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Multi omics analysis of fibrotic 
kidneys in two mouse models
Mira Pavkovic1,2, Lorena Pantano3, Cory V. Gerlach1,2,4, Sergine Brutus1,4,5, Sarah A. Boswell1, 
Robert A. Everley1, Jagesh V. Shah1,2, Shannan H. Sui3 & Vishal S. Vaidya1,2,4

Kidney fibrosis represents an urgent unmet clinical need due to the lack of effective therapies and an 
inadequate understanding of the molecular pathogenesis. We have generated a comprehensive and 
combined multi-omics dataset (proteomics, mRNA and small RNA transcriptomics) of fibrotic kidneys 
that is searchable through a user-friendly web application: http://hbcreports.med.harvard.edu/fmm/. 
Two commonly used mouse models were utilized: a reversible chemical-induced injury model (folic acid 
(FA) induced nephropathy) and an irreversible surgically-induced fibrosis model (unilateral ureteral 
obstruction (UUO)). mRNA and small RNA sequencing, as well as 10-plex tandem mass tag (TMT) 
proteomics were performed with kidney samples from different time points over the course of fibrosis 
development. The bioinformatics workflow used to process, technically validate, and combine the 
single omics data will be described. In summary, we present temporal multi-omics data from fibrotic 
mouse kidneys that are accessible through an interrogation tool (Mouse Kidney Fibromics browser) to 
provide a searchable transcriptome and proteome for kidney fibrosis researchers.

Background & Summary
More than 10 percent of adults in developed countries present with some degree of chronic kidney disease 
(CKD). One of the hallmarks of CKD is the development of fibrosis and subsequent renal failure. Mechanisms 
and pathways underlying the development of kidney fibrosis are still not widely understood and therefore treat-
ment strategies are limited. Mouse models are frequently used to gain more insights into the fibrosis development 
and to evaluate potential drug candidates.

Two well-established mouse models for kidney fibrosis are folic acid (FA) induced nephropathy and unilateral 
ureteral obstruction (UUO)1. Both models display human relevant pathological tubulointerstitial fibrosis shortly 
after induction of injury, are easy to perform and have good reproducibility. Transcriptomics and proteomics 
studies for both models have been published before, mostly as a basis for follow-up experiments focusing on one 
selected gene/protein2–7. However, data for mRNA, miRNA and protein expression, including a combination of 
all three omics datasets, have not been generated in parallel for these models; therefore, we aimed to generate this 
comprehensive data to (1) characterize the UUO and FA model in depth, (2) allow integration of the three layers 
of omics data, and (3) provide a tool for hypothesis generation as well as testing.

In the FA model, mice were sacrificed before the treatment (day 0) and 1, 2, 7, and 14 days after a single injection 
(250 mg/kg i.p.) of folic acid (Fig. 1). For the UUO model, mice were sacrificed before obstruction (day 0) and 3, 
7, and 14 days after the ureter of the left kidney was obstructed via ligation (Fig. 1). For both studies, kidneys were 
removed at each time point for total RNA isolation and protein sample preparation. Total RNA was used for mRNA 
and small RNA sequencing on the Illumina platform. The transcriptomics data (mRNAs and miRNAs) from the 
FA model were previously published by our group2,3, but here we re-analysed the existing FA sequencing data in 
parallel with the newly generated UUO sequencing data, applying the same algorithms for consistency and inclu-
sion. Proteomics in matching kidney samples from both models were measured by liquid chromatography/mass 
spectrometry (LC/MS) using 10-plex TMT. Temporal profiles were generated for each mRNA, miRNA and protein 
dataset in both models using day 0 as reference point. To combine all three sets, mRNAs and corresponding proteins 
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were matched according to their annotations, whereas mRNAs and miRNAs were paired based on targets predicted 
using TargetScan.

For the UUO mRNA-seq data, an average of 30 million reads were sequenced, with 97% mapping to the tran-
scriptome, less than 1% mapping to rRNA genes, and with 88% of the aligned reads mapping to exonic regions. 
For the UUO small RNA-seq data, an average of 20 million reads were sequenced, with 50% mapping to approx-
imately 700 annotated miRNA genes.

In both proteomics datasets over 8,000 proteins were quantified, thus yielding overall a unique and compre-
hensive dataset of gene, protein and miRNA expression in the fibrotic mouse kidney.

Finally, all datasets can be viewed and interrogated by an online tool, the Mouse Kidney Fibromics browser: 
http://hbcreports.med.harvard.edu/fmm/.

Methods
Animal studies. Male BALC/c mice were obtained from Charles River Laboratories (USA). All experimental 
protocols concerning the use of laboratory animals were performed according to the NIH guidelines for the care 
and use of laboratory animals, and approved by the Institutional Animal Care and Use Committees (IACUC) of 
Harvard Medical School. Mice were housed in groups of three on a 12h light/dark cycle with access to food and 
water ad libitum. At the age of 8–10 weeks they entered the experiment.

Folic acid (FA) model. Folic acid was prepared at 25 mg/ml in 0.3 M sodium bicarbonate. Mice received a single 
dose of 250 mg/kg via intraperitoneal injection. Before the injection and 2, 7, and 14 days later, mice were sacri-
ficed; kidneys were removed and immediately snap frozen in liquid nitrogen.

Unilateral ureter obstruction (UUO) model. Before surgery, mice were anaesthetized with an intraperitoneal 
injection of sodium pentobarbital (50 mg/kg of body weight), the left kidney was exposed via a flank incision and 
3.0 silk suture thread was used to tie off the ureter at the lower pole. Before the obstruction and 3, 7, and 14 days 
later, mice were sacrificed; kidneys were removed and immediately snap frozen in liquid nitrogen.

More details about the in vivo experiments can be found elsewhere8.

mRNA-seq: RNA extraction, library preparation and sequencing. Folic acid (FA) model. mRNA 
sequencing in kidneys from the FA model was published before4 (GSE65267)9,10. In brief, quantity and quality of 
isolated RNA were assayed on an Agilent 2200 TapeStation instrument and by SYBR qRT-PCR assay. 10 ng total 
RNA was used to prepare libraries with the IntegenX Apollo 324 system and NuGEN SPIA reagents. Libraries 
were multiplexed in groups of three per lane of a flow cell, and 50 cycles, paired-end sequencing was performed 
on an Illumina HiSeq2000 instrument.

Unilateral ureter obstruction (UUO) model. Total RNA was isolated using Qiagen’s RNeasy Mini Kit. Quality 
and quantity of the RNA was assessed photometrically and with the Bioanalyzer (Agilent). 330 ng total RNA were 
transcribed utilizing Illumina’s TruSeq Stranded mRNA Library Prep Kit. Libraries were pooled and sequenced 
on Illumina’s NextSeq500 as single end, 75 bp reads. Sequencing service was performed by the Molecular Biology 

Fig. 1 Schematic of study design, data generation and processing. Overview of how the kidney fibrosis models 
were set up including flow charts for mRNA-seq, proteomics and small RNA-seq profiling in the kidneys.
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Core Facilities at Dana-Farber Cancer Institute. Data were deposited to the Gene Expression Ombibus (GEO) 
database: GSE1183399,11.

Small RNA-seq: RNA extraction, library preparation and sequencing. Folic acid (FA) 
model. small RNA sequencing in kidneys from the FA model was published before3 (GSE61328)9,12. In brief, 
total RNA was isolated using the miRNeasy Mini Kit (Qiagen). 1 µg total RNA was used to prepare small librar-
ies utilizing the TruSeq Small RNA Sample Preparation Kit (Illumina) according to manufacturer instructions. 
All samples were multiplexed into a single lane of a flow cell on the HiSeq2000 platform to produce 50 cycles, 
single-end reads.

Unilateral ureter obstruction (UUO) model. Total RNA was isolated using Qiagen’s miRNeasy Mini Kit. Quality 
and quantity of the RNA was assessed photometrically and with the Bioanalyzer (Agilent). 1 µg total RNA was 
transcribed utilizing Illumina’s TruSeq Small RNA Library Prep Kit. Libraries were pooled and sequenced on 
Illumina’s NextSeq500 as single end, 75 bp reads. Sequencing service was performed by the Molecular Biology 
Core Facilities at Dana-Farber Cancer Institute. Data were deposited on GEO database: GSE1183409,13.

�roteomics: protein sample preparation, TMT labelling and LC-MS3 measurement. Kidney 
samples (from both FA and UUO models) were mechanically homogenized in lysis buffer (8 M urea, 1% SDS, 
Roche complete protease inhibitors and phosphatase inhibitors, 50 mM Tris pH 8.5). Approximately one third of 
a kidney was used for sample preparation. Protein concentration was determined using the BCA assay (Pierce, 
Rockford, IL).

The homogenate was reduced with 5 mM DTT and alkylated with 15 mM iodoacetamide (Sigma, St. Louis, 
MO). 0.15 mg of protein was precipitated using chloroform:methanol. Pellets were washed twice with cold meth-
anol and re-solubilized in 8 M urea with 20 mM EPPS, pH 8.5. After diluting the samples to 4 M urea using 20 mM 
EPPS, they were digested with Lys-C (Wako Chemicals, Richmond, VA) overnight at room temperature. On the 
next day, samples were further diluted to 1.5 M urea using 20 mM EPPS and digested for 6h at 37 °C using Trypsin 
(Promega, Madison, WI). 60 µg of each sample were then brought to 10% (v/v) acetonitrile and labeled with 2:1 
(TMT:Peptide) by mass of TMT-10 reagent (Pierce). The reaction was quenched with hydroxylamine (0.5% final 
volume). Afterwards, samples were acidified by adding formic acid to 2% final volume, combined, and desalted 
using a C18 Sep-Pak (Waters, Milford, MA). The now combined sample was fractionated using basic pH reversed 
phase chromatography using a 1200 HPLC (Agilent; Santa Clara, CA) equipped with a UV-DAD detector and 
fraction collection system. Then, the resulting 12 fractions were desalted using the C18 StageTip procedure14. 
Each fraction was loaded onto a 100 µm id, 35 cm long column packed with 1.8 µm beads (Sepax, Newark DE) 
and separated using a 3 h gradient from 8–27% buffer B (99% acetonitrile and 1% formic acid) and buffer A (96% 
water, 3% acetonitrile and 1% formic acid) on an Easy 1000 nano-LC (Thermo-Fisher Scientific, San Jose, CA). 
All MS analyses were performed on an Orbitrap Fusion Lumos mass spectrometer (Thermo-Fisher Scientific, San 
Jose, CA) applying a multi-notch MS3 method15,16. The FA proteomics was performed as a service at the Thermo 
Fisher Center for multiplexed Proteomics at the Harvard Medical School.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via 
PRIDE17 partner repository with the dataset identifiers PXD01145318 (FA) and PXD01086119 (UUO).

Bioinformatic analysis. mRNA-seq data. All samples were processed using an RNA-seq pipeline imple-
mented in the bcbio-nextgen project (https://bcbio-nextgen.readthedocs.org). Raw reads were examined for 
quality issues using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to ensure library gen-
eration and sequencing were suitable for further analysis. Adapter sequences, other contaminant sequences (such 
as polyA tails and low quality sequences with PHRED quality scores less than five) were trimmed from reads 
using atropos20. Trimmed reads were aligned to UCSC build mm10 of the Mus musculus genome, augmented 
with transcript information from Ensembl release GRCm38.84 using STAR21. Alignments were checked for even-
ness of coverage, rRNA content, genomic context of alignments (for example, alignments in known transcripts 
and introns), complexity and other quality checks using a combination of FastQC, Qualimap22, MultiQC23 and 
custom code within the bcbio-nextgen pipeline. Counts of reads aligning to known genes were generated by 
featureCounts24. In parallel, Transcripts Per Million (TPM) measurements per isoform were generated by qua-
sialignment using Salmon25. Normalization at the gene level was called with DESeq224–26, preferring to use counts 
per gene estimated from the Salmon quasialignments by tximport11,24–27. The DEGreport Bioconductor pack-
age was used for QC and clustering analysis (https://bioconductor.org/packages/release/bioc/html/DEGreport.
html). A Quality metrics report for UOO and FA sequencing data can be found on https://github.com/hbc/
MouseKidneyFibrOmics/tree/master/reports.

Model
Peptides 
identified

Proteins 
identified

Proteins 
quantified

UUO 134010 10265 8942

FA 184278 9285 8417

Table 1. Numerical description of protein data for UUO and FA.
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Small RNA-seq data. All samples were processed using a small RNA-seq pipeline implemented in the 
bcbio-nextgen project (https://bcbio-nextgen.readthedocs.org/en/latest/). Quality control of the raw reads was 
performed as above for the RNA-seq data using FastQC and atropos. In the following, we focused on miRNA 
analysis but the small RNA seq dataset includes also t-RNAs and pi-RNAs.Trimmed reads were aligned to miR-
Base v2128 to the specific species with seqbuster29. In addition, the trimmed reads were aligned to the Mus mus-
culus genome (version mm10) using STAR21,29. The aligned reads were analyzed with seqcluster30 to characterize 
the whole small RNA transcriptome and classify reads into rRNA, miRNA, repeats, genes, tRNAs and others from 
the UCSCannotation31. Finally, aligned reads were analyzed using miRDeep232, an algorithm that assesses the fit 
of sequenced RNAs to a biological model of miRNA generation and correct folding. Alignments were checked 
for evenness of coverage, rRNA content, genomic context of alignments (for example, alignments in known tran-
scripts and introns), complexity and other quality checks using a combination of FastQC, MultiQC23 and custom 
code within the bcbio-nextgen pipeline.

Data were loaded into R using the bcbioSmallRna R package (https://github.com/lpantano/bcbioSmallRna) 
and isomiRs Bioconductor package33,34 to get normalized expression values13.

Proteomics data. Raw data were converted to mzXML and searched via Sequest35 version 28 against a con-
catenated Uniprot36 database downloaded 02/04/2014. Variable modifications of oxidized methionine and 
over-labelling of TMT on serine, threonine and tyrosine were considered37. Mass tolerance parameters for pep-
tide identification were ±25 ppm for precursor ions and ±0.9 Da for fragment ions. To distinguish forward and 
reverse hits, linear discriminant analysis38 was used and reverse hits were filtered to an FDR of 1% at the protein 
level. Using rules of parsimony shared peptides were collapsed into the minimally sufficient number of proteins 

Sample 
Name Reads rRNA 5′-3′ bias M Aligned Exon %

normal_1 40.5 M 0.30% 0.99 39.2 88.7

normal_2 29.7 M 0.20% 0.99 28.9 88.7

normal_3 32.4 M 0.20% 0.99 31.5 88.5

day3_4 37.4 M 0.40% 0.99 36.4 87.4

day3_5 34.9 M 0.70% 0.98 33.7 85.2

day3_6 34.6 M 1.50% 0.84 33.2 83.4

day3_7 39.4 M 0.30% 0.87 38 86.4

day7_8 37.4 M 0.30% 0.97 36.2 84.6

day7_9 39.5 M 0.40% 0.85 38.2 86.2

day7_10 38.8 M 0.40% 0.87 37.4 85.7

day7_11 26.7 M 0.30% 0.9 25.6 84.8

day14_12 30.1 M 0.30% 0.97 29.1 84.5

day14_13 17.0 M 0.20% 0.88 16.1 84

day14_14 23.6 M 0.40% 0.9 22.8 82.2

day14_15 24.7 M 0.40% 0.87 23.9 83.9

Table 2. Quality metrics of UUO mRNA Seq data.

Sample Name M Seqs % with adapter miRNAs isomiRs

normal_1 21.1 98 593 17485

normal_2 22.9 98 646 21147

normal_3 26.9 98 650 20328

day3_1 22.6 99 775 27171

day3_2 21.2 99 799 28416

day3_3 19.1 99 789 27292

day3_4 22.8 98 784 28022

day7_1 23.8 99 801 28313

day7_2 19.4 99 710 22612

day7_3 27.3 99 804 30444

day7_4 23.6 99 794 27713

day14_1 25.4 99 770 28953

day14_2 21.5 99 741 25008

day14_3 29.4 99 785 28947

day14_4 21.2 99 730 34074

Table 3. Quality metrics of UUO small RNA seq data.
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(Table 1). Quantitation filters of >200 sum reporter ion S:N and >0.7 isolation specificity were incorporated. All 
abundance values were normalized with edgeR using TMM method39 and transformed the abundance values to 
log2 scale. UNIPROT ids were mapped to ensembl gene ids using the GRCm38.84 release to combine the pro-
teomic data with the gene and miRNA expression data.

Data processing. We used the normalized abundance values for each data type to populate the Rshiny app. To 
pair miRNA with genes, we used TargetScanHuman database40. Only pairs described in the database and pairs 
with the abundance correlation along time was lower than −0.7 were kept as valid miRNA-Gene pairs. This 
information is shown in the Rshiny app, at the bottom of the page, where the user can inspect filtered targets of 
miRNAs.

Data Records
A list of all datasets per biological replicate is summarized in an experimental study table (Online-only Table 1).

GitHub as an easily accessible and widely used platform was used for our codes and QC reports. All raw data 
and processed data were uploaded to GEO and PRIDE and the code was finally archived at Zenodo, too41.

The raw sequencing data have been deposited in the GEO database with ID number GSE11834142.
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Fig. 2 Principal component analysis (PCA) of all UUO datasets and FA proteins. The normalized expression 
abundance of mRNAs, proteins and miRNA was used. Each color represents a time point in the dataset. 
(a) miRNA expression in kidneys from the UUO model shows day 3 and 7 being in the same cluster, while 
the normal and the latest time points are distinct. (b) The greatest variation in gene expression in the UUO 
model is observed along the first principal component (PC) between normal and injured samples, with the 
second PC separating injury times. (c) A similar pattern is observed using UUO protein expression, with 
higher consistency within sample groups allowing for better discrimination between time points. (d) Protein 
expression in the FA model shows different clusters for each time point, PC1 separating normal from the injured 
samples, and PC2 separating early injury from later time points.
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The raw protein data have been deposited in the PRIDE database with ID numbers PXD01145318 and 
PXD01086118,19.

Gene expression estimates using salmon and tximport for the UUO model can be found in uuo_mrna.csv11.
Gene expression estimates using salmon and tximport for the FA model can be found in fa_mrna.csv10.
miRNA data resulting from seqbuster and isomiRs for the UUO model can be found in uuo_mirna.csv10,13.
miRNA data resulting from seqbuster and isomiRs for the FA model can be found in fa_mrna.csv12.
Protein data resulting from limma for the UUO model can be found in uuo_protein.csv43.
Protein data resulting from limma for the FA model can be found in fa_protein.csv43,44.

Technical Validation
To assess the quality of the mRNA and small RNA sequencing libraries, basic quality metrics were summa-
rized per sample in Tables 2 and 3 as well as in the supplementary information (Supplementary Tables 1 and 2).  
The full quality metrics report for UOO and FA sequencing data can be found on https://github.com/hbc/
MouseKidneyFibrOmics/tree/master/reports. All mRNA-seq samples had a mapping rate >90%, ribosomal con-
tent <1% and exonic mapping rate >80%, showing a good enrichment of reads on coding genes. Small RNA-seq 
samples had 3′ adapter in more than 80% of the reads, a read size distribution of 22 after adapter removal. After 
removal of reads shorter than 18 nts, more than 50% of the reads mapped to miRNA sequences.

To further assess the quality of the data, we performed principal component analysis of the normalized gene 
and protein expression values to determine if the biological replicates show consistency and group by time after 
injury. Figure 2 shows strong clustering of the replicates and separation among time points for UUO miRNA (a), 
UUO mRNA (b), UUO protein (c) and FA protein (d). FA mRNA and miRNA data are shown in the supplemen-
tary information (Supplementary Fig. 1). The separation among time points is maximal in the protein datasets, 
while the mRNA and miRNA datasets show how day 7 and day 14 (for mRNA) and day 3 and day 7 (for miRNA) 
are more closely related. This difference can be explained by the fact that miRNA changes happen before mRNA 
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Fig. 3 Expression profiles of fibrosis and injury markers and housekeeping genes. UUO mRNA (dotted line), 
UUO protein (dashed line), FA protein (standard line), and UUO miRNA (standard line). (a) The fibrosis 
markers α-smooth muscle actin (Acta2), collagen (Col1a1) and fibronectin (Fn1) show increasing expression 
over time for UUO mRNA, UUO protein and FA protein datasets. (b) Kidneyinjury markers clusterin (Clu), 
kidney injury molecule 1 (Kim-1 alias Havcr) and lipocalin-2 (Ngal alias Lcn2) show increased expression 
early on without further significant increases over time. (c) Nine commonly used housekeeping genes show no 
change of expression in all the datasets. (d) miRNAs miR-192 and -21 are involved in kidney pathogenesis and 
show expression changes over time for the UUO model.
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changes, and the miRNA profile of day 3 could be impacting the day 7 mRNA profile. The same might be true for 
day 7 of the miRNA profile and day 14 of the mRNA profile.

Additionally, we have looked at the expression of known housekeeping genes and well-known fibrosis and 
injury markers (Fig. 3 and Supplementary Fig. 2) to evaluate the validity of the animal and omics experiments. 
The selection of these genes is purely based on literature and did not result from any statistical analysis. The 
coefficient of variation average for housekeeping genes is 3.3%, indicating stable expression in all kidney sam-
ples. Classical fibrosis markers α-smooth muscle actin (Acta2), collagen (Col1a1) and fibronectin (Fn1) are con-
tinuously increased over time for the irreversible UUO model whereas there is a decrease towards normal in 
the reversible FA model. Kidney injury markers clusterin (Clu), kidney injury molecule 1 (Kim-1 alias Havcr) 
and lipocalin-2 (Ngal alias Lcn2) are strongly increased early on without further significant increases over time 
in the UUO model. In the FA model, similar to fibrosis markers, injury markers indicate recovery at the later 
time points. Thus, fibrosis and injury marker profiles correspond to previously published data. miR-192, a 
kidney-enriched miRNA involved in regulation of the sodium transport, is decreased in de-differentiated fibrotic 
kidneys45 while miR-21 increased according to its role in fibrosis46,47.

Usage Notes
Analyses of parts of this dataset have been published before in separate publications4,5 using the FA mRNA and 
miRNA data to identify new biomarkers of fibrosis and to find miRNAs involved in the pathophysiology, respec-
tively. This bigger dataset here with mRNA, miRNA and protein data from two kidney fibrosis models could be 
utilized, among other possibilities, to (1) identify and validate new target genes or miRNAs for kidney fibrosis; (2) 
develop a more comprehensive understanding of the pathophysiology; (3) identify novel gene-miRNA regulatory 
networks related to kidney fibrosis; and (4) discover novel transcripts (genes and miRNAs) in fibrotic kidneys. The 
various ways to use and re-use proteomics data have been reviewed and well-stated elsewhere48,49. Furthermore, a 
large number of algorithms for differential gene expression analysis are available through the BioConductor pro-
ject website to re-analyse or further investigate this dataset. In addition, we have developed a searchable web-tool 
for simple and quick inquiries related to this dataset: http://hbcreports.med.harvard.edu/fmm/.

Kidney fibrosis as well as any other fibrotic disease are complex and involve complementary changes in gene 
and protein expression as the disease initiates and progresses; thereby, affecting various signalling pathways50. 
Restricting data generation and analysis to a single omic dataset shows only one facet of this complex pathophys-
iology. Therefore, the value of using multi omics data lies in the generation of more representative multi-layered 
networks which can uncover causative changes51. Comparable approaches have been made for other fibrotic dis-
eases either in one study52 or retrospectively by reviewing individually generated and published single omics data-
sets53. Similarly, individual omics datasets generated by others using human kidney disease samples54 or human 
fibrotic diseases could be combined and integrated with our dataset to explore translational aspects or “universal” 
fibrotic patterns. A plethora of different integration algorithms are available and could be used for this purpose55.

One main limitation in the data reported here is that bulk omics datasets do not distinguish among different 
kidney cell types and infiltrated immune cells; however, this bulk data could be useful for power calculations for 
designing future single-cell and omics studies.

Code Availability
The code used to process the data and perform the quality control and visualization analysis can be found at: 
https://github.com/hbc/MouseKidneyFibrOmics and at Zenodo41.
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