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Abstract

Background/aims—The Age-Related Eye Disease Study reported the impact of antioxidant and 

zinc supplements on risk of progression to advanced stages of age-related macular degeneration 

(AMD). We evaluated the role of genetic variants in modifying the relationship between 

supplementation and progression to advanced AMD.

Methods—Among 4124 eyes (2317 subjects), 882 progressed from no AMD, early, or 

intermediate AMD to overall advanced disease, including geographic atrophy (GA) and 

neovascular disease (NV). Survival analysis using individual eyes as the unit of analysis was used 

to assess the effect of supplementation on AMD outcomes, with adjustment for demographic, 

environmental, ocular, and genetic covariates. Interaction effects between supplement groups and 

individual CFH Y402H and ARMS2 genotypes, and composite genetic risk groups combining the 

number of risk alleles for both loci, were evaluated for their association with progression.

Results—Among antioxidant and zinc supplement users compared to the placebo group, subjects 

with a nonrisk genotype for CFH (TT) had a lower risk of progression to advanced AMD (hazard 

ratio [HR]: 0.55, 95% confidence interval [CI]: 0.32–0.95, P=0.033). No significant treatment 

effect was apparent among subjects who were homozygous for the CFH risk allele (CC). A 

protective effect was observed among high risk ARMS2 (TT) carriers (HR: 0.52, 95% CI: 0.33–

0.82, P=0.005). Similar results were seen for the NV subtype but not GA.
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Conclusion—The effectiveness of antioxidant and zinc supplementation appears to differ by 

genotype. Further study is needed to determine the biological basis for this interaction.
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Introduction

Age-related macular degeneration (AMD) is the leading cause of blindness, irreversible 

vision loss, and reduced quality of life among adults over age 65. The multifactorial etiology 

of AMD is encompassed by a complex web of risk factors, both heritable and modifiable, 

that influence progression to advanced stages of disease.[1] Combined demographic, 

behavioral, and genetic factors have been incorporated into validated, comprehensive risk 

models for progression.[2–5] Subsequent inclusion of newly identified genetic variants has 

enhanced the predictability of these models over time, [6, 7] and increasing evidence has 

emerged that supports plausible interactions between these genetic and modifiable factors.[8, 

9] Understanding this interplay is of utmost importance when considering the preventive and 

therapeutic strategies involved in patient care.

The impact of nutritional supplements for patients within specific genotype groups has been 

a subject of debate. The controversy surrounding whether genetic testing should be required 

prior to selecting specific supplements has been particularly noteworthy, and complement 

factor H (CFH) and age-related maculopathy susceptibility 2 (ARMS2) have been of 

primary interest as genes associated with AMD and its progression.[10] The Age-Related 

Eye Disease Study (AREDS) originally evaluated the impact of supplements consisting of 

antioxidants (vitamin E, vitamin C, and beta-carotene) and zinc, and reported a 25% reduced 

risk of progression to advanced AMD over 5 years.[11] The first evidence of a differential 

treatment effect with combined antioxidant and zinc supplements compared to placebo 

according to genotype demonstrated that a lower proportion of nonrisk CFH subjects 

progressed to advanced disease compared to high risk subjects.[2, 12] More recent 

publications evaluated similar relationships between treatment and genotype; however, these 

studies revealed conflicting results.[13–15]

Given the emergence of personalized medicine and targeted therapies, it is important to 

consider the utility of evaluating individual genotypes in order to inform the selection of 

patient-specific strategies.[7] We therefore aimed to further evaluate the specific genotypes 

for CFH Y402H and ARMS2 that modify the relationship between supplementation and 

progression. Our study differs from previous publications by the analytic method selected, 

namely the use of survival analysis that evaluates individual eyes, and includes a larger 

component of the AREDS population with a genetic specimen.
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Materials and Methods

Study Population and Definition of Progression

Data from AREDS, a randomized controlled clinical trial, were used in these analyses. 

Participants were randomly assigned to receive one of four treatment interventions. All 

treatment assignments were double-masked, and included oral daily supplementation as 

follows: (1) antioxidants (500 mg of vitamin C, 400 IU of vitamin E, and 15 mg of beta-

carotene); (2) zinc (80 mg of zinc as zinc oxide and 2 mg of copper as cupric oxide); (3) the 

combination of antioxidants and zinc; (4) or placebo.[11] Phenotype information for all 

follow up visits was based on the AREDS AMD severity scale, and was used to classify 

individuals into grade 1 (no AMD), grade 2 (early AMD), grade 3 (intermediate AMD), and 

two advanced stages of disease: grade 4, including both central and non-central forms of 

geographic atrophy (GA), and grade 5, neovascular disease (NV).[16] Progression was 

defined as the transition from no, early, or intermediate AMD to three categories of 

advanced disease: GA, NV, and overall advanced AMD (either GA or NV). Eyes with 

advanced disease at baseline were excluded from all analyses. Subjects with no AMD (grade 

1) in both eyes at baseline were also excluded as in the original AREDS treatment analyses.

[11]

Demographic and behavioral covariates

Baseline demographic, behavioral, ocular, and genetic characteristics were determined for 

each subject. The following covariates were evaluated as risk factors for progression: age 

(55–64, 65–74, ≥75), sex, education (≤ high school, > high school), body mass index (BMI) 

(<25, 25–29, ≥ 30), and smoking status (never, past, current). Baseline AMD grade was 

determined for each eye, and drusen size (μm) was evaluated for each non-advanced eye 

(<63, 63 to 24, 125 to 249, and ≥ 250). The four AREDS treatment interventions 

(antioxidant, zinc, antioxidant and zinc, and placebo) were assessed.

Genotype data

DNA samples were purchased from the AREDS repository. Genotypes for CFH Y402H 

(rs1061170) and ARMS2 A69S (rs10490924), two single nucleotide polymorphisms (SNPs) 

associated with AMD, were determined using array-based and gene sequencing platforms as 

previously described.[17–20] All SNPs had a high genotype call rate (>98%), none deviated 

from Hardy-Weinberg equilibrium in the control group (P < 103 ), and none failed a 

differential missing test between case and control groups. PLINK was used to perform all 

quality control steps.[21]

Statistical analysis

The distribution of each risk factor was evaluated for each of the four AREDS supplement 

groups. Incident AMD outcomes were analyzed over the duration of the AREDS clinical 

trial (mean follow up: 6.6 years). Progression to advanced AMD was evaluated using 

survival analysis methodology with the individual eye as the unit of analysis (using PROC 

PHREG with the covariance aggregate option in SAS 9.3, allowing for the use of correlated 

data in eye-specific analyses). Multivariate Cox proportional hazards models included age, 
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sex, education, BMI, smoking, supplement group, AMD grade at baseline, drusen size, and 

the genotypes for CFH Y402H and ARMS2. Separate models were used to evaluate 

progression to GA, NV, and overall advanced AMD for subgroups with and without an 

available genetic specimen. Hazard ratios (HRs) were estimated and 95% confidence 

intervals (CIs) were calculated.

Interaction effects between AREDS supplement group and genotype were evaluated for 

association with progression using multivariate Cox proportional hazards models. CFH 
Y402H and ARMS2 were assessed separately to evaluate the differential effect of AREDS 

treatment among specific genotypes, comparing the homozygous and heterozygous risk 

genotypes to the nonrisk genotype groups. Interaction effects between the AREDS 

supplements and composite genetic risk groups combining the number of risk alleles for 

CFH Y402H and ARMS2 were also determined. Low risk was defined as having zero risk 

alleles for a given SNP, and high risk was defined as having one or two risk alleles. 

Composite genetic risk groups were classified as follows (for CFH Y402H, ARMS2, 

respectively): 1) low, low; 2) low, high; 3) high, low; and 4) high, high.

All statistical analyses were performed using SAS version 9.3 (SAS Institute Inc., Cary, 

NC). P values <0.05 were considered statistically significant.

Results

Table 1 displays the association between the four AREDS treatment interventions and AMD 

risk factors at baseline for 2317 subjects. None of these variables were significantly 

associated with any AREDS treatment.

The association between AREDS treatment and genetic risk factors and progression to 

incident GA, NV, and overall advanced AMD for individual eyes is reported in Table 2. 

Analyses adjusted for age, sex, education, smoking status, BMI, baseline AMD grade, and 

baseline drusen size were conducted separately for the cohorts with and without a genetic 

specimen. Among 4543 eyes included in the total cohort, 995 progressed to advanced AMD. 

There was a significant beneficial effect of the combination antioxidant and zinc treatment 

on progression to NV (HR: 0.73, 95% CI: 0.56–0.97, P=0.028). A protective effect of the 

antioxidant alone treatment was noted for progression to overall advanced AMD (HR: 0.81, 

95% CI: 0.67–0.99, P=0.039). No significant treatment effect was seen for the GA endpoint. 

These results were also present in the cohort with genetic data. There was a higher rate of 

progression among the homozygous risk genotype for both CFH Y402H (CC) (HR: 1.64, 

95% CI: 1.30–2.07, P<0.0001) and ARMS2 (TT) (HR: 2.44, 95% CI: 1.96–3.02, P<0.0001) 

compared to subjects who were homozygous for the nonrisk allele. This relationship was 

also observed for progression to the GA and NV endpoints. The association between other 

known AMD risk factors and progression to each advanced outcome is shown in 

Supplementary Table 1.

Associations between AREDS treatment groups and progression to advanced disease 

stratified by CFH Y402H and ARMS2 genotypes are shown in Table 3. There was a 

significant protective effect of the combination antioxidant and zinc treatment in the CFH 
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nonrisk (TT) group for progression to overall advanced AMD (HR: 0.55, 95% CI: 0.32–

0.95, P=0.033) and progression to NV (HR: 0.34, 95% CI: 0.16–0.70, P=0.004). There was 

no apparent benefit of the combination supplement treatment for the CFH risk (CC) group. 

The interaction between this treatment and genotype was significant for comparisons of the 

high risk CFH genotype group to the nonrisk genotype group for progression to NV 

(Pinteraction=0.019), with a suggestive, non-significant result in the same direction for overall 

advanced AMD (Pinteraction=0.069). For the ARMS2 genetic variant, there was a significant 

protective effect of antioxidant and zinc treatment in the high risk (TT) group for 

progression to overall AMD (HR: 0.52, 95% CI: 0.33–0.82, P=0.005) and NV (HR: 0.38, 

95% CI: 0.20–0.72, P=0.003). No apparent benefit was observed in the nonrisk (GG) group. 

There was a significant interaction observed when comparing the high risk to the nonrisk 

ARMS2 genotype group for both outcomes (Pinteraction=0.024 and 0.009, respectively). If a 

Bonferroni adjustment is performed, the Pinteraction for CFH Y402H (CC vs. TT) is 0.038, 

and the Pinteraction for ARMS2 (TT vs. GG) is 0.048 for overall advanced AMD and 0.018 

for NV. Results related to the antioxidant alone and zinc alone treatments are reported in 

Supplementary Table 2.

Table 4 shows the association between the combination antioxidant and zinc treatment 

versus placebo and progression to advanced disease stratified by the composite genotypes 

for CFH Y402H and ARMS2 A69S. Subjects with the nonrisk genotype for both SNPs (low, 

low group) had a lower risk of progression with combination treatment versus placebo (HR: 

0.32, 95% CI: 0.09–1.12, P=0.075). Risk of progression to overall advanced AMD was also 

reduced for subjects with zero risk alleles for CFH and one or two risk alleles for ARMS2 
(low, high group) (HR: 0.52, 95% CI: 0.28–0.94, P=0.031). Similar results were observed 

for progression to NV. Subjects with high risk genotypes for both SNPs (high, high group) 

demonstrated a protective treatment effect for the NV endpoint (HR: 0.65, 95% CI: 0.44–

0.95, P=0.026). In addition, for progression to overall advanced AMD, there was a 

difference between the treatment effect for the high risk CFH and low risk ARMS2 subjects 

(high, low group), compared to the treatment effect for subjects with the nonrisk genotype 

for both SNPs (low, low group) (HRs: 1.23 and 0.32, Pinteraction=0.039). Similar results were 

seen for the NV endpoint. Finally, a three-way interaction between treatment, CFH, and 

ARMS2 genotype was evaluated, and results suggested that the differential CFH treatment 

effect was not modified significantly by ARMS2 genotype (data not shown).

Discussion

The effectiveness of the antioxidant and zinc supplement treatment compared to placebo 

differed according to genotype, and subjects with a nonrisk genotype for CFH and subjects 

with the homozygous risk genotype for ARMS2 had a lower risk of progression to overall 

advanced AMD. Individuals in both genotype groups using this combination supplement 

also had a lower risk of progression to NV. No significant treatment effect was observed for 

GA.

We first reported the independent association of these two genetic variants with progression 

to advanced stages of AMD in 2007, demonstrating a seven times increase in risk among the 

combined homozygous risk genotypes.[10] An interaction was suggested between CFH 
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Y402H and the combination AREDS treatment (TT genotype, proportion progressing = 11% 

combination treatment, 34% placebo; CC genotype, proportion progressing = 39% 

combination treatment, 44% placebo), Pinteraction = 0.03.[2, 12] The interaction effect 

between genotype and treatment groups was included in a predictive model including five 

additional AMD SNPs, with an area under the curve statistic of 83%.[2] These initial studies 

evaluated individual subjects and used logistic regression analyses. The methodological 

approach applied in this study, specifically the analysis of individual eyes, enhances the 

person-based analyses of the worst eye by accounting for eye-specific covariates, namely 

baseline grade and drusen size, and differentiating between subjects who progress in a single 

eye compared to those who progress in both eyes. This report incorporates these methods 

with a resulting increase in statistical power.

Our present study further evaluates this potential interaction and underscores the differential 

effect of the combination antioxidant and zinc supplement by CFH genotype. Subjects with 

the nonrisk genotype had a significantly lower risk of progression after treatment, while 

those with one or two risk alleles did not benefit. We recently reported that subjects with a 

nonrisk allele for CFH Y402H demonstrated significantly lower risk of progression to 

advanced stages of AMD in a study of nutrition,[8] in which Merle et al. identified a 

significant interaction between CFH risk alleles and high adherence to an alternate 

Mediterranean diet. Subjects with at least one nonrisk allele had a relatively lower risk of 

progression to advanced stages of AMD and subjects homozygous for the risk allele did not 

benefit. In addition to this prospective analysis of dietary patterns, the Nutritional AMD 

Treatment 2 study evaluated progression to neovascular disease and response to 

supplementation with docosahexaenoic acid (DHA). A similar interaction was reported: 

there was a protective effect of DHA supplementation among patients who were 

homozygous for the nonrisk CFH allele.[22] A study of anti-vascular endothelial growth 

factor (VEGF) treatment in a clinic population revealed that subjects with a low CFH risk 

score demonstrated more improvement over time with respect to central foveal thickness and 

visual acuity.[9] These studies suggest that modifiable supplement, dietary, and treatment 

factors might achieve maximum benefit among patients with low risk genotypes for CFH.

Our results implicate a possible interaction with ARMS2, where a protective effect of the 

combined supplementation was observed among high risk ARMS2 carriers. Other studies 

also support a differential impact of this genotype in conjunction with nutritional intake. 

Dietary DHA has been associated with lower risk of incident GA among subjects 

homozygous for the ARMS2 risk allele.[23] Another study of progression to early AMD 

revealed a similar interaction with the beneficial effect of combined eicosapentaenoic acid 

(EPA) + DHA intake among the ARMS2 risk genotype group. [24]

Previous analyses related to the differential effect of the AREDS supplements among 

genotype groups have been inconclusive.[13–15] An initial publication by Awh et al. [13] 

reported the benefit of zinc in reducing progression to advanced AMD among 995 subjects 

with zero or one risk allele for CFH and one or two risk alleles for ARMS2. A more recent 

publication from the same group [15] suggested a differential impact on disease progression 

according to number of risk alleles for these SNPs: the detriment posed by a CFH risk allele 

was exacerbated and the harmful effect of the ARMS2 risk allele was alleviated in subjects 
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receiving supplementation with zinc, both alone or as a component of the AREDS 

combination supplement. Chew et al. examined a larger sample (n=1237) and said there was 

no significant interaction between treatment with supplements and genetics.[14] Those 

studies used the subject rather than the eye as the unit of analysis and assessed outcomes 

based on smaller subgroups of the AREDS population. Our report is based on a larger 

sample of the AREDS population (n=2317). Subjects with no evidence of AMD in both eyes 

(fewer than five small drusen, <63 μm) were excluded as they did not receive 

supplementation with zinc and most did not progress to advanced stages of disease. This 

selection was consistent with the criteria used in the original AREDS study.[11]

It is apparent that genetic susceptibility modifies risk of progression to advanced AMD, can 

possibly affect response to anti-VEGF treatment and dietary patterns, and the effectiveness 

of combination antioxidant and zinc supplementation may also differ by genotype. In this 

era of personalized medicine, genetic factors may become relevant when selecting specific 

treatments. Additional studies are needed to determine the biologic mechanism for this 

interaction and its implications for the comprehensive management of AMD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1:

Associations between AREDS supplements and demographic, environmental, genetic, and ocular risk factors 

for age-related macular degeneration
a

Placebo Antioxidant
Alone

Zinc
Alone

Combination Antioxidant and 
Zinc

P-

value
b

N=545 N=576 N=599 N=597

Risk Factors N (%) N (%) N (%) N (%)

Age 0.556

 75+ 104 (19) 94 (16) 123 (21) 110 (18)

 65–74 346 (63) 375 (65) 384 (64) 387 (65)

 55–64 95 (17) 107 (19) 92 (15) 100 (17)

Sex 0.797

 Female 317 (58) 327 (57) 354 (59) 338 (57)

 Male 228 (42) 249 (43) 245 (41) 259 (43)

Education 0.490

 > High School 347 (64) 386 (67) 383 (64) 376 (63)

 ≤ High School 198 (36) 190 (33) 216 (36) 221 (37)

Smoking 0.356

 Never 264 (48) 248 (43) 261 (44) 288 (48)

 Past 249 (46) 289 (50) 296 (49) 277 (46)

 Current 32 (6) 39 (7) 42 (7) 32 (5)

BMI 0.636

 <25 177 (33) 196 (34) 194 (32) 186 (31)

 25–29.9 215 (39) 237 (41) 254 (42) 265 (44)

 30+ 153 (28) 143 (25) 151 (25) 146 (24)

CFH Y402H rs1061170 0.244

 TT 145 (27) 164 (28) 168 (28) 169 (28)

 CT 260 (48) 250 (43) 248 (41) 279 (47)

 CC 140 (26) 162 (28) 183 (30) 149 (25)

ARMS2 A69S rs10490924 0.853

 GG 252 (46) 279 (48) 272 (45) 268 (45)

 TG 219 (40) 231 (40) 251 (42) 248 (42)

 TT 74 (14) 66 (11) 76 (13) 81 (14)

Genetic risk group
c 0.344

 Low, low 69 (13) 95 (16) 71 (12) 79 (13)

 Low, high 76 (14) 69 (12) 97 (16) 90 (15)

 High, low 183 (34) 184 (32) 201 (34) 189 (32)

 High, high 217 (40) 228 (40) 230 (38) 239 (40)

AMD Grade
d 0.901
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Placebo Antioxidant
Alone

Zinc
Alone

Combination Antioxidant and 
Zinc

P-

value
b

N=545 N=576 N=599 N=597

Risk Factors N (%) N (%) N (%) N (%)

 1,2 103 (19) 104 (18) 123 (21) 115 (19)

 1,3 30 (6) 39 (7) 25 (4) 38 (6)

 1,4 12 (2) 13 (2) 11 (2) 11 (2)

 2,2 68 (12) 77 (13) 65 (11) 63 (11)

 2,3 71 (13) 78 (14) 75 (13) 79 (13)

 2,4 24 (4) 24 (4) 25 (4) 22 (4)

 3,3 162 (30) 152 (26) 167 (28) 173 (29)

 3,4 69 (13) 75 (13) 94 (16) 85 (14)

 3,5 6 (1) 14 (2) 14 (2) 11 (2)

Largest drusen size in non-advanced eye (microns) 0.793

 <63 14 (13) 15 (12) 14 (10) 13 (10)

 63–124 29 (26) 29 (23) 32 (22) 30 (23)

 125–249 27 (24) 37 (29) 53 (37) 44 (34)

 ≥250 41 (37) 45 (36) 45 (31) 42 (33)

Drusen size - no advanced AMD in either eye 0.340

 <63, <63 34 (8) 35 (8) 28 (6) 32 (7)

 63–124, 63–124 56 (13) 50 (11) 58 (13) 57 (12)

 63–124, <63 106 (24) 114 (25) 129 (28) 109 (23)

 125–249, 125–249 55 (13) 39 (9) 51 (11) 53 (11)

 125–249, 63–124 56 (13) V 61 (14) 52 (11) 67 (14)

 125–249, <63 31 (7) 48 (11) 34 (7) 44 (9)

 ≥250, ≥250 56 (13) 53 (12) 52 (11) 38 (8)

 ≥250, 125–249 30 (7) 35 (8) 41 (9) 50 (11)

 ≥250, ≤124 10 (2) 15 (3) 10 (2) 18 (4)

a
Analyses of individual subjects with an available genetic specimen

b
P values were calculated using the chi-square test

c
Genetic risk groups based on number of risk alleles for CFH Y402H rs1061170 and ARMS2 A69S rs10490924: low, low = 0 risk alleles for CFH 

and 0 risk alleles for ARMS2; low, high = 0 risk alleles for CFH and 1 or 2 risk alleles for ARMS2; high, low = 1 or 2 risk alleles for CFH and 0 
risk alleles for ARMS2; and high, high = 1 or 2 risk alleles for CFH and 1 or 2 risk alleles for ARMS2.

d
Grade in each eye at baseline[16]: 1,2 (no AMD, early AMD); 1,3 (no AMD, intermediate AMD); 1,4 (no AMD, geographic atrophy); 2,2 (early 

AMD, early AMD); 2,3 (early AMD, intermediate AMD); 2,4 (early AMD, geographic atrophy); 3,3 (intermediate AMD, intermediate AMD); 3,4 
(intermediate AMD, geographic atrophy); 3,5 (intermediate AMD, neovascular disease).
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