene expression signatures used to identify molecular subclasses of human HGG reflect the 

heterogeneity of this disease in adult and pediatric supratentorial HGGs and DIPGs (Huse et 

al., 2011; Paugh et al., 2011; Paugh et al., 2010; Puget et al., 2012). We used single sample 

gene set enrichment analysis (ssGSEA) to compare the gene expression signatures of the 

mouse brainstem gliomas with signature gene sets for human HGG subclasses (Proneural, 

Proliferative and Mesenchymal) (Phillips et al., 2006), and signature gene sets from normal 

mouse neural cell types (Zhang et al., 2014) (Table S4). Both mouse DIPGs and human 

DIPGs, with or without H3.3 K27M mutation, reflected intertumoral heterogeneity with 

varying enrichment for the different HGG subgroups and normal neural cell types (Figure 

5A), and intermixing of H3.3 K27M and H3 WT tumors when viewed by PCA (Figure 5B). 

Two main subgroups of mouse DIPG showed predominantly Proneural or Proliferative 

signatures from the human HGG subclasses, and GO analysis of the most differentially 

expressed genes between tumors in these subgroups similarly identified signatures in 

synaptic transmission (p = 1.9E-26) or cell cycle (p = 1.75E-68), consistent with the HGG 

subgroup categories (Table S4).

DIPGs, regardless of H3.3 K27M status, have distinct expression patterns from cortical 

pediatric HGGs, as shown by PCA (Figure S5A). We previously reported that these 

expression differences are significantly associated with transcription factors and 

developmental processes (Paugh et al., 2011). To assess transcription effects of H3.3 K27M 

without the confounding influence of regional expression differences in tumors arising from 

multiple anatomic locations, we compared DIPGs in mouse and human. The human H3 WT 

DIPGs used in our comparison were of similar age to the H3.3 K27M DIPGs (median age 

8.9 versus 6, respectively, p = 0.9), had expression signatures that group with other DIPGs, 

and MRI images consistent with typical DIPG (Figure 5B, S5A–D). Gene set enrichment 

analysis (GSEA) demonstrated that human H3.3 K27M signatures were significantly 

enriched in mouse H3.3 K27M DIPGs (Figure 5C, Table S5). Pbx3, Eya1 and Plag1 are 

among the most significant (Figure 5C) and show a clear expression shift by H3.3 K27M in 

human DIPG, mouse DIPG and mouse embryonic NSCs (Figure 5D). H3.3 K27M 

downregulated genes in human DIPGs were not strongly enriched in mouse H3.3 WT 

compared to H3.3 K27M DIPG. However, a number of transcription factors associated with 

neural development were consistently downregulated by H3.3 K27M in human and mouse 

DIPGs as well as mouse hindbrain neural stem cells (Figure S6A). Several differentially 

expressed genes also show regional differences in NSCs, such as higher basal expression of 

Pbx3 and En1 in hindbrain, marked H3.3 K27M-dependent differential expression of Six1, 

En1 and Hoxd8 in hindbrain versus forebrain, and downregulation of Cdkn2a in forebrain 

(Figure 5D and S6A,B).

Spontaneous H3.3 K27M DIPGs Exhibit Global Changes in H3K27 Epigenetic State and 
Selective Expression Changes in PRC1 and PRC2 Targets

To better understand the epigenetic effects of H3.3 K27M in spontaneous DIPG, we 

compared the global occupancy of PTMs associated with gene repression (H3K27me3) and 

activation (H3K27ac and H3K4me3) in H3.3 K27M;PDGFRA;p53cKO and H3.3 
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WT;PDGFRA;p53cKO DIPGs. H3.3 K27M facilitated a genome-wide reduction of 

H3K27me3 and a reciprocal increase in H3K27ac, with minimal global changes in 

H3K4me3 (Figure S7A–C). Promoter regions recapitulated the global changes in 

H3K27me3 and H3K27ac (Figure S7D–F). Notably, while the levels of the H3K27 

modifications were dramatically changed by H3.3 K27M, the positioning of the H3K27 

PTMs across the promoter region was unaltered (Figure 6A,B).

We next integrated analysis of changes in the epigenome and transcriptome to evaluate the 

mechanisms driving aberrant gene regulation in H3.3 K27M tumors. H3K27me3 is normally 

associated with transcriptionally silent genes (Margueron and Reinberg, 2011), but as 

observed in H3.3 K27M NSCs, the dramatic genome-wide decrease of H3K27me3 in DIPGs 

produces relatively modest transcriptome changes. Overall, there were more genes 

upregulated than downregulated in H3.3 K27M DIPGs (Figure 6C; 299 up, (red) vs. 155 

down, (blue or purple)) and H3.3 K27M upregulated genes display marked H3K27me3 

decrease agreeing with their expression change. Consistent with a role for H3K27me3 in 

regulation of genes involved in development, cell fate and differentiation, genes upregulated 

in mouse H3.3 K27M DIPGs are significantly enriched for association with neural 

development and differentiation (GO), and with PRC1 and PRC2 targets (Enrichr) (Figure 

6D and Table S6). While decrease in H3K27me3 at H3.3 K27M upregulated gene promoters 

is similar to genes with unchanged expression (Figure 6E, red (H3.3 K27M up) versus gray 

(unchanged) histograms on top of plot), both activation-associated H3K27ac and H3K4me3 

show an average gain consistent with increased gene expression (Figure 6E,F, right marginal 

plots; peaks of red histograms are shifted up versus both blue (H3.3 K27M down) and gray). 

Usp44 is an example of a K27M upregulated gene showing clear loss of H3K27me3 and 

gain of H3K27ac (Figure 6G). The average epigenetic signature for H3.3 K27M 

downregulated genes is discordant with their expression and reflects the global loss of 

H3K27me3 and gain of H3K27ac. However, these genes show less H3K27ac and H3K4me3 

compared to genes with H3.3 K27M upregulated or unchanged expression (Figure 6E,F, 

right marginal plots; peaks of blue histograms are shifted down versus both red and gray). 

Lif highlights a locus where loss of H3K27me3 and relatively unchanged H3K27ac is 

nonetheless accompanied by reduced gene expression (Figure 6G).

Interestingly, a small number of downregulated genes (n = 38) in H3.3 K27M tumors do not 

follow global trends for H3K27me3 and H3K27ac. The promoters of this group of genes 

retain H3K27me3, and show reduced H3K27ac and H3K4me3 (Figure 6C,E,F, purple) as 

exemplified by the Six1 locus (Figure 6G). Strikingly, this group of genes is significantly 

enriched for targets of BMI1, a core component of the PRC1 complex involved in gene 

silencing, as well as targets of the PRC2 components, JARID2 and EZH2 (Enrichr), highly 

associated with development and gene regulation (GO) (Table S6).

Globally, H3.3 K27M-dependent changes in PTMs at enhancers resemble those at 

promoters. Enhancers also show reciprocal shifts of H3K27me3 and -ac, minimal change in 

H3K4me3 and lack evidence of redistribution of any of these PTMs (Figure S8A–C). 

Enhancers associated with H3.3 K27M upregulated genes (Figure S8D, red) also 

demonstrate a H3.3 K27M-dependent increase in H3K27ac consistent with increased 

activation, compared to downregulated (blue) or unchanged (gray) gene-associated 
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enhancers. As with promoters, most enhancers show a similar H3.3 K27M-dependent loss of 

H3K27me3 regardless of the H3.3 K27M-dependent expression status of the nearest gene 

(Figure S8D). However, while the promoters of H3.3 K27M upregulated genes usually have 

a true H3K27me3 peak in H3.3 WT DIPG that is lost in H3.3 K27M DIPG, active enhancers 

in H3.3 K27M DIPG that are associated with H3.3 K27M upregulated genes usually lack 

discrete H3K27me3 peaks in H3.3 WT DIPG, suggesting the change in enhancer activity is 

an indirect effect of H3.3 K27M-mediated H3K27me3 loss (Figure S8E,F).

Epigenetic Release at Bivalent Promoters is Associated with Upregulated Genes in H3.3 
K27M DIPG Oncogenic Signature

Epigenetic signatures are associated with important effects on gene expression, especially 

during development. Under normal conditions, H3K27me3 is found primarily at repressed 

loci, H3K4me3 associates with active promoters and the combination of H3K27me3 and 

H3K4me3 marks poised or bivalent promoters. Loss of H3K27me3 from bivalent promoters 

is associated with increased gene expression in normal developmental transitions (Zhou et 

al., 2011). To determine the effect of H3.3 K27M-mediated H3K27me3 loss on expression 

of genes with bivalent promoters, we identified all promoters marked with both H3K27me3 

and H3K4me3 in H3.3 WT mouse DIPGs (Figure 7A, 12%, gold, left bar). There was 

significant increase in the proportion of apparently bivalent promoters in H3.3 WT tumors 

among promoters of genes with H3.3 K27M-dependent differential expression, including 

57% of upregulated genes (p = 0.031) and 39% of downregulated genes (Figure 7A, gold, 

center and right bars). Notably, genes that are differentially expressed in H3.3 K27M DIPGs 

and have H3K27me3+H3K4me3+ at their promoters in H3.3 WT tumors are significant 

PRC1 and PRC2 targets (Enrichr, p < E-27) highly associated with development and 

neurogenesis (GO, p < E-10, and E-7 respectively) (Table S7), and include genes we 

identified as differentially upregulated in hindbrain NSCs such as Lgr5, Irx1 and Irx2.

Although these apparently bivalent promoters are marked with H3K27me3 and H3K4me3 in 

H3.3 WT tumors, some genes were clearly expressed in contrast to the expected silent 

bivalent promoter (Figure 7B; gold violin, potentially bivalent genes and 7C; black track, 

RNA-seq in H3.3 WT for three H3K27me3+H3K4me3+ genes). These could represent 

bivalent promoters associated with variable expression levels, or a mixed cell or allele 

population in which the same promoters are marked with H3K27me3 in one subpopulation 

and H3K4me3 in another. To address this possibility, we performed co-occupancy analysis 

by sequential ChIP (ReChIP). At Pbx3, Eya1 and Meis2 promoters, ChIP analysis for each 

PTM showed recruitment of both H3K27me3 and H3K4me3 in H3.3 WT DIPGs, while all 

three gene loci showed substantial loss of H3K27me3 recruitment in H3.3 K27M DIPGs 

(red arrows in Figure 7C, Figure 7D, upper graphs). ReChIP of H3K4me3 from the 

chromatin pulled down by an H3K27me3 ChIP showed considerable enrichment compared 

to IgG control at all three loci, confirming that H3K4me3 and H3K27me3 co-occupy the 

same fragment of DNA (Figure 7D, lower graphs). While the expression of these 

H3K27me3, H3K4me3 marked genes suggests that they are actively transcribed in a portion 

of the H3.3 WT tumor cell population, ReChIP indicates that a true bivalent population 

exists. Together, these data indicate that bivalency release through loss of H3K27me3 is a 
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plausible mechanism for H3.3 K27M-mediated differential gene expression signatures 

important in DIPG development.

DISCUSSION

H3 K27M mutations represent a unifying feature of incurable childhood brain tumors that 

are otherwise molecularly heterogeneous. The selective association of these mutations with 

pediatric midline diffuse gliomas, especially DIPG, indicates a critical connection between 

epigenetic dysregulation and developmental context. Elucidating the mechanisms through 

which these mutations contribute to cancer is essential to improve outcome for DIPG 

patients. Our results provide a number of insights into the consequences of H3.3 K27M that 

contribute to DIPG pathogenesis.

H3.3 K27M, in the absence of other mutations, caused a transient increase in self-renewal of 

hindbrain NSCs in vitro without inducing immortality or delaying senescence. This would 

be predicted to increase the pool of cells with greatest propensity for transformation, but 

only for a limited duration. A role for this mutation in early stages of tumor initiation is 

consistent with the clonal incidence of H3.3 K27M mutations in DIPGs and the restricted 

developmental window of susceptibility during childhood in which DIPGs arise. Strikingly, 

the genes most differentially induced by H3.3 K27M in NSCs included Lin28b, Plag1 and 

Igf2bp2; heterochronic genes associated with regulating developmental differences in fetal 

and adult NSCs (Fujii et al., 2013; Nishino et al., 2013; Yang et al., 2015). Upregulation of 

LIN28B and PLAG1 was also seen with overexpression of H3.3 K27M in NPCs derived 

from human ES cells, however, increased neurosphere formation in vitro was only seen with 

the combination of three alterations; H3.3 K27M, mutant PDGFRα and p53 knockdown 

(Funato et al., 2014). It is possible that the H3.3 K27M-dependent enhancement of self-

renewal that we detected in NSCs acutely isolated from embryos was not readily detected in 

the human NPCs, which require prolonged culturing for in vitro induction and may be less 

developmentally synchronized.

H3.3 K27M accelerated hindbrain tumorigenesis from neonatal progenitors. Unexpectedly, 

combined H3.3 K27M expression and Trp53 deletion accelerated medulloblastoma 

formation. Multiple lines of evidence highlight an emerging role for H3K27me3 loss in 

pediatric hindbrain tumorigenesis including pediatric posterior fossa group A (PFA-1) 

ependymoma (Bayliss et al., 2016; Pajtler et al., 2018) and Group 3 medulloblastoma (Vo et 

al., 2017). Thus, acceleration of medulloblastoma formation by H3.3 K27M may reflect an 

increased potency for H3K27me3 loss to contribute to hindbrain tumor development. 

Combining PDGFRα activation with Trp53 deletion in neonatal NSCs/NPCs shifted the 

spectrum of tumors to HGGs, including a high proportion involving brainstem. Consistent 

with the hypothesis that developing hindbrain may have an increased vulnerability to 

transformation associated with H3K27me3 depletion, H3.3 K27M significantly increased 

the incidence of diffuse brainstem gliomas driven by combined PDGFRα activation and 

Trp53 deletion, and further accelerated tumor development.

We induced genetically engineered mutations in Nestin-positive cells in neonatal mice to 

coincide with the developmental period when most gliogenesis occurs, including the period 
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of greatest postnatal growth in the pons, from P0 to P4 (Lindquist et al., 2016). A recent 

study using neonatal in vivo electroporation to introduce H3.3 K27M combined with p53 

knockdown failed to induce tumors, while in utero electroporation to overexpress H3.3 

K27M with CRISPR/Cas9-mediated Trp53 deletion induced gliomas (Pathania et al., 2017). 

In contrast, our results show cooperative effects of H3.3 K27M in generating both 

medulloblastomas and high-grade gliomas when induced in neonatal mice. This may reflect 

technical differences such as expression from endogenous loci and different targeted cell 

populations.

The H3.3 K27M;PDGFRA;p53cKO, and H3.3 WT;PDGFRA;p53cKO models reported here 

investigate the most common human DIPG mutation targets, recapitulate the spectrum of 

gene expression subgroups in human HGGs, and show significant similarity in gene 

expression signatures to primary human DIPGs with and without H3 K27M mutation, 

respectively. Many comparisons between primary pediatric gliomas with and without H3.3 

K27M mutation include H3 WT cortical gliomas and are confounded by regional 

developmental epigenetic and expression signatures along with variations in other oncogenic 

mutations. Our experimental system provides a robust setting to evaluate the direct effects of 

H3.3 K27M in the context of DIPGs induced at the same developmental time point and with 

the same oncogenic drivers.

Integrated analysis of the epigenome and transcriptome of H3.3 K27M;PDGFRA;p53cKO 

compared to H3.3 WT;PDGFRA;p53cKO DIPGs showed global changes in H3K27 PTMs, 

but selective changes in gene expression significantly associated with signatures of neural 

development. Genes with apparently bivalent promoters were significantly enriched among 

those upregulated with H3.3 K27M mutation. Thus, promoters marked by both H3K27me3 

and H3K4me3 in H3.3 WT tumors would be poised for expression, while loss of H3K27me3 

at these promoters in H3.3 K27M tumors would release the bivalent state, resulting in 

upregulation (Figure 8). This outcome is consistent with a direct effect of depleted 

H3K27me3 on selective changes in gene expression, and is reminiscent of altered expression 

of bivalent genes associated with differentiation or development in response to deletion of 

Ezh2 or Eed encoding PRC2 components (Lu et al., 2018). This key selectivity has not been 

previously demonstrated for H3.3 K27M. Funato et al. found that H3K4me3 in promoters 

remained stable, but H3K27me3 decreased in gene bodies, not promoters, of genes 

upregulated in human NPCs overexpressing H3.3 K27M. Overexpression of H3.3 K27M or 

WT H3 in mouse forebrain NSCs showed that the majority of differentially expressed genes 

were not associated with H3K27me3 in H3 WT NSCs, leading to the suggestion that these 

expression changes were indirect effects of the mutation (Mohammad et al., 2017). The clear 

association of upregulated genes with H3.3 K27M-mediated release of bivalent promoters 

identified in our mouse model may be attributed to both the regulation of H3.3 K27M at 

physiological levels from its endogenous promoter and our direct analysis of DIPG tumors 

rather than NSC cultures in vitro. The low levels of H3K27me3 in NSCs compared to 

tumors (Figure 4D) may explain why the role of bivalency in H3.3 K27M-dependent 

changes in gene expression was not previously identified in comparisons with NSCs.

While our mouse DIPGs are genetically engineered, the spontaneous development of DIPGs 

recapitulates the human process and may involve initiation from slightly different 
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developmental states or acquisition of other mutations that could introduce intertumoral 

heterogeneity. Importantly, an independent study to identify the consequences of H3.3 

K27M depletion in DIPG patient derived xenografts also demonstrated significant 

enrichment in upregulation of genes with K27M-dependent release of bivalent promoter 

regulation (Silveira et al, unpublished).

A small collection of downregulated genes that were very significantly enriched for BMI1 

targets and homeobox transcription factors retained H3K27me3 in H3.3 

K27M;PDGFRA;p53cKO DIPGs despite global reduction of this PTM. The selective 

retention, or suggestion of increased deposition of H3K27me3 in the context of H3 K27M-

mediated depletion, has been demonstrated in primary human tumors, cell lines and model 

systems (Bender et al., 2013; Chan et al., 2013; Funato et al., 2014; Pathania et al., 2017). 

CDKN2A was previously reported as a target for residual PRC2 activity associated with 

selective downregulation in H3 K27M model systems (Chan et al., 2013; Cordero et al., 

2017; Mohammad et al., 2017), although this was not consistent in all DIPG cell lines 

(Piunti et al., 2017). Cdkn2a was modestly downregulated in H3.3 K27M;PDGFRA;p53cKO 

compared to much more significant decreases in homeodomain transcription factors that 

were already heavily marked with H3K27me3 in H3.3 WT tumors, suggesting tight 

regulation by strong transcriptional repressors that overcome H3.3 K27M-dependent effects 

by effectively recruiting residual PRC2 activity. Additional genes that were downregulated 

despite substantial loss of H3K27me3 may represent indirect H3.3 K27M-independent 

effects.

Our results demonstrate that H3.3 K27M enhances self-renewal of NSCs without inducing 

immortalization, and accelerates hindbrain tumorigenesis, of either medulloblastoma or 

high-grade glioma from neonatal stem/progenitor cells. Upregulation of genes normally 

restrained by bivalent promoter PTMs results in transcriptional changes in genes relevant for 

both development and tumorigenesis, perhaps creating an expanded pool of cells susceptible 

to transformation that may progress to DIPG if they acquire other critical mutations during a 

narrow window of development. Because epigenetic state is strongly interconnected with 

development and differentiation, it is likely that the specific collection of H3.3 K27M-

dependent target genes may vary depending on the age and precise cellular state from which 

DIPG initiates, contributing to heterogeneity in tumor expression signatures and highlighting 

the power of the inducible genetically engineered approach for controlled comparisons. 

Furthermore, these experimental systems provide immune competent, physiologically 

relevant spontaneous models of DIPG that will be useful for future mechanistic and 

preclinical studies of DIPG pathogenesis and therapeutic response.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Suzanne Baker (Suzanne.Baker@stjude.org).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Generating Genetically Engineered Mutant Mice—Procedures for all mouse 

experiments were approved by the Institutional Animal Care and Use Committee at St. Jude 

Children’s Research Hospital and are in compliance with national and institutional 

guidelines.

To generate the H3f3aLSL-K27M-Tag knock-in allele, we performed an optimized strategy for 

construct development as described (Larson and Baker, 2019). In brief, BAC-isolated H3f3a 
genomic sequence was engineered by recombineering (Liu et al., 2003) for targeting vector 

assembly into the pBR322-DT backbone with a Diphtheria toxin (DT) negative selection 

cassette. The targeting vector contains a 16.2 kb sequence containing all H3f3a exons and 

partial flanking sequence. In order to make this allele Cre-inducible, a STOP sequence 

cassette capable of expressing Puromycin (Puro) and flanked by loxP sites (LSL) (a gift 

from Tyler Jacks, Addgene plasmid 11584) was inserted by recombineering into intron 1 

upstream of exon 2. Exon 2 was subcloned and subjected to site-directed mutagenesis 

(QuickChange II SDM Kit, Agilent Technologies, 200523) to create the K27M point-

mutation. For accurate tracking mutant protein expression, a previously reported tandem 

FLAG/HA epitope (Lewis et al., 2013) was inserted by recombineering just upstream of the 

canonical H3f3a STOP codon in exon 4. Since this epitope is very distal to the engineered 

point mutation, a Frt-flanked Neomycin (Neo) cassette was simultaneously inserted into 

intron 3 just upstream of exon 4. The completed vector was electroporated into mouse ES 

cells for homologous recombination, and clones positively selected with Puromycin (Sigma, 

P8833) and Geneticin (Life Technologies, 10131–027). Correctly targeted ES clones were 

identified by Southern blot analysis of EcoRI/BamHI-digested genomic DNA probed with a 

5’ external probe, or SacI-digested genomic DNA probed with a 3’ external probe. Correctly 

targeted ES clones were blastocyst injected to generate chimeras and subsequently establish 

founder knock-in mice. To eliminate potential unwanted hypomorphic activity in vivo, we 

deleted the Neo cassette by intercrossing founder knock-in mice with a mouse strain 

ubiquitously expressing Flippase (The Jackson Laboratory, 012930). To generate the 

H3f3aLSL-WT-Tag knock-in allele, the same protocol was followed as described above 

without subcloning and engineering a point mutation in exon 2. H3f3a knock-in mice were 

intercrossed with C57BL/6J mice (The Jackson Laboratory, 000664) for three generations 

prior to breeding with other targeted alleles.

To generate Cre-inducible LSL-PDGFRAV544ins transgenic mice, standard subcloning 

techniques were used to construct the transgene which contains a ubiquitous chicken beta-

actin gene promoter with human cytomegalovirus enhancer (CMV/CAG; plasmid with 

CMV/CAG sequence was a gift from R. Greenberg, University of Pennsylvania) upstream of 

the LSL cassette. This is followed by cDNA encoding human PDGFRAV544ins mutant 

(Paugh et al., 2013), an internal ribosomal entry sequence (IRES) and the cDNA encoding 

human placental alkaline phosphatase to facilitate detection of transgene expression. The 

construct was terminated by an SV40 intronic sequence and polyadenylation signal. 

Following pronuclear injection into fertilized FVB/NJ oocytes and implantation into foster 

mothers, the transgenic founder was identified by polymerase chain reaction (PCR) with 

primers recognizing the transgene-specific sequence (5’-
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TCTGCTAACCATGTTCATGCCTTC-3’ and 5’-GACCGAAAGGAGCGCACGAC-3’). 

Single integration site was confirmed by FISH using a probe specifically recognizing the 

whole transgene sequence.

Fluorescence in situ Hybridization (FISH)—To determine LSL-PDGFRAV544ins 

transgene localization in the mouse genome, purified plasmid DNA containing the whole 

transgene was labeled with AlexaFluor 488–5-dUTP (Molecular Probes, C11397) by nick 

translation to generate transgene probe. Chromosome 4 control probe (RP23–335E10) was 

labeled with AlexaFluor 594–5-dUTP (Molecular Probes, C11400). The labeled probes were 

combined with sheared mouse DNA and hybridized to metaphase chromosomes derived 

from the derived transgenic mouse lung fibroblast culture in a solution containing 50% 

formamide, 10% dextran sulfate, and 2X SSC. The chromosomes were then stained with 

4,6-diamidino-2-phenylindole (DAPI) and analyzed.

Neurosphere in vitro Culture—Brains were dissected from E15.5 mouse embryos and 

separated into forebrain and hindbrain. Cells were dissociated by mechanical force and 

seeded in ultra-low attachment T25 flasks (Corning, 3815) in Mouse NeuroCult Proliferation 

Medium (Stem Cell Technologies, 05702) + human EGF (20 ng/mL) (Miltenyi Biotech, 

130–097-751). Neurospheres were passaged weekly using Accutase (Millipore, SCR005) 

dissociation and reseeded at 0.5 × 106 cells per T25 flask. All molecular experiments were 

carried out at passage 3.

Induction of Cre Recombinase Activity—Tamoxifen (Sigma, T5648) was dissolved in 

corn oil (Sigma, C8267) at 5 mg/mL at 37°C, 0.22 μm filter sterilized and stored for up to 7 

days at 4°C in the dark. Cre activity was induced by intraperitoneal injection of 3 mg 

tamoxifen solution/40 g body weight using a 30 gauge insulin syringe (Becton Dickinson, 

309301). Mice were induced at postnatal day 0 and 1 with daily injections separated by 24 

hr.

In vivo Tumor Models—Cohorts of mice were aged and monitored for brain tumor 

symptoms. When moribund, mice were anesthetized with avertin (10 mg/25 g) and 

transcardially perfused with PBS. The brain was carefully dissected, a portion of the tumor 

was snap frozen and the remaining tissue was fixed with 4% paraformaldehyde in PBS 

overnight at 4°C. Since our experimental mice harbor a mixed strain background and 

different cohorts may produce slightly different results, we carefully compared littermate 

controls derived separately from H3f3aLSL-WT-Tag and H3f3aLSL-K27M-Tag breeding cohorts 

to properly analyze tumor survival and overall tumor burden frequencies. Overall with a 

Trp53-deficient background, our model directs highly penetrant lethal brain tumors, and less 

than 10% of mice generated succumb to peripheral tumors or die of unknown causes.

Human DIPG data—Gene expression data from human DIPGs are from (Wu et al., 2014). 

Informed consent for specimen analysis was obtained under protocols approved by the St. 

Jude Children’s Research Hospital Institutional Review Boards.
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METHOD DETAILS

Neural Stem Cell Self-Renewal—Neural stem cell self-renewal was evaluated using 

clonogenic growth of single cells plated in methyl cellulose-containing medium as described 

(Gritti et al., 1999) with the following modifications: Single cells were sorted by FACS 

(FACSAria Fusion Sorter) to seed 400 cells/well into black-walled 96 well plates (Corning, 

3904), and resuspended in NeuroCult basal medium containing proliferation supplement 

(Stem Cell Technologies, 05702), human EGF (Miltenyi Biotech, 130–097-751), and 0.6% 

methyl cellulose (Sigma, M0512). Clonogenic growth was scored 9 days later after staining 

viable cells with 2 μM SYTO 9 (ThermoFisher Scientific, S34854). Plates were imaged on a 

TE2000E2 microscope (Nikon) equipped with a Plan Apo 4X 0.2 NA lens and a standard 

GFP filter cube (excitation 480/30 nm; emission 535/40 nm). Plates were maintained at 

37°C and 5% CO2 during imaging. Tiled images of the entire well (5×6 fields) were 

acquired using a motorized stage (Prior Instruments), a DS-Qi1 camera (Nikon) and the well 

plate template in the JOBS module of NIS Elements version 4.30.02. For analysis, images 

were automatically segmented by intensity using standard object count tools in NIS 

Elements. Images of colonies with diameter greater than 50 μm were scored by a researcher 

blinded to genotype.

Histology and Immunohistochemistry—Fixed tissue was processed, embedded in 

formalin, and cut into 5 μm sections. Hematoxylin and Eosin (H&E) staining (ThermoFisher 

Scientific, 7221, 7111), was performed according to manufacturer’s instructions. 

Immunohistochemistry (IHC) was performed using heat-induced antigen retrieval with citric 

acid-based buffer followed by primary antibodies at 1:1000 dilution: FLAG (Sigma, mouse 

monoclonal, F1804), H3K27me3 (Cell Signaling, rabbit monoclonal, 9733), PDGFRα (Cell 

Signaling, rabbit monoclonal, 5241), Olig2 (Millipore, rabbit polyclonal, AB9610). Anti-

mouse or anti-rabbit biotinylated secondary antibodies (Vector Laboratories, BA-2000 or 

BA-1000, respectively) were used at 1:1000 dilution with horseradish peroxidase-conjugated 

streptavidin (VECTASTAIN Elite ABC Kit, Vector Laboratories, PK-6100). Staining was 

developed with DAB substrates (Vector Laboratories, SK-4100), and sections were 

counterstained with hematoxylin (Vector Laboratories, H-3401).

RNA Extraction and ERCC Spike-In—For in vitro cultures, 1 mL of Trizol (Invitrogen, 

15596–018) was added to 2×106 dissociated neural stem cells from neurospheres. 2 μL of 

1:20 diluted ERCC spike in (Life Technologies, 4456740, Lot 1412017) was added directly 

to the Trizol and total RNA was extracted following the standard Trizol protocol except the 

final 70% EtOH wash was repeated three times. RNA was resuspended in 20 μL of nuclease-

free water. For snap frozen brain tumors, 1 mL of Trizol was added to tissue and 

homogenized by expelling through a series of small gauge needle syringes. Standard Trizol 

protocol was performed with three chloroform extractions and three 70% EtOH RNA pellet 

washes. RNA was resuspended in 20–40 μL of nuclease-free water.

Chromatin Immunoprecipitation (ChIP)—Snap frozen tumor portions were ground 

into a powder before fixation. Single cell suspensions were generated from cultured 

neurospheres before fixation. Samples were fixed for 5 min with 1% paraformaldehyde in 

PBS at room temperature (RT). Fixation was quenched with 250 mM Glycine, pelleted and 
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washed 2x with PBS + protease inhibitors (PI) (Sigma, P8340). Pellets were resuspended in 

lysis buffer + PI (50 mM HEPES pH 7.9, 140 mM NaCl, 1mM EDTA pH 8.0, 10% 

Glycerol, 0.5% Nonidet P-40, 0.25% Triton X-100) for 10 min on ice for cell suspensions or 

for 20 min with rotation at 4°C for tumors. Bare nuclei were washed 2x with wash buffer + 

PI (10 mM Tris HCl pH 8.0, 0.2 M NaCl, 1 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0) 2x 

with shearing buffer + PI (10 mM Tris HCL pH 8.0, 1 mM EDTA pH 8.0, 0.1% SDS), then 

resuspended in shearing buffer + PI. Chromatin was sheared on a Covaris M220 

ultrasonicator (Microtube, 75W, 5% duty cycle, 200 cycles/burst, 5 min or Millitube, 75W, 

10% duty cycle, 200 cycles/burst, 15 min), then centrifuged for 10 min at 16000 g to remove 

cellular debris. Sonication size was verified on an Agilent Bioanalyzer using a High 

Sensitivity DNA Assay. For ChIP-seq, sheared chromatin from Drosophila melanogaster S2 

cells (ATCC, CRL-1963) was added to the mammalian chromatin prior to ChIP for sample 

normalization. Chromatin containing spike-in was kept as an input control. ChIP reactions 

were performed using a modified Upstate Biotechnology protocol. Briefly, sheared 

chromatin was diluted 1:10 with dilution buffer + protease inhibitors (21 mM Tris HCL pH 

8.0, 1 mM EDTA pH 8.0, 167 mM NaCl, 1.1% Triton X-100, 0.1% SDS), precleared Protein 

A sepharose beads (GE Healthcare, 17–5280-04) and 50 μg bovine serum albumin (BSA) 

with rotation at 4°C for 1–2 hr. The precleared chromatin was combined with the antibody 

of interest, Protein A sepharose beads and BSA and rotated overnight at 4°C. The bead 

bound chromatin was washed once each with low salt buffer (20 mM Tris HCl pH 8.0, 2 

mM EDTA pH 8.0, 150 mM NaCl, 1% Triton X-100, 0.1% SDS), high salt buffer (20 mM 

Tris HCl pH 8.0, 2 mM EDTA pH 8.0, 0.5 M NaCl, 1% Triton X-100, 0.1% SDS), LiCl 

buffer (10 mM Tris HCl pH 8.0, 1 mM EDTA pH 8.0, 250 mM LiCl, 1% Nonidet P-40, 1% 

Deoxycholate) and twice with TE (10 mM Tris HCl pH 8.0, 1 mM EDTA pH 8.0). 

Chromatin was eluted off the beads with 0.1 M NaHCO3/1% SDS by rotating 30 min at RT, 

then the supernatant was incubated overnight with 0.2 M NaCl at 65°C (input controls were 

processed along with the ChIP samples from this point on). Samples were incubated for 2 hr 

at 37°C with 10 μg Proteinase K, then cleaned up using a QIAquick PCR Purification Kit 

(Qiagen, 28104) and eluted in 50 μL 10 mM Tris HCl pH 8.5. Antibodies used were (μL 

antibody per IP shown): H3K27me3 (Cell Signaling, 9733, lot 8; 4 μL), H3K27ac (Cell 

Signaling, 8173, lot 1; 4 μL) and H3K4me3 (Cell Signaling, 9751, lot 8; 5 μL).

Library Preparation and Sequencing—All library preparation and sequencing was 

carried out by the Hartwell Center at St Jude Children’s Research Hospital. For RNA-seq, 

RNA quality was checked by 2100 Bioanalyzer RNA 6000 Nano assay (Agilent) or LabChip 

RNA Pico Sensitivity assay (Perkin Elmer) before library generation. Libraries were 

prepared from total RNA with the TruSeq Stranded Total RNA Library Prep Kit (Illumina). 

For ChIP-seq, libraries were prepared from 5–10 ng of DNA using the NEBNext ChIP-Seq 

Library Prep Reagent Set for Illumina with NEBNext Q5 Hot Start HiFi PCR Master Mix 

according to the manufacturer’s instructions (New England Biolabs) with the following 

modifications: a second 1:1 Ampure cleanup was added after adaptor ligation. The Ampure 

size selection step prior to PCR was eliminated. Completed ChIP-seq libraries were 

analyzed for insert size distribution on a 2100 BioAnalyzer High Sensitivity kit (Agilent) or 

Caliper LabChip GX DNA High Sensitivity Reagent Kit (Perkin Elmer). All libraries were 

quantified using the Quant-iT PicoGreen dsDNA assay (Life Technologies), Kapa Library 
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Quantification kit (Kapa Biosystems) or low pass sequencing on a MiSeq Nano v2 run 

(Illumina). One hundred cycle paired end sequencing (RNA-seq) or fifty cycle single end 

sequencing (ChIP-seq) was performed on an Illumina HiSeq 2500 or HiSeq 4000.

ReChIP—The primary ChIP reaction was carried out with 1600ng of chromatin for each 

sample in a total volume of 500 μL (20 mM Tris HCL pH 8.0, 1 mM EDTA pH 8.0, 150 mM 

NaCl, 1% Triton X-100, 0.1% SDS) with 100 μL Protein A sepharose beads, 100 μg BSA 

and 20 μL H3K27me3 antibody and rotated overnight at 4°C. The bead bound chromatin 

was washed as in the standard ChIP protocol, but was eluted with 300 μL of 0.1 mg/mL 

H3K27me3 peptide (AnaSpec, AS-64378, Lot 1457617) in low salt ChIP wash buffer for 3 

hr on ice with occasional gentle vortexing. Samples were spun for 1 min at 16000 g and 

eluate was removed to a fresh tube. 10% of the volume was kept to verify the primary IP 

result, and the remaining material was divided for two secondary IPs: 5 μL H3K4me3 or 5 

μL Normal Rabbit IgG (Cell Signaling, 2729S), 50 μL Protein A sepharose beads and 50 μg 

BSA and incubated at 4°C overnight with rotation. Secondary IPs were washed and eluted as 

in standard ChIP protocol and input, primary and secondary IPs had cross links reversed and 

were cleaned up as in standard ChIP protocol. Loci were analyzed by qPCR using Quantitect 

SYBR Master Mix (Qiagen, 204145) on a CFX96 Real Time PCR System (BioRad, 

1855195). Primers were designed using PrimerBLAST (NCBI). Pbx3: Forward primer = 5’-

CCTCTAGAGAACTTGGCGCT-3’, Reverse primer = 

5’GGAAGTGCAACTTTCTCCGC-3’; Eya1: Forward primer = 5’-

CCTGCACACTCGCTACCT-3’, Reverse primer = 5’-CTCAGATGCTATCTGCCGCT-3’; 

Meis2: Forward primer = 5’-AGCCGAGACTTCTGAGTTGT-3’, Reverse primer = 

5’AGTGGGGATCGTTGTTGGTA-3’.

Quantitative Reverse Transcriptase PCR (qRT-PCR)—cDNA was generated using 

the standard SuperScript III (ThermoFisher Scientific, 18080–051) protocol with 100 ng of 

total RNA. 1 μL of each 20 μL cDNA reaction was used per qRT-PCR reaction. qPCR 

reactions used Quantitect SYBR Master Mix (Qiagen) and were run on a CFX96 Real Time 

PCR System (BioRad).

Western Blot Analysis—Histone protein was purified by acid extraction using previously 

described techniques (Shechter et al., 2007). Protein was resolved using standard SDS-

PAGE techniques and transferred to a 0.45 μm nitrocellulose membrane (GE Healthcare, 

RPN2020D). 1μg of protein per lane was probed for H3.3 K27M using 1:1000 dilution 

primary antibody (Millipore, rabbit polyclonal, ABE419) followed by 1:2500 dilution anti-

rabbit HRP-conjugated secondary antibody (GE Healthcare Life Sciences, NA934) and 

detected by chemiluminescence (SuperSignal West Dura Extended Duration Substrate, 

ThermoFisher Scientific, 34076). This membrane was re-probed for H3K27me3 using 

1:1000 dilution primary antibody (Cell Signaling, rabbit monoclonal, 9733) followed by 

1:10000 dilution anti-rabbit IRDye800CW-conjugated secondary antibody (LI-COR, 926–

32213). On a separate blot, 0.2 μg from the same protein aliquot was probed for total H3 

using 1:1000 dilution primary antibody (Abcam, rabbit polyclonal, ab1791) followed by 

1:2500 dilution anti-rabbit HRP-conjugated secondary antibody (GE Healthcare Life 

Sciences, NA934) and detected by chemiluminescence (SuperSignal West Dura Extended 
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Duration Substrate, ThermoFisher Scientific, 34076). All images were developed using the 

LI-COR Odyssey Fc.

ChIP-Seq Analysis

Mapping reads and visualizing data: We used BWA (version 0.7.12; default parameter) 

(Li and Durbin, 2010) to align the reads to the mouse and Drosophila melanogaster hybrid 

reference genome (mm9+dm3) and then marked duplicated reads with Picard (version 1.65), 

with only nonduplicated reads kept by samtools (version 0.1.18, parameter “-q 1 -F 1024”, 

(Li et al., 2009)). Mapped reads were then split to two bam files (mapped to mm9 and dm3 

respectively). To control the quality of the data and estimate the fragment size, the 

nonduplicated version of SPP (version 1.11) was used to draw cross-correlation and 

calculate relative strand correlation value with support of R (version 2.14). Upon manually 

inspecting the cross-correlation plot generated by SPP, the smallest fragment size estimated 

by SPP was used to extend each read and to generate bigwig file for visualization on 

integrated genome viewer (IGV) (version 2.3.82) (Thorvaldsdottir et al., 2013). We scaled 

coverage according to spike-in normalization factor (Orlando et al., 2014) to generate 

bigwig track for each sample. To show average of several replicates as a single track in the 

browser, the bigwig files were merged to a single average bigwig file using UCSC tools 

bigWigtoBedGraph, bigWigMerge and bedGraphToBigWig.

Peak calling, promoter and enhancer characterization: MACS2 (version 2.1.1 

20160309) (Zhang et al., 2008) was used to call narrow peaks (H3K27ac and H3K4me3) 

with option “nomodel” and “extsize” defined as fragment size estimated above, FDR 

corrected p value cutoff 0.01. For broad peaks (H3K27me3), SICER (Zang et al., 2009) 

(version 1.1, with parameters of redundancy threshold 1, window size 200 bp, effective 

genome fraction 0.86, gap size 600 bp, FDR 0.00001 with fragment size defined above) was 

used for domain calling. Enriched regions were identified by comparing the IP library file to 

input library file. Peak regions were defined as the union of peak intervals in both H3.3 WT 

and H3.3 K27M samples. To avoid gender bias, regions in chromosome X and Y were 

excluded for all subsequent analyses. Promoters were defined as mouse RefSeq TSS±1000 

bp regions. Enhancers were identified by H3K27ac MACS peaks merged from both H3.3 

K27M and H3.3 WT samples but excluding those loci overlapping within TSS±1000bp 

regions.

Spike-in normalization, differential analysis and peak annotation: ChIP-seq raw read 

counts were reported for each region/each sample using BEDtools 2.25.0 (Quinlan and Hall, 

2010). The spike-in normalization was performed by counting Drosophila melanogaster 
reads and mouse reads in each IP sample and corresponding Input sample and using those 

counts to generate spike-in normalization factor for each sample, which was calculated as 

(IP_dm3.reads/IP_mm9.reads)/(INPUT_dm3.reads/INPUT_mm9.reads). Raw read counts 

were voom normalized and statistically contrasted using the pipeline limma in R (version 

3.30.13). Normalization factor defined above was used to modify mouse library size in 

edgeR (version 3.16.5) for counts per million (CPM) calculation and differential analysis. 

An empirical Bayes fit was applied to contrast H3.3 K27M samples to H3.3 WT samples 

and to generate log fold changes, p values and false discovery rates for each peak region. For 
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signal visualizations of ChIP-seq peaks, promoters or enhancers, CPM values were log2 

transformed. Genomic feature annotation of peaks and histograms showing average ChIP-

seq intensity around peak center (±2000 bp) were generated using annotatePeaks.pl, (a 

program from HOMER suite; version 4.8.3, http://homer.salk.edu/homer/) (Heinz et al., 

2010) which was modified to allow library sizes to be adjusted according to their respective 

spike-in normalization factors.

Analysis of Apparent Bivalency: Individual H3.3 WT tumors that had both H3K27me3 

and H3K4me3 ChIP-seq data (n = 3) were scored for the presence of MACS called peaks 

overlapping the 2kb surrounding gene TSS and promoters were binned into four categories 

(H3K27me3− H3K4me3−, H3K27me3+ H3K4me3−, H3K27me3− H3K4me3+, and 

H3K27me3+ H3K4me3+ (apparent bivalency). To be binned as H3K27me3+ H3K4me3+, 

both H3K27me3 and H3K4me3 peaks at a promoter had to co-occur in a single tumor.

Transcriptome sequencing and analysis—Total stranded RNA sequencing data were 

generated and mapped against mouse genome assembly NCBIM37.67 using the StrongArm 

pipeline described previously (Wu et al., 2016). The gene level quantification values were 

obtained with HTSeq (v4.8.3) (Anders et al., 2015) based on GENCODE annotation and 

normalized by TMM method with ‘edgeR’ package. Analysis of normalization by ERCC 

spike in showed strong correlation with TMM normalization (R2 = 0.98) indicating that the 

K27M mutation did not cause a global shift in transcription. Differential expression analysis 

was performed with ‘voom’ method in R ‘limma’ package. To define a H3.3 K27M 

responsive gene set, we performed differential expression analysis using the RNA-seq data 

from human DIPG tumors (Wu et al., 2014) with H3F3A K27M mutations and WT H3F3A. 

Significantly up and downregulated genes were defined by at least 2 fold changes with p < 

0.05. Gene set enrichment analysis (GSEA) was carried out using GSEA (Subramanian et 

al., 2005) with above-defined human H3.3 K27M DIPG gene sets. Single sample gene set 

enrichment analysis (ssGSEA) was used to demonstrate heterogeneity among mouse DIPG 

and human DIPG samples as previously described in Chow et al. (Chow et al., 2011). Cell-

specific markers were derived from Zhang et al. (Zhang et al., 2014), and human HGG 

expression subtypes were derived from Phillips et al.(Phillips et al., 2006). Gene expression 

FPKM (fragment per kb per million mapped reads) values were used for both GSEA and 

ssGSEA. The single sample enrichment scores were Z-score normalized for heatmaps (R 

package pheatmap). Unsupervised scaled Principle Component Analysis (PCA) was 

performed on TMM normalized log2 CPM counts for top 1000 most variable genes with 

FactoMineR package (Le et al., 2008).

Gene ontology signatures were evaluated with the Gene Ontology Consortium resource, 

www.geneontology.org (The Gene Ontology, 2017).

Epigenetic enrichment of H3.3 K27M-mediated differentially expressed gene targets was 

evaluated using the transcription factor ChIP-seq database (ChEA 2016) from Enrichr, http://

amp.pharm.mssm.edu/Enrichr (Kuleshov et al., 2016).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical comparisons between H3.3 WT and H3.3 K27M NSCs for growth analysis were 

performed using a longitudinal random effects model. Statistical comparisons between H3.3 

WT and H3.3 K27M NSCs for self-renewal analysis were performed by multiple unpaired t-
test using GraphPad Prism 7.0d software. Kaplan-Meier survival curve comparisons were 

performed by log-rank (Mantel-Cox) test using GraphPad Prism 7.0d software. Statistical 

comparisons between brain tumor spectrum incidence were performed using Fisher’s exact 

tests. The sample sizes (n) are indicated in the figure legends and represent biological 

replicates. For statistical analysis of enrichment of upregulated bivalent targets in H3.3 

K27M DIPG, differential expression analysis was performed by computing an empirical 

Bayes t-statistic as implemented in the Voom and Limma methods (Limma R package). 

Significantly upregulated genes in H3.3 K27M vs H3 WT DIPGs were defined by p < 0.05 

and a log2 fold change greater than 0.75. A permutation procedure was used to evaluate 

enrichment of promoter bivalency status among differentially expressed genes. The Kruskal-

Wallis test statistic was used to characterize differences in the distribution of the genes 

empirical Bayes t-statistics (Limma R package) according to their promoter bivalency status. 

The statistical significance of the Kruskal-Wallis test statistic (p value) was determined by 

repeating the differential expression analysis described above with permuted assignments of 

the treatment labels to expression profiles. In each analysis, the smaller of all possible or 

1000 randomly selected permuted assignments were evaluated to compute the p value.

DATA AND SOFTWARE AVAILABILITY

The RNA-seq and ChIP-seq data reported in this paper are deposited at NCBI Gene 

Expression Omnibus (GEO), accession GSE108364, and can be reached through this link: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108364.
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Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• H3.3 K27M mutation enhances neural stem cell self-renewal

• Neonatal PDGFRα activation and Trp53 loss induces supratentorial and 

brainstem glioma

• H3.3 K27M preferentially accelerates hindbrain tumorigenesis

• H3.3 K27M drives bivalent gene activation associated with neurodevelopment 

in DIPG
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SIGNIFICANCE

Histone H3 K27M mutations occur in 80% of DIPGs and exert a dominant effect driving 

global loss of H3K27me3. It is unclear how this dramatic change in epigenetic regulation 

contributes to oncogenic transformation. We used genetically engineered mouse models 

to show that H3.3 K27M alone enhanced neural stem cell self-renewal. Neonatal 

induction of H3.3 K27M cooperated with active PDGFRα mutant and p53 inactivation to 

accelerate DIPG formation. H3.3 K27M and the resulting H3K27me3 loss drove 

selective regulation of bivalent promoters in tumors, dysregulating neural development 

genes. These genetically engineered models of spontaneous DIPG recapitulate the most 

common mutations from human tumors, reveal insights into disease pathogenesis, and 

provide physiologically relevant immunocompetent models for future mechanistic and 

preclinical studies.
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Figure 1. H3.3 K27M Promotes Self-Renewal and Mediates Global H3K27me3 Depletion but 
Discrete Transcription Changes That Do Not Disrupt Regional Signatures
(A,B) Self-renewal of H3.3 K27M and H3.3 WT H-NSCs was assessed by clonogenic 

growth in methylcellulose at subsequent passages measuring number (A) and size (B) of 

spheres. *p < 0.05, **p < 0.01, ***p < 0.001, n.s., not significant. Error bars show +/− SEM. 

n = 3 per genotype (C) Scatterplot comparing expression in H3.3 K27M and H3.3 WT H-

NSCs (RNA-seq; log2(FPKM+1)). (D) Plot of H3.3 K27M/H3.3 WT log2 ratio for RNA-

seq versus H3K27me3 in H-NSCs. Colored dots depict genes up (red) and downregulated 

(blue) in H3.3 K27M compared to WT, with p < 0.05 and log2 fold change greater than 0.75 

Larson et al. Page 27

Cancer Cell. Author manuscript; available in PMC 2020 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



or less than −0.75, respectively, compared to the gene loci bulk (gray). (E) PCA of H3.3 WT 

and H3.3 K27M F- and H- NSCs. (F,G) Regional specific expression of Foxg1 (F) and Irx2 
(G) shown by in situ hybridization (Allen Brain Atlas, E18.5) and average IGV tracks in 

H3.3 K27M F- and H-NSCs. *indicates Gm20554 locus near Irx2. Scale bar = 1 mm. (H) 

Average H-NSC tracks for three H3.3 K27M upregulated genes, Lin28b, Igf2bp2 and Plag1. 
*indicates Chchd7 locus near Plag1. In (F-H), tracks show H3K27me3, H3K27ac and 

H3K4me3 enrichment and RNA-seq in H3.3 WT or H3.3 K27M expressing NSCs. For each 

pair of tracks, n = 3 per genotype, scale is the same for both genotypes. See also Figures S1, 

S2, S3 and Tables S1–S3.
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Figure 2. H3.3 K27M Accelerates Medulloblastoma Formation Caused by Trp53-Deficiency
(A) Kaplan-Meier survival analysis in mice with induced H3.3 WT (n = 4), p53cKO (n = 37; 

gray), or H3.3 WT;p53cKO (n = 42), ns, p = 0.195. (B) Kaplan-Meier survival analysis with 

induced H3.3 K27M (n = 5), p53cKO (n = 46), or H3.3 K27M;p53cKO (n = 51), *p < 0.0001. 

Cohorts in A and B bred separately and used littermate controls to compare survival and 

tumor spectrum. (C,D) Location of macroscopic brain tumors in cohorts shown in the panel 

A (C) and the panel B (D). Supra, Supratentorial; CB, Cerebellar; Spinal, Spinal cord; BS, 

Brainstem. (E,F) H&E stain of representative supratentorial HGG (E) or medulloblastoma 

(F) observed in all genotypes. *in upper images indicates tumor. Scale bar = 1 mm (top 
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images), 50 μm (bottom images). (G,H) Expression of FLAG-tagged H3.3 (upper images) 

and H3K27me3 (lower images) is shown by IHC on sections of representative supratentorial 

HGG (G) or medulloblastoma (H) for the indicated genotypes. Scale bar = 50 μm.
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Figure 3. Active PDGFRα Mutant Cooperates with Trp53 Deficiency to Accelerate High-Grade 
Glioma Formation
(A) Kaplan-Meier survival analysis in mice with induced mutant PDGFRA (n = 10), p53cKO 

(n = 46), or PDGFRA;p53cKO (n = 46), *p < 0.0001. (B) Location of macroscopic brain 

tumors for cohorts shown in (A): Supra, Supratentorial; CB, Cerebellar; Spinal, Spinal cord; 

BS, Brainstem. p53cKO cohort same as in Figure 2B. (C) HGG in PDGFRA;p53cKO mice. 

Sagittal section immunostained with anti-human PDGFRα (top image), and higher 

magnification of the pons for H&E stain and IHC of PDGFRα, Olig2 and H3K27me3 in 

representative HGG. Scale bar = 1 mm (whole brain image), 50 μm (higher magnification 

images). See also Figure S4.
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Figure 4. H3.3 K27M Accelerates DIPG Formation from Postnatal Neural Progenitors
(A) Kaplan-Meier survival analysis of cohorts with induced PDGFRA;p53cKO combined 

with H3.3 WT (n = 44) or H3.3 K27M (n = 43; green), p < 0.0001. (B) Location of 

macroscopic brain tumors for cohorts shown in (A): Supra, Supratentorial; CB, Cerebellar; 

Spinal, Spinal cord; BS, Brainstem. (C) DIPG in H3.3 WT;PDGFRA;p53cKO and H3.3 

K27M;PDGFRA;p53cKO mice. Sagittal sections immunostained with anti-human PDGFRα. 

Boxed areas in brainstem are shown at higher magnification for H&E, and IHC for 

PDGFRα, Olig2, FLAG-tagged H3.3, or H3K27me3 in representative HGG. Scale bar = 1 

mm (whole brain images), 50 μm (higher magnification images). (D) Western blot of acid 

extracted mouse hindbrain NSCs, mouse DIPGs and xenografted human HGGs that express 

WT H3 (H3 WT) or the H3.3 K27M mutant from the endogenous H3f3a/H3F3A promoter. 

A H3.3 K27M-specific antibody is used to confirm mutation status. Epitope tagged mouse 

H3.3 K27M protein is slightly larger than human H3.3 K27M protein. Xenografted human 

HGG H3 WT is a cerebellar tumor and H3.3 K27M is a DIPG.
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Figure 5. Gene Expression in Mouse H3.3 K27M DIPGs Significantly Resembles That in Human 
H3.3 K27M DIPG
(A) Heatmaps of ssGSEA scores comparing signatures for human HGG subgroups (PN, 

proneural; Pro, Proliferative; Mes, Mesenchymal) and normal murine neural cell types (N, 

Neurons; Astro, Astrocytes; MO, Myelinating oligodendrocytes; NFO, Newly formed 

oligodendrocytes; OPC, Oligodendrocyte precursor cells) between spontaneous mouse 

DIPG expressing H3.3 K27M (n = 20) or H3.3 WT (n = 9) or primary human DIPGs with 

H3.3 K27M (n = 20) or H3 WT (n = 3). For each panel, tumors were first separated by 

genotype then ordered by hierarchical clustering of gene signatures from human HGG 

Larson et al. Page 33

Cancer Cell. Author manuscript; available in PMC 2020 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subgroups. (B) PCAs of mouse and human DIPGs in (A). (C) GSEA showing significant 

enrichment in H3.3 K27M mouse DIPGs of genes upregulated in H3.3 K27M compared 

with H3.3 WT human DIPGs. Running enrichment score plots (left) and gene expression 

heatmaps in mouse H3.3 K27M or H3.3 WT DIPGs showing top leading edge genes (right). 

(D) Expression of leading edge upregulated genes Pbx3, Eya1 and Plag1. Boxplots depict 

log2-scale RNA-seq CPM values for primary human and mouse DIPGs, and mouse 

hindbrain (H-NSC) and forebrain (F-NSC) NSCs expressing H3.3 K27M or H3.3 WT. Box 

plots show the interquartile range (IQR). Median is shown as a horizontal line, highest and 

lowest values up to 1.5 times the IQR are shown with dotted lines outside box, and outliers 

greater than 1.5 times the IQR are shown as black squares. See also Figures S5 and S6 and 

Tables S4 and S5.
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Figure 6. Spontaneous H3.3 K27M DIPGs Exhibit Global Changes in H3K27 Epigenetic State 
and Selective Expression Changes in PRC1 and PRC2 Targets
(A,B) Promoter based histograms representing counts within 40 bp bins across 4 kb region 

centered at TSS for H3K27me3 (A) or H3K27ac (B) in H3.3 K27M (n = 6) and H3.3 WT (n 

= 5) mouse DIPGs. (C) Plot of H3.3 K27M/H3.3 WT log2 ratio in mouse DIPGs for 

promoter regions comparing RNA-seq versus H3K27me3. Colored data points depict genes 

up (red) and downregulated (blue and purple) in H3.3 K27M tumors, with p < 0.05 and a 

log2 fold change greater than 0.75 or less than −0.75, respectively, compared to the gene loci 

bulk (gray). Purple data points show downregulated genes with H3K27me3 log2 fold change 

of −0.75 or greater (relative H3K27me3 retention). RNA-seq: H3.3 WT, n = 9; H3.3 K27M, 

n = 20. (D) Gene ontology and Enrichr ChEA2016 analysis of H3.3 K27M upregulated 

genes. Length of bar indicates p value. (E,F) Plots of H3.3 K27M/H3.3 WT log2 ratio in 

mouse DIPGs for promoter regions comparing H3K27ac versus H3K27me3 (E) and 

H3K4me3 versus H3K27me3 (F). H3K4me3 (H3.3 WT, n = 3; H3.3 K27M, n = 2). Shaded 

density histograms illustrate relative overlap of PTM changes in promoters of up (red) and 

downregulated (blue) genes compared to the gene loci bulk (gray). (G) Average tracks 
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(identical scale for each genotype pair) showing H3K27me3, H3K27ac and H3K4me3 

enrichment in H3.3 WT or H3.3 K27M expressing mouse DIPGs and average RNA-seq 

tracks for Usp44, Lif and Six1. See also Figures S7 and S8 and Table S6.
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Figure 7. Epigenetic Release at Bivalent Promoters Associated with Differentially Expressed 
Genes in H3.3 K27M DIPG Oncogenic Signature
(A) Stacked bar graphs showing peak call status for H3K27me3 and H3K4me3 in the 2 kb 

surrounding the transcriptional start site (TSS) of all genes, H3.3 K27M up or 

downregulated genes in H3.3 WT DIPGs. Differential genes defined as in Figure 6. Gold 

represents proportion of potential bivalent gene targets (H3K27me3+ H3K4me3+). (B) 

Violin plot showing the average RNA-seq signal for all genes in H3.3 WT mouse DIPGs for 

each promoter status. The width of the violin shows how common expression levels are, 

with the widest part of the violin corresponding to the mode average. (C) Average tracks 

(identical scale for each genotype pair) showing H3K27me3, H3K27ac and H3K4me3 
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enrichment in H3.3 WT or H3.3 K27M expressing mouse DIPGs and average RNA-seq 

tracks for three potentially bivalent genes, Pbx3, Eya1 and Meis2. n = 6 (H3.3 K27M) and n 

= 5 (H3.3 WT) for H3K27me3 and H3K27ac; n = 2 (H3.3 K27M) and n = 3 (H3.3 WT) for 

H3K4me3; n = 20 (H3.3 K27M) and n = 9 (H3.3 WT) for RNA-seq. *portion of 

G630016G05 gene near Meis2. Red arrows, primer locations used for qPCR in (D). (D) 

ReChIP experiment from Pbx3, Eya1 and Meis2 promoters. Signal for primary ChIPs is 

shown as percent of the starting ChIP input (top row). The material pulled down with the 

H3K27me3 primary IP was used for ReChIP with indicated antibodies. ReChIP signal is 

shown as percent of original chromatin input for primary ChIP (bottom row). n = 2 for each 

genotype. Error bars show standard deviation. See also Table S7.
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Figure 8. H3.3 K27M Impact on Poised Promoters in DIPGs
In H3 WT DIPGs (top), poised promoters, primed for expression, bear both H3K27me3 

(purple) and H3K4me3 (orange) PTMs on the same or nearby nucleosomes (left side). Some 

genes appear to have both poised and active promoter states represented in different H3 WT 

cells (or on different alleles within the same cell), as the genes are expressed and bulk 

analyses show both H3K27me3 and H3K27ac (not shown) present at the promoter (right 

side). In H3.3 K27M cells (bottom), H3K27me3 is diminished globally and bivalent gene 

promoters can be converted from poised to active, resulting in increased expression 

compared to the H3 WT state.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-FLAG (clone M2) Sigma Cat# F1804, Lot SLBS353OV (RRID:AB_262044)

Rabbit monoclonal anti H3K27me3 (clone 
C36B11)

Cell Signaling Technology Cat# 9733, Lot 8 (RRID:AB_2616029)

Rabbit monoclonal anti-PDGFRα (clone 
D13C6)

Cell Signaling Technology Cat# 5241, Lot 3 (RRID:AB_10692773)

Rabbit polyclonal anti-Olig2 Millipore Cat# AB9610, Lot 2060464 (RRID:AB_570666)

Rabbit monoclonal anti-H3K27ac (clone 
D5E4)

Cell Signaling Technology Cat# 8173, Lot 1 (RRID:AB_10949887)

Rabbit monoclonal anti-H3K4me3 (clone 
C42D8)

Cell Signaling Technology Cat# 9751, Lot 8 (RRID:AB_2616028)

Normal rabbit IgG Cell Signaling Technology Cat# 2729S (RRID:AB_1031062)

Biotinylated Horse anti-mouse IgG Vector Laboratories Cat# BA-2000, (RRID:AB_2313581)

Biotinylated Goat anti-rabbit IgG Vector Laboratories Cat# BA-1000 (RRID:AB_2313606)

Rabbit polyclonal anti-H3.3 K27M Millipore Cat# ABE419 (RRID:AB_2728728)

Rabbit polyclonal anti-H3 Abcam Cat# ab1791, Lot GR153323–6 (RRID:AB_302613)

HRP-conjugated Donkey anti-rabbit IgG GE Healthcare Life Sciences Cat# NA934, Lot 9495175 (RRID:AB_772206)

IRDye 800CW Goat anti rabbit IgG LI-COR Cat# 926–32213, Lot C70918–03 (RRID:AB_621848)

Biological Samples

Human primary DIPG tumor samples (Wu et al., 2014) NA

Chemicals, Peptides, and Recombinant Proteins

Geneticin (G418) Life Technologies Cat# 10131–027

Puromycin Sigma Cat# P8833

AlexaFluor 488–5-dUTP ThermoFisher Cat# C11397

AlexaFluor 594–5-dUTP ThermoFisher Cat# C11400

Mouse NeuroCult Proliferation Medium Stem Cell Technologies Cat# 05702

Human EGF Miltenyi Biotech Cat# 130–097-751

Accutase Millipore Cat# SCR005

Methyl cellulose Sigma Cat# M0512

SYTO 9 Green Fluorescent Nucleic Acid 
Stain

ThermoFisher Cat# S34854

Tamoxifen Sigma Cat# T5648

Corn oil Sigma Cat# C8267

Hematoxylin ThermoFisher Cat# 7221

Eosin ThermoFisher Cat# 7111

Trizol Invitrogen Cat# 15596–018

ERCC RNA Spike-In Mix Life Technologies Cat# 4456740, Lot 1412017

Protease inhibitors Sigma Cat# P8340

Protein A sepharose beads GE Healthcare Life Sciences Cat# 17–5280-04

H3K27me3 peptide AnaSpec Cat# AS-64378, Lot 1457617
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REAGENT or RESOURCE SOURCE IDENTIFIER

Quantitect SYBR Master Mix Qiagen Cat# 204145

SuperSignal West Dura Extended Duration 
Substrate

ThermoFisher Cat# 34076

Critical Commercial Assays

QuickChange II SDM Kit Agilent Technologies Cat# 200523

Vectastain Universal Elite ABC Kit Vector Laboratories Cat# PK-6100

DAB Substrate Kit Vector Laboratories Cat# SK-4100

SuperScript III First-Strand Synthesis System ThermoFisher Cat# 18080051

QIAquick PCR Purification Kit Qiagen Cat# 28104

Deposited Data

RNA sequencing mapped raw data This paper GEO: GSE108364

ChIP sequencing mapped raw data This paper GEO: GSE108364

Experimental Models: Cell Lines

Drosophila melanogaster D.MEL S2 ATCC CRL-1963 (RRID:CVCL_Z232)

Experimental Models: Mouse Strains

B6.129S4-Gt(ROSA)26Sortm2(FLP*)Sor/J The Jackson Laboratory Stock# 012930 (RRID:IMSR_JAX:012930)

C57BL/6J The Jackson Laboratory Stock# 000664 (RRID:IMSR_JAX:000664)

H3f3aLSL-K27M-Tag This paper NA

H3f3aLSL-WT-Tag This paper NA

Nestin-Cre The Jackson Laboratory (Tronche 
et al., 1999)

Stock# 003771 (RRID:IMSR_JAX:003771)

LSL-PDGFRAV544ins This paper NA

Nestin-CreERT2 (Zhu et al., 2012) NA

Trp53flox The Jackson Laboratory (Jonkers 
et al., 2001)

Stock# 008462 (RRID:IMSR_JAX:008462)

Oligonucleotides

LSL-PDGFRAV544ins Forward Integrated DNA Technologies 5’-TCTGCTAACCATGTTCATGCCTTC-3’

LSL-PDGFRAV544ins Reverse Integrated DNA Technologies 5’-GACCGAAAGGAGCGCACGAC-3’

Pbx3 Forward Integrated DNA Technologies 5’-CCTCTAGAGAACTTGGCGCT-3’

Pbx3 Reverse Integrated DNA Technologies 5’-GGAAGTGCAACTTTCTCCGC-3’

Eya1 Forward Integrated DNA Technologies 5’-CCTGCACACTCGCTACCT-3’

Eya1 Reverse Integrated DNA Technologies 5’-CTCAGATGCTATCTGCCGCT-3’

Meis2 Forward Integrated DNA Technologies 5’-AGCCGAGACTTCTGAGTTGT-3’

Meis2 Reverse Integrated DNA Technologies 5’-AGTGGGGATCGTTGTTGGTA-3’

Recombinant DNA

Plasmid: Lox-STOP-lox (LSL) Addgene Addgene Plasmid #11584

Software and Algorithms

Gene Ontology Consortium (The Gene Ontology, 2017) http://www.geneontology.org

Enrichr (Kuleshov et al., 2016) http://amp.pharm.mssm.edu/Enrichr/

Samtools v0.1.18 (Li et al., 2009) https://github.com/samtools/samtools
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REAGENT or RESOURCE SOURCE IDENTIFIER

BEDtools v2.25.0 (Quinlan and Hall, 2010) http://bedtools.readthedocs.io/

UCSC tools NA https://genome.ucsc.edu/util.html

BWA v0.7.12 (Li and Durbin, 2010) http://bio-bwa.sourceforge.net

R NA https://www.r-project.org

Bioconductor NA https://www.bioconductor.org/

IGV v2.3.82 (Thorvaldsdottir et al., 2013) http://software.broadinstitute.org/software/igv/

HOMER v4.8.3 (Heinz et al., 2010) http://homer.ucsd.edu/

HTSeq v0.6.1p1 (Anders et al., 2015) https://htseq.readthedocs.io/

MACS2 V2.1.1 (Zhang et al., 2008) https://github.com/taoliu/MACS

SICER v1.1 (Zang et al., 2009) https://home.gwu.edu/~wpeng/Software.htm

FactoMineR (Le et al., 2008) https://CRAN.R-project.org/package=FactoMineR

GSEA (Subramanian et al., 2005) http://software.broadinstitute.org/gsea/index.jsp

Prism 7.0d GraphPad NA

PrimerBLAST NCBI https://www.ncbi.nlm.nih.gov/tools/primer-blast/

Other

Ultra-low attachment T25 cell culture flasks Corning Cat# 3815

96-well, black walled cell culture plates Corning Cat# 3904

30-gauge insulin syringe Becton Dickenson Cat# 309301

0.45μm nitrocellulose membrane GE Healthcare Life Sciences Cat# RPN2020D
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