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Abstract

Straw is an agricultural residue of the production of e.g. cereals, rapeseed or sunflowers. It includes dried stalks, leaves, and
empty ears and corncobs, which are separated from the grains during harvest. Straw is a promising lignocellulosic feedstock with
a beneficial greenhouse gas balance for the production of biofuels and chemicals. Like all lignocellulosic materials, straw is
recalcitrant and requires thermochemical and enzymatic pretreatment to enable access to the three major biopolymers of straw—
the polysaccharides cellulose and hemicellulose and the polyaromatic compound lignin. Straw is used for commercial ethanol
and biogas production. Considerable research has also been conducted to produce biobutanol, biodiesel and biochemicals from
this raw material, but more research is required to establish them on a commercial scale. The major hindrance for launching
industrial biofuel and chemicals’ production from straw is the high cost necessitated by pretreatment of the material.
Improvements of microbial strains, production and extraction technologies, as well as co-production of high-value compounds

represent ways of establishing straw as feedstock for the production of biofuels, chemicals and food.
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Introduction

Biofuels, i.e. reduced liquid or gaseous compounds generated
from renewable organic biomass, are seen as a means to de-
crease dependency on fossil resources, reduce greenhouse gas
(GHG) emissions especially in the transportation sector and
improve security of fuel supply (Passoth 2014; Valentine et al.
2012). However, biofuels are currently mainly produced from
so-called first-generation substrates such as sugar cane, wheat
grain or vegetable oils, i.e. resources that also can be used as
human food. This use of food crops has been criticised due to
potential food versus fuel competition and because land-use
changes can lead to the loss of natural ecosystems (Kim and
Dale 2004; Kluts et al. 2017). Therefore, substantial research
has been conducted to establish biofuel production from
second-generation biomass, i.e. lignocellulose such as straw
or wood residues (Gnansounou 2010). Nevertheless, even
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lignocellulosic energy crops can compete with food produc-
tion as areas are needed to produce those plants (Kluts et al.
2017). On marginal i.e. poor yielding land, the yield of dedi-
cated energy crops is usually also poor; hence, production
costs are probably high and the revenue low. There are many
factors determining whether it is profitable to produce food or
biofuels. If biofuel production is profitable, energy crops
might be produced instead of food plants (Glithero et al.
2015; Shortall 2013; Sims et al. 2010). In contrast, cereal
straw may represent an ideal resource for biofuel production,
as it is a co-product of food production, and thus, its produc-
tion does not compete with food generation (Townsend et al.
2017) and a high level of grain production did not have any
negative effect on the utilisation of the straw as raw materials
for biofuel production (Jergensen et al. 2018).

Straw includes dried stalks, ears, cobs and leaves of e.g.
cereals, rapeseed or sunflower, which are separated from the
grains during harvest (Fig. 1). For instance corn stover, i.e.
leaves, stalks and bare cobs from maize plants, is the most
abundant straw generated in the USA (Panoutsou et al.
2017). Straw has multiple applications such as animal feed,
bedding, substrate for mushroom production or power gener-
ation by burning. Nevertheless, there is a substantial surplus of
straw. In several areas of the world, this surplus straw is
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Fig. 1 The versatile applications of straw, a side product in food
production. Apart from traditional applications in agriculture, a part of it
is left in the field to restore the soil carbon pool. In some areas, surplus
straw is removed by open field burning, which is a waste of organic
material and can substantially affect air quality in the environments of

frequently removed from the fields by open field burning.
This technique, although quite convenient for the farmer,
causes substantial emissions affecting the environmental bal-
ance of cereal production and the local air quality. Therefore,
there are efforts to ban open field burning (Kadam et al. 2000).
Biofuel production from straw can add value to this residue
and reduce the consumption of fossil resources. It is not
completely clear how much of the straw can be sustainably
removed from fields, as there are a variety of factors impacting
the amount of available straw, for instance cultivation condi-
tions, grain cultivar, weather conditions or soil quality
(Panoutsou et al. 2017; Townsend et al. 2017). For wheat
straw, about 400 million tons may be globally available for
biofuel production (Talebnia et al. 2010; Tishler et al. 2015).
New preservation techniques for moist straw material (Passoth
etal. 2013) may in some areas with high precipitation increase
the amount of potentially available material (Nilsson 2000).

Straw and its conversion to biofuels and chemicals by
using either chemical or bioconversion has been discussed
previously (Chandel et al. 2018; Isikgor and Becer 2015;
Maity 2015). This mini-review aims to provide a survey about
bioconversion of straw material.

Structure of straw and methods for pretreatment
Composition of different straw materials

The chemical composition and structure of lignocellulose has
evolved to provide a barrier against microbial infection of the
plant (Gupta et al. 2016; Tavares and Buckeridge 2015).

Straw, like all lignocellulose, is a heterogenous, multicompo-
nent material mainly built by the three major plant polymers
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the fields. After physico-chemical and enzymatic pretreatment, microbial
processes can add value to straw. There are examples of commercial
production of bioethanol or biogas from straw. Research is going on to
generate advanced biofuels such as biodiesel and biobutanol and
chemicals from straw materials

cellulose, hemicellulose and lignin. Cellulose is a polysaccha-
ride consisting of cellobiose subunits. Due to the (3-1,4 glyco-
sidic bounds between the glucose units building up the cellu-
lose chain, the glucose fibrils can be very tightly packed and
form crystalline structures. Hemicellulose of monocotyledons,
which are the sources of straw, are branched polysaccharides
built of a xylan backbone with side chains of arabinose and
glucuronic acid, the latter frequently methylated.
Hemicelluloses have a random and amorphous structure; they
form a network in the plant cell wall, crosslinking the cellulose
fibrils and lignin. Their fine structure can vary from plant to
plant, tissue to tissue and even within the same molecule
(Girio et al. 2010; Holtzapple 2003; Isikgor and Becer 2015;
Biely et al. 2016). Lignin, in contrast to cellulose and hemi-
cellulose, is not a polysaccharide but consists of
phenylpropanoid units, which form a three-dimensional net-
work. Lignin is hydrophobic, provides stiffness to the cell wall
and resistance against insects and plant pathogens (Isikgor and
Becer 2015). Some typical compositions of straw are provided

Table 1 Cellulose, hemicellulose and lignin content of several straw
materials (modified from Isikgor and Becer 2015)

Straw Cellulose [%] Hemicellulose [%] Lignin [%]
Wheat straw 35.0-39.0 23.0-30.0 12.0-16.0
Barley straw 36.0-43.0 24.0-33.0 6.3-9.0
Rice straw 29.2-34.7 12.0-29.3 17.0-19.0
Oat straw 31.0-35.0 20.0-26.0 10.0-15.0
Corncobs 33.7-41.2 31.9-36.0 6.1-15.9
Corn stalks 35.0-39.6 16.8-35.0 7.0-18.4
Sorghum straw ~ 32.0-35.0 24.0-27.0 15.0-21.0
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in Table 1. There are, however, large variation in the propor-
tions of the three major polymers in straw. In some studies,
cellulose contents of wheat straw were found to reach almost
50% (Brandenburg et al. 2018; Saha et al. 2005). This com-
position variation is apparently due to differing proportions of
tissues in different cultivars, i.e. the proportion of internode-,
node-, leaf- and ear tissue (Collins et al. 2014).

Apart from organic polymers, straw also contains inorganic
compounds, which after burning remain as ash. While the ash
content is rather low in for instance wheat, oat or barley straw,
it has a proportion of up to 20% of the total biomass in rice
straw. The major element within the ash is Si. Amorphous Si
polymers have been observed to form incrustations in epider-
mis, vascular bundle, bundle sheath and sclerenchyma tissues
(Satlewal et al. 2017). The presence of silica in general had a
positive correlation with the amount of cellulose, hemicellu-
lose and lignin in the cell walls of rice plants and increases the
biomass formation of rice (Zhang et al. 2015). On the other
hand, it has been shown that rice plants treated with silica
reduce lignin incorporation in their cell walls (Goto et al.
2003). Silica may fulfil the function of lignin as a
compression-resistant compound in cell walls. Its incorpora-
tion takes less than 10% of the energy of incorporating lignin
or carbohydrates into the cell wall (Satlewal et al. 2017).

Physico-chemical and biopretreatment of straw
biomass

The recalcitrance of straw necessitates pretreatment to obtain
monosaccharides that can be fermented to biofuels and
chemicals. Technologies for pretreating lignocellulose were
developed already in the early nineteenth century, in pulp
and paper production and in agriculture, to increase the digest-
ibility of forage by ruminants. In most approaches, the mate-
rial is first size reduced followed by some type of physico-
chemical treatment. The pretreated lignocellulose is subse-
quently enzymatically saccharified (Rabemanolontsoa and
Saka 2016; Jonsson and Martin 2016).

Well-established methods of physico-chemical pretreat-
ment are concentrated or diluted acid treatment, the latter often
combined with steam explosion, and alkaline treatment in-
cluding ammonia-fibre expansion (AFEX). The pretreatments
target different structures of the lignocellulosic material. Acid
pretreatments mainly hydrolyse polysaccharides by breaking
glycosidic linkages. Hydrolysis of crystalline cellulose is
slower than that of amorphous hemicellulose; therefore, dur-
ing acid pretreatment, hemicellulose is often degraded to sugar
monomers, while cellulose is still present in polymeric form.
Removal of hemicellulose is increasing the surface and open-
ing pores for subsequent enzymatic treatment
(Rabemanolontsoa and Saka 2016; Satlewal et al. 2017).
Steam explosion disrupts the structure of lignocellulose due
to the expansion of moisture during pressure release.

Additionally, glycosidic bounds are hydrolysed due to acetic
acid that is released from hemicellulose (Jacquet et al. 2012).
Alkaline treatment hydrolyses linkages between polysaccha-
rides and lignin, removes lignin and reduces crystallinity
(Rabemanolontsoa and Saka 2016; Satlewal et al. 2017). All
methods have advantages and disadvantages regarding the
extent to which sugar monomers are released, energy demand
and production of fermentation inhibitors. High silica content
may cause high shearing forces, scaling or fouling of equip-
ment (Satlewal et al. 2017). Silica had also an inhibitory effect
on cellulolytic enzymes, due to non-productive adsorption of
cellulase (Talukder et al. 2017). Fermentation inhibitors are
formed as side products of physico-thermal pretreatment.
Under acid pretreatment, sugar dehydration results in the for-
mation of 2-furaldehyde (furfural) from pentoses and hy-
droxymethyl furfural (HMF) from hexoses (Brandenburg
etal. 2018; Jonsson and Martin 2016). At severe pretreatment
conditions, furaldehydes are further degraded to levulinic and
formic acids. Moreover, acetic acid is released due to hydro-
lysis of the acetyl groups of hemicelluloses. A number of
aromatic compounds can also be present in acid hydrolysate,
most of them originating from lignin degradation (Jonsson
and Martin 2016). During alkaline pretreatment, less inhibi-
tors are generated compared to acid pretreatment. Sugars can
be converted to organic acids, including saccharinic acid, lac-
tic and formic acids and a variety of dihydroxy and dicarbox-
ylic acids (Jonsson and Martin 2016; Satlewal et al. 2017).

It is also possible to perform biopretreatment, where the
biomass is degraded with the help of microorganisms. A huge
variety of both bacteria and fungi can degrade cellulose and
hemicellulose to their monomers. Certain Clostridia, e.g.
Clostridium thermocellum, have been extensively investigat-
ed for anaerobic degradation of cellulose. Actinomycetes and
a variety of fungi can degrade cellulose and hemicellulose
under aerobic conditions (Lynd et al. 2002). However, mi-
crobes usually consume the monosaccharides that are released
during hydrolysis, and thus, sugars are typically not available
for subsequent conversion to biofuels. In one study, this was
overcome by co-incubation of C. thermocellum with a ther-
mostable (3-glucosidase. C. thermocellum usually takes up
cellodextrins and has a rather low affinity for glucose. Due
to the activity of [3-glucosidase, monomeric glucose was pro-
duced from the oligosaccharides that were generated from
cellulose by the clostridial cellulase activity. The combination
of C. thermocellum and glucosidase resulted in considerable
accumulation of glucose both on pure cellulose and rice straw
hydrolysate (Prawitwong et al. 2013). Microbial lignin degra-
dation is another strategy to make the polysaccharides more
accessible to enzyme degradation. Delignification has been
attempted using white-rot fungi such as Trametes versicolor
or Phanerochaete chrysosporium or isolated lignin-degrading
enzymes such as laccases. This kind of pretreatment is often
time consuming when using living fungi and requires
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additional processes such as detoxification (Placido and
Capareda 2015). Moreover, experiments with biopretreatment
require moistening of the material and in most cases start with
sterilised material (e.g. Cianchetta et al. 2014), which would
not be sustainable for large-scale production of biofuels and
chemicals. Moist straw is quite susceptible to mould infection
(Passoth et al. 2013). Straw is usually dried in the field, which
implies that rainfall can affect drying and thus later utilisation
of the material (Nilsson 2000). Establishing a low energy
preservation system would enable even the utilisation of moist
straw and thus increase the amount of raw materials accessible
for straw-based production of biofuels in areas with high pre-
cipitation. Potential useful preservation systems have been
developed for moist cereals, using airtight storage together
with biocontrol organisms. This kind of biopreservation effi-
ciently inhibited the growth of undesirable microbes and im-
proved the grain characteristics for use as animal feed, such as
decreased amounts of phytate (Olstorpe et al. 2010; Olstorpe
and Passoth 2011). Moreover, the starch was better accessible
for enzymatic degradation, resulting in improved bioethanol
production from moist stored cereals (Passoth et al. 2009).
The concept of airtight preservation was extended to wheat
straw. Biopreservation of wheat straw with the help of appro-
priate biocontrol yeasts prevented mould infections, and there
was even enhanced biofuel production from the biopreserved
moist straw compared to dry material, indicating that biopres-
ervation during storage can also be a part of the pretreatment
(Passoth et al. 2013; Theuretzbacher et al. 2015).

Enzymatic treatment of straw biomass

After physico-chemical pretreatment, monosaccharides are re-
leased from the polysaccharides by using enzymes. For
obtaining a maximum release of sugar monomers, enzymes
should be used that degrade all three major polymers: cellu-
lose, hemicellulose and lignin (Gupta et al. 2016; Obeng et al.
2017). However, due to a lack of good lignin-degrading en-
zymes, commercial enzyme mixtures usually degrade cellu-
lose and hemicellulose (Jaramillo et al. 2015). Cellulose-
degrading enzymes are formed by a variety of organisms,
including anaerobic and aerobic thermophilic and mesophilic
bacteria, and fungi (Obeng et al. 2017). Commercial cellulo-
lytic enzymes are usually derived from various fungal species.
The most extensively studied cellulolytic enzyme systems are
from the ascomycete Trichoderma reesei (teleomorph name
Hypocrea jecorina) (Jaramillo et al. 2015; Obeng et al. 2017).

Traditionally, three complementary enzyme activities have
been used to degrade cellulose: endoglucanases,
exoglucanases and {3-glucosidases (Payne et al. 2015).
These enzymes are classified as belonging to the glycoside
hydrolase (GH) families in the carbohydrate-active enzyme
(CAZy) classification system (Lombard et al. 2014).
Endoglucanases (endo-1,4-3-D-glucanases, EC 3.2.1.4)

@ Springer

hydrolyse {3-1,4 glycosidic bonds in a random manner in
amorphous areas of the cellulose, generating reducing and
non-reducing ends. Exoglucanases, also called
cellobiohydrolases (cellulose 1,4-(3-cellobiosidases) are
processive enzymes (i.e. they slide along the polysaccharide
chain) releasing cellobiose from either the reducing (E.C
3.2.1.176) or the non-reducing end (EC 3.2.1.91) of the cel-
lulose molecule. 3-Glucosidases (E.C. 3.2.1.21) hydrolyse
cellobiose or cellooligosaccharides into glucose. Both
exoglucanases and (3-glucosidases are strongly inhibited by
the end product of their reactions, cellobiose and glucose,
respectively (Gupta et al. 2016; Obeng et al. 2017; Payne
et al. 2015).

Less than 10 years ago, a new class of enzymes were dis-
covered that act synergistically with glycoside hydrolase en-
zymes and play an important role in degradation of polysac-
charides (Vaaje-Kolstad et al. 2010). These lytic polysaccha-
ride monooxygenases (LPMOs) cleave glucose in a copper-
mediated oxidative process at the C1 and/or the C4 position of
a glucan chain (Meier et al. 2018). Activities of some LPMOs
on hemicellulose have also been observed (Gupta et al. 2016).
LPMOs generate chain breaks in the polysaccharide molecule,
yielding additional sites for GH-enzyme activity. Due to the
synergistic action of LPMOs and GHs, a lower enzyme load
can be used for degrading lignocellulosic biomass, which is an
important step towards economically feasible lignocellulose
conversion (Obeng et al. 2017). LPMOs are classified as aux-
iliary activities (AA) in the CAZy classification system
(Lombard et al. 2014; Meier et al. 2018).

Swollenins, also called expansins, represent an additional
group of proteins involved in lignocellulose degradation. The
mechanism of their activity has not yet been discovered.
Nevertheless, degradation products of 3-glucans have been
identified after incubation with expansins, indicating activities
similar to that of endo- and exoglucanases (Andberg et al.
2015).

Hemicelluloses are usually solubilised during thermal pre-
treatment, and some acid pretreatments obviously release suf-
ficient amounts of sugar monomers to perform subsequent
microbial cultivations on the substrate (e.g. Brandenburg
et al. 2016). However, it has been pointed out that thermo-
chemical pretreatment in many cases releases oligosaccha-
rides, which cannot be assimilated by most of the relevant
fermentation organisms. Therefore, treatment with
hemicellulases has a great potential to improve the efficiency
of lignocellulose-based processes (Girio et al. 2010; Biely
et al. 2016). Because of the heterogeneity of hemicelluloses
in different plant materials, a diverse set of hemicellulases is
required, including endo-xylanases, [3-xylosidases, «-
glucuronidases (various types of GH families in the CAZy
classification system) and acetyl xylan esterases (CE family).
Alkaline pretreatment of straw yields deesterified
arabinoglucuronoxylan, while non-alkaline pretreatments
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result in partially acetylated saccharides. Accordingly, after
acid or steam pretreatment, acetylxylan esterases are required
to achieve complete saccharification of straw hemicellulose
(Biely etal. 2016). Oligosaccharides derived from cereal plant
hemicelluloses can also be used as prebiotics (Broekaert et al.
2011). Those oligosaccharides are produced by GH11
xylanases. The shortest product of their activity consists of
four xylose residues substituted with one or two arabinose
residues at the penultimate xylose from the non-reducing
end (Biely et al. 2016). Interactions of different hemicellulase
systems with components of the cell wall have to be further
elucidated to develop an optimal system for hemicellulose
degradation (Biely et al. 2016; Gupta et al. 2016). After sev-
eral decades of developmental work, commercial cocktails of
both cellulases and hemicellulases are now available, e.g.
Cellic® CTec3 from Novozyme or ACCELLERASE®
TRIO™ from DuPont, and it has been demonstrated that the
presence of hemicellulases also considerably improves the
degradation of cellulose by cellulases (Lopes et al. 2018;
Payne et al. 2015).

Production of biofuels and other chemicals
from straw

As mentioned above (Fig. 1), straw can be used as animal
feed, for bedding, as substrate for mushroom cultivation or
for burning (Panoutsou et al. 2017; Townsend et al. 2017).
Complete removal of the straw from the field is not desirable,
since this over the long term decreases the amount of soil
carbon in the fields (Karlsson et al. 2017; Townsend et al.
2017). However, even after considering all these alternative
utilisations, there is a surplus of straw that can be used in a
biorefinery, although the annual amounts of available straw
can vary, depending on for instance weather conditions and
chosen cultivars (Scarlat et al. 2010; Talebnia et al. 2010).
There are a variety of methods to further convert the mono-
saccharides derived from straw pretreatment to biofuels, in-
cluding ethanol, methane (biogas), butanol or biodiesel
(Chandel et al. 2018).

Ethanol production from straw

Ethanol production is probably the most intensively investi-
gated application of lignocellulose-derived sugars. The yeast
Saccharomyces cerevisiae, the most established organism for
ethanol production, efficiently converts glucose and other
hexoses to ethanol. In addition, the yeast Brettanomyces
bruxellensis and the bacterium Zymomonas mobilis can pro-
duce ethanol under industrial conditions (Blomgvist and
Passoth 2015; Gupta et al. 2016); it has for instance been
shown that B. bruxellensis can ferment oat straw hydrolysate
to ethanol (Tiukova et al. 2014). Those industrial ethanol pro-
ducers have a high ethanol tolerance and they can adapt to

inhibitors present in lignocellulose hydrolysate (e.g.
Blomgqpvist et al. 2011; Tiukova et al. 2014). However, these
microorganisms cannot assimilate xylose and other pentoses
derived from hemicellulose. To obtain an economically feasi-
ble ethanol process from lignocellulose, it is also desirable to
convert the hemicellulose sugars to ethanol. Substantial efforts
have been made to obtain xylose-fermenting, inhibitor-
tolerant S. cerevisiae strains (Passoth 2014; Passoth 2017a).
Finally, by a combination of metabolic and evolutionary en-
gineering of industrial S. cerevisiae isolates, strains were ob-
tained that can ferment both glucose and xylose in lignocellu-
lose hydrolysate. These strains overexpress specific trans-
porters for xylose, the pentose-phosphate pathway, and the
xylose assimilation pathway—either xylose reductase/xylitol
dehydrogenase of the xylose-fermenting yeast
Scheffersomyces stipitis (Garcia Sanchez et al. 2010) or a
codon-optimised xylose isomerase from Clostridium
phytofermentans (Demeke et al. 2013a; Demeke et al.
2013b, Fig. 2). Second-generation ethanol production tech-
nology has in principle reached maturity for commercial pro-
duction. The Danish company Inbicon established a pilot
plant, which has the capacity to generate 576 kg (730 1) etha-
nol per hour from wheat straw (Larsen et al. 2012). The eth-
anol plant in Crescentino, Italy, is the world’s first second-
generation ethanol plant on commercial scale. It produces
about 40,000 metric tons of ethanol per year from 270,000
tons of biomass—wheat and rice straw and the energy crop
giant cane (Arundo donax) (http://www.biochemtex.com/en/
references/crescentino, accessed 1/12/2018). Construction of
another ethanol plant (Clariant sunliquid) in Romania started
in 2018. This plant, supported by the 7th Framework
Programme of the European Union, has a projected capacity
of 50,000 metric tons per year from cellulosic agricultural
residues (https://www.sunliquid-project-fp7.eu/, accessed
4/4/2019). A number of commercial second-generation etha-
nol plants with a total capacity of about 530 million litre eth-
anol per year have been established in the USA and Brazil,
most of them operating with straw as part of the feedstock
mix. However, especially in times of low mineral oil prices,
the costs for second-generation bioethanol are high compared
to prices of fuels generated from fossil resources and first-
generation ethanol. Due to this, competitive second-
generation bioethanol production is still difficult to obtain,
despite the substantial reductions in greenhouse gas emissions
compared to fossil fuels. The high costs mainly arise from the
need for extensive pretreatment of the lignocellulose, with
concomitant high costs for equipment and thus capital
(Lantz et al. 2018; Lynd et al. 2017). This might be overcome
by modifying handling of feedstock. Mixing wood chips from
short rotation coppice and wheat straw resulted in higher mo-
nomeric sugar release after pretreatment compared to treat-
ment of the sole feedstocks. Blending also can mitigate supply
risks due to seasonal biomass shortage. Under those
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Fig. 2 Genes overexpressed in industrial strains to obtain xylose-
fermenting Saccharomyces cerevisiae suitable for commercial ethanol
production from lignocellulose hydrolysate. The genes include the
S. cerevisiae glucose transporter gene HX77, mutated to transport both
glucose and xylose, the Scheffersomyces stipitis genes XYLI encoding
xylose reductase (XR) and XYL2 encoding xylitol dehydrogenase
(XDH) or a codon-optimised Xy/A from Clostridium phytofermans
encoding xylose isomerase (XI), the S. cerevisiae genes XKSI encoding
xylulo-kinase, 7KL/ and -2 encoding transketolase, and 7AL/ and -2
encoding transaldolase. Modified from Passoth 2017a
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conditions, prices of $60—69 per ton were calculated (Dou
etal. 2019).

Biogas from straw

Methane (biogas) production is another option when produc-
ing biofuels from straw. Biogas production by anaerobic di-
gestion has better energy efficiency, greenhouse gas emissions
and biomass conversion than ethanol production (Borjesson
and Mattiasson 2008). Anaerobic digestion includes four pro-
cess steps: hydrolysis of biopolymers, acidogenesis,
acetogenesis and methanogenesis. During hydrolysis, carbo-
hydrates (including celluloses and hemicelluloses from ligno-
cellulose material), lipids and proteins are degraded into their
monomers, for instance monosaccharides, amino acids and
short-chain fatty acids. In acidogenesis, these compounds are
further converted to organic acids (volatile fatty acids, VFAs).
As side products, ammonia, carbon dioxide and other com-
pounds are produced. In acetogenesis, VFAs are converted to
acetic acid, CO, and hydrogen. In methanogenesis, acetate
and hydrogen are converted to methane and CO,. While bac-
terial consortia drive the first three steps, methanogenesis is
performed by archea (Schniirer 2016). Since hydrolytic bac-
teria form part of the microbial consortium during anaerobic
digestion, a pretreatment of lignocellulosic biomass is not es-
sential for biogas production. However, due to the complexity
and recalcitrance of lignocellulose, the hydrolysis step is fre-
quently the limiting factor for methane production from lig-
nocellulose. Therefore, a variety of physical, thermochemical
or biotreatments of lignocellulose has been investigated. In
principle, the same pretreatments can be used as for bioethanol
production. However, losses of hemicellulose should be
avoided and fermentation inhibitors may also negatively affect
biogas processes. The use of sulphuric acid during pretreat-
ment should be kept to a minimum, since sulphate-reducing
bacteria may outcompete methanogens. Biopretreatments by
white-rot fungi have frequently been tested, to decrease lignin
content and increase availability of polysaccharides for the
hydrolysis steps. Biotreatment generates less inhibitors and
requires less energy than thermochemical methods; however,
it is time consuming and the fungi may degrade some organic
material resulting in lowered methane yields. In general, pre-
treatment can have positive or negative impacts on the final
biogas production, and optimisation for the specific material
and biogas process is required (Carrere et al. 2016; Rouches
etal. 2016). There have also been attempts to combine storage
of corn stover and pretreatment (Cui et al. 2012), similar to
experiments with bioethanol production from wheat straw
(Passoth et al. 2013). When ethanol was produced from oat
straw and biogas from the residue of ethanol production, bio-
gas production rate was considerably enhanced and the total
energy output was higher than in either bioethanol or biogas
production alone. This indicated that ethanol production from
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the initial material can serve as a pretreatment for enhanced
conversion of the remainder to biogas (Dererie et al. 2011). In
general, ethanol production should be connected with
valorisation of residues, for instance biogas production, to
obtain an energy output similar to biogas production (Lantz
et al. 2018).

Lignocellulose is in general a problematic substrate for
biogas production. Apart from its recalcitrant structure, it has
a comparatively high C/N ratio and it has a shortage of essen-
tial trace elements such as iron, cobalt, nickel, molybdenum,
selenium and tungsten. Keeping the C/N ratio between 20 and
30 is crucial for running an efficient biogas process; however,
straw feedstocks have C/N ratios of 46 and 47 (oat straw and
rice straw, respectively) to 60 and 63 (wheat straw and corn
stover, respectively). On the other hand, low C/N ratio feed-
stocks such as animal waste are also problematic, as they can
result in digester instability due to ammonia toxicity. Those
problems can partially be overcome by running co-digestion
of lignocellulose and animal waste products
(Sawatdeenarunat et al. 2015, Table 2). For instance, co-
digestion of rice straw and swine manure resulted in an in-
crease in methane production by 71% (Ye et al. 2013).

Biogas generation is in general more sustainable and pro-
duces less emissions of greenhouse gases and health-
threatening compounds than consumption of fossil fuels or
open field burning of straw. However, there is still net green-
house gas emission and global warming potential by biogas
production. Under Chinese production conditions, biogas pu-
rification, biogas residue disposal and total electricity con-
sumption are main factors to optimise for reducing negative
impacts of biogas production (Wang et al. 2016).

Butanol production

Butanol, both n-butanol and iso-butanol, has excellent fuel
characteristics because it has higher energy density, is less
corrosive and more compatible with existing engines than
ethanol. Acetone-butanol-ethanol production from starchy
material has been established on an industrial scale using
solventogenic Clostridia (Xin et al. 2018). However, the pro-
cess suffers from high costs for raw materials and too low final
titres of butanol. Butanol is highly toxic to cells; thus in batch

culture, the maximum butanol titres were less than 13 g/l
(Mariano et al. 2011). Conversion of lignocellulosic materials
to butanol has been tested, using metabolically engineered
Clostridia, adding cellulolytic enzymes to fermentations or
by using mixed cultures of the solventogenic Clostridia with
cellulolytic bacteria. For instance, 5.5 g/l butanol could be
produced from rice straw, and 10.9 g/l from corncobs.
Although certain progress was made, the final butanol titres
and production rates did not reach the levels necessary for
commercially viable butanol production (Jiang et al. 2017,
Jiang et al. 2018). Optimising lignocellulose hydrolysis and
detoxification could further increase butanol production from
various lignocellulose substrates; about 18 g/l were reached
from barley straw, hydrolysed by dilute acid and enzyme treat-
ment and detoxified by overliming. The fermentation strain
was Clostridium beijerinckii P260. Optimising process pa-
rameters could further increase butanol production. Fed-
batch cultivation with immobilised cells (high cell densities)
and continuous removal of the butanol was most promising. A
final concentration of 115 g/l butanol was reached in a fed-
batch fermentation of wheat straw hydrolysate with
C. beijerinckii P260, where butanol was continuously re-
moved by gas stripping (Gottumukkala et al. 2017).

Production of biodiesel and other chemicals
from straw hydrolysates

After ethanol, biodiesel is currently the second most abundant
biofuel in the world. Biodiesel is produced from vegetable oil,
for instance rape seed, palm or soya oil. The production of
vegetable oil can have a considerable greenhouse gas poten-
tial, for instance the production of one ton of palm or soya oil
results in the emission of more than 2000 kg CO, equivalents
(Schmidt 2015). There are reports of clearing rainforest for
palm oil production; therefore, movements have started in
the European Union to ban the use of palm oil for biodiesel
production (http://www.europarl.europa.eu/sides/getDoc.do?
pubRef=-//EP//TEXT+REPORT+A8-2017-0066+0+DOC+
XML+VO0//EN, accessed 3/12/2018). Microbial lipids
produced from lignocellulose such as straw can provide a
sustainable alternative to vegetable oils. Oleaginous yeasts
can accumulate more than 20% of their biomass as lipids;

Table 2 Anaerobic co-digestion
of some straw materials (modified
from Sawatdeenarunat et al.

2015)

Co-substrate Co-substrate mixing ratio C/N CH, yield (I/kg
(based on volatile solids (VS)) ratio VS)

Swine manure and rice straw 2/1 21.7 350

Chicken manure and corn stover 1/3 27.3 298

Chicken manure and corn stover 1/1.4 20 223

Chicken manure, dairy manure and 2.7/2.7/1 (chicken manure/dairy 25.0 235

wheat straw

manure/wheat straw)

@ Springer


http://www.europarl.europa.eu/sides/

5112

Appl Microbiol Biotechnol (2019) 103:5105-5116

lipid contents of more than 70% have been reported. Lipid
accumulation occurs at carbon surplus, for instance due to
high C/N ratios, which are characteristic for straw hydroly-
sates (see above in “Biogas from straw”). At carbon surplus,
the citrate cycle is inhibited in oleaginous yeasts, and citrate is
transported out of the mitochondria. In the cytoplasm, citrate
is converted by ATP citrate lyase to acetyl-CoA and oxaloac-
etate. The latter is transported back to the mitochondria, while
acetyl-CoA is the basis of fatty acid synthesis, which is
achieved by acetyl-CoA carboxylase and the fatty acid syn-
thase (FAS) enzyme complex, under consumption of
NADPH. Many oleaginous yeasts can convert the different
hexoses and pentoses and organic acids released from ligno-
cellulose pretreatment to lipids (Passoth 2017b; Sitepu et al.
2014). Lipid production from different lignocellulosic mate-
rials has been tested, including rice straw (final lipid concen-
tration 11.5 g/l) (Huang et al. 2009) or corncob hydrolysate
(final lipid concentration 12.3 g/l) (Gao et al. 2014). From
corn stover hydrolysate, 25-30 g/l was reached (Slininger
et al. 2016). Inhibitors in the hydrolysate act also against ole-
aginous yeasts, setting a limit for feedstock dry matter in the
fermentation process, which in turn limits the amount of po-
tential end product. Lipid-accumulating strains may be
adapted to inhibitors by sophisticated feeding techniques.
Brandenburg et al. (2016) discovered that the oleaginous yeast
Lipomyces starkeyi was co-consuming acetic acid and xylose,
thus increasing the pH in cultivations without pH adjustment.
When the medium feed was connected to pH regulation, a
self-regulating fed batch could be established, yielding the
highest lipid concentration to date from the hemicellulose
fraction of lignocellulose. In oleaginous Rhodosporidium
spp. (current correct taxonomic designation Rhodotorula,
Wang et al. 2015), fed-batch cultivation yielded the highest
production levels on lignocellulose hydrolysate (Xu and Liu
2017), indicating that strains can adapt to fermentation inhib-
itors. However, the production price of lignocellulosic micro-
bial biodiesel would still be too high; according to recent
calculations, a minimum selling price of about $ 2.50 would
be required to cover the costs (Biddy et al. 2016). On the other
hand, microbial biodiesel production from lignocellulose has
the potential to reach a similar energy balance as bioethanol
(Karlsson et al. 2016). A number of steps in the production
process of microbial biodiesel could be improved, which
would significantly increase the efficiency of the whole pro-
cess. This includes lipid extraction from the cells, identifica-
tion of rapid lipid producers (since lipid production is an aer-
obic process, requiring much more energy per fermentation
time compared to the in principle anaerobic ethanol produc-
tion process), utilising all residues to generate co-products
(such as biogas), and conversion of the crude glycerol, which
is a residue of the transesterification of the microbial triglyc-
erides to fatty acid methyl esters, to lipids (Biddy et al. 2016;
Karlsson et al. 2016).

@ Springer

Production of high-value biodiesel and co-products will
also be a means to reach competitive production prices. By
fermentation with Rhodotorula toruloides and subsequent cat-
alytic hydrogenation, hydrocarbons with identical characteris-
tics to fossil diesel could be generated from corn stover
(Sanchez i Nogué et al. 2018). The red colour of
Rhodotorula species is due to the formation of carotenoids,
mainly {3-carotene. Carotenes are widely used as colourants
and antioxidants in the food, feed, pharmaceutical and cosmet-
ic industries. Co-production with lipids can improve the eco-
nomic viability of biodiesel production (Schneider et al.
2013). Furfural is another high-value compound that can be
produced from wheat straw. This dehydration product of pen-
toses is one major platform chemical to produce biofuels, fuel
additives and other compounds. It is a side product of thermo-
chemical pretreatment and acts as an inhibitor in the fermen-
tation broth. Currently, there is no technology for synthetic
furfural production; it has to be produced from lignocellulose.
Current technologies for furfural production are not very effi-
cient and they damage the cellulose, so that its glucose mono-
mers cannot be converted to biofuels (Machado et al. 2016).
At Latvian State Institute of Wood Chemistry, a novel tech-
nique for furfural extraction has been developed, allowing an
efficient extraction of furfural from lignocellulosic material
without extensively damaging the cellulose fraction.
Recently, it has been shown that it is possible to co-produce
furfural and ethanol or lipids (from 1 kg straw, 110 g furfu-
ral—69% of the theoretical maximum—and 111 g ethanol or
33 g lipids were produced). Pentoses were in principle
completely converted to furfural, and the hydrolysate
contained the easily fermentable glucose. Moreover, the hy-
drolysate had a low content of fermentation inhibitors
(Brandenburg et al. 2018). It is also possible to utilise the
lipids of oleaginous yeasts for other purposes, for instance as
ingredient in fish feed, to replace vegetable oil such as palm
oil. As it is not necessary to extract the oil or to run
transesterification, this approach can also be a valuable step
towards a sustainable economy, taking into account the envi-
ronmental impact of palm oil production (see above)
(Blomgvist et al. 2018).

Polyhydroxybutyrate (PHB) is a polyhydroxyalkanoate
(PHA), which is produced by certain bacteria as intracellular
storage compound. PHAs can be used as bioplastics, replacing
fossil-based plastics produced from mineral oil components.
Production of PHAs by microorganisms has been investigated
during the last years; however, production costs were usually
too high to achieve a substantial replacement of plastic from
fossil resources. Identification of cheap carbon sources for the
microbial production of PHA may be one approach to de-
crease production costs. AFEX-pretreated wheat straw was
used for PHB production with Burkholderia sacchari. An
intracellular PHB concentration of 72% was achieved within
61 h of cultivation, corresponding to 105 g/l PHB (Cesario
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et al. 2014). Rice straw hydrolysate obtained from alkaline
pretreatment was used as substrate for Ralstonia eutropha to
produce PHB. An intracellular PHB concentration of 75%
was achieved within 48 h of cultivation, corresponding to a
total PHB concentration of 11.4 g/l (Saratale and Oh 2015).
1,4-Butandiol is another large-volume chemical that is cur-
rently mainly produced from fossil resources. It has a global
market of about two million tons per year and has a range of
applications as platform chemical for the production of plas-
tics and other products. Escherichia coli has been engineered
to produce 1,4-butandiol from a variety of sugars with com-
paratively high yield and productivity in a commercial scale
(Burgard et al. 2016). LCA showed a positive effect compared
to production from fossil resources. However, also negative
effects were observed, including terrestrial acidification and
marine eutrophication because of ammonia fertilisation during
production of biomass (Forte et al. 2016). The impact of bio-
mass production on the environmental sustainability needs to
be regarded to exploit the full potential of utilising straw as
raw material for the production of biofuels and biochemicals.

Conclusion and outlook

Straw is a lignocellulosic agricultural residue with great po-
tential as feedstock in biotechnological production processes
(Fig. 1). As it is co-produced with cereal grain and other food
raw materials, its production does not compete with food pro-
duction and will not result in land-use changes. Substantial
research towards converting this feedstock to biofuels and
other high-value compounds has been conducted during the
last years. There is a long and growing list of interesting
chemicals that can be generated from straw materials
(Chandel et al. 2018; Gupta et al. 2016). Given the high de-
pendency of the global economy on fossil resources, there is
an urgent need to find alternative ways of producing fuels,
chemicals and food. Moreover, producing high-value com-
pounds from agricultural residues will add value to the agri-
cultural industry, increasing the economic attractiveness of
green technologies. Establishing technologies to produce dif-
ferent fuels and chemicals from straw will create opportunities
for generating products best adapted to the local conditions
and market demands. Frequently, production of more than one
biofuel can be combined, such as ethanol and biogas or bio-
diesel and biogas (Karlsson et al. 2016; Lantz et al. 2018). The
whole chemical complexity of the biomass should be used, if
possible. Lignin is an underutilised resource, but there are
ongoing efforts to identify enzymes to degrade and utilise this
biopolymer as well (Gupta et al. 2016). On the other hand,
lignin is currently often burned to provide process energy. It
can also be transferred back to the soil to maintain the soil
organic carbon content and, in the long term, to prevent green-
house gas emissions (Karlsson et al. 2016; Karlsson et al.

2017; Lantz et al. 2018). For any application, a careful analy-
sis of both environmental and economic consequences has to
be performed to obtain a sustainable replacement for fossil
resources.
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