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Abstract

Background: Cluster randomised trials with unequal sized clusters often have lower precision than with clusters of
equal size. To allow for this, sample sizes are inflated by a modified version of the design effect for clustering. These
inflation factors are valid under the assumption that randomisation is stratified by cluster size. We investigate the
impact of unequal cluster size when that constraint is relaxed, with particular focus on the stepped-wedge cluster
randomised trial, where this is more difficult to achieve.

Methods: Assuming a multi-level mixed effect model with exchangeable correlation structure for a cross-sectional
design, we use simulation methods to compare the precision for a trial with clusters of unequal size to a trial with
clusters of equal size (relative efficiency). For a range of scenarios we illustrate the impact of various design features
(the cluster-mean correlation – a function of the intracluster correlation and the cluster size, the number of clusters,
number of randomisation sequences) on the average and distribution of the relative efficiency.

Results: Simulations confirm that the average reduction in precision, due to varying cluster sizes, is smaller in a
stepped-wedge trial compared to the parallel trial. However, the variance of the distribution of the relative efficiency is
large; and is larger under the stepped-wedge design compared to the parallel design. This can result in large variations
in actual power, depending on the allocation of clusters to sequences. Designs with larger variations in cluster sizes,
smaller number of clusters and studies with smaller cluster-mean correlations (smaller cluster sizes or smaller intra-
cluster correlation) are particularly at risk.

Conclusion: The actual realised power in a stepped-wedge trial might be substantially higher or lower than that
estimated. This is particularly important when there are a small number of clusters or the variability in cluster sizes is
large. Constraining the randomisation on cluster size, where feasible, might mitigate this effect.

Keywords: Stepped-wedge, Cluster randomised trials, Varying cluster size

Background
Cluster randomised trials (CRTs) often contain clusters
of unequal size [4]. In the context of a parallel CRT (P-
CRT), it has been established that an increase in the
variability of cluster sizes leads to a decrease in precision
[3, 18]. There have been many suggested modifications
to the conventional cluster design effect (DE) to allow
for unequal cluster sizes in a P-CRT. In such modifica-
tions, the DE is a function of the cluster sizes and the
intra-cluster correlation (ICC), and either the actual

(varying cluster sizes) that are known pre-trial [12, 17];
or an estimate of the average cluster size and a measure
of dispersion of cluster sizes [3, 19].
The stepped-wedge CRT (SW-CRT) is an alternative

form of the CRT. Under this design, clusters are typically
randomly allocated to one of a number of sequences
which dictate how many time periods the cluster will
spend in the control condition, followed by periods
under the intervention condition (Fig. 1) [7, 9]. Out-
comes can be assessed on the same cohort of partici-
pants who are followed-up for the study duration, on a
new cross-section of participants at each time-period, or
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a combination of the two [2, 7]. In this paper, the focus
is solely on the cross-sectional design.
Under the assumption of a cross-sectional design, [9]

proposed a mixed effect model, with a fixed effect for
time and random effect for cluster, as a framework for
the design and analysis of a SW-CRT. They derived
methods to estimate the power of a SW-CRT based on
this model set up. Whilst this approach does not itself
limit the cluster sizes to be equal, subsequent design ef-
fects derived from this model make the assumption that
there is no variation in cluster sizes [10, 20]. Although
there exists an adjustment for these DE to allow for un-
equal cluster sizes, it is based on stratification scheme in
which the distribution of cluster sizes is the same within
each sequence [6]. If the number of clusters allocated to
each sequence is small, then stratification by cluster size
may not be possible. Furthermore, because in a SW-
CRT, clusters sequentially transition to the intervention
condition, in a design with clusters of unequal size, the
order of randomisation of the (different sized) clusters
to cross-over to the intervention has implications on the
power of the study (because it can result in a large im-
balance on cluster sizes across treatment conditions).
This leads to the notion of a conditional power – the
power for a fixed randomisation order; and an average
and distribution of power over all possible randomisa-
tion orders. At the design stage, the natural focus is on
the average and distribution of power since it reflects
the expected power across all randomisation orders. We

therefore explore the influence of varying cluster sizes in
the SW-CRTs in absence of stratification by cluster size;
and importantly consider the distribution of possible
realisations of power across all randomisation orders.

Aims and objectives
We present methods to estimate the power in a SW-
CRT with unequal cluster sizes in which the cluster sizes
are all known, but are unequal. We then extend this
method to estimate power when the cluster sizes are not
known but are unequal, and only the expected average
cluster size and a measure of dispersion of cluster sizes
are known, such as the coefficient of variation (CV). We
then explore the extent to which the power of a SW-
CRT is affected by varying cluster size and highlight de-
sign variations (i.e. number of sequences, cluster size
etc.) which are most influential. We illustrate how much
variation in power may exist across different randomisa-
tion orders. We explore which of a SW-CRT and a P-
CRT is most affected by varying cluster size; and to a
limited extent explore whether randomisation schemes
which constrain the randomisation so that total sample
sizes under intervention and control conditions are bal-
anced might help minimise any loss in power due to
varying cluster sizes.

Motivating example
Changing clinical communications: a stepped-wedge cluster
randomised trial
A SW-CRT is to be used to evaluate the effectiveness of
a training program aimed at improving patients’ satisfac-
tion with doctor-patient relationship in a general prac-
tice environment. The intervention includes a training
package in communication skills which will be delivered
to all doctors at each of six included general practices.
The intervention will be rolled-out to the practices over
six sequences, and the evaluation will consist of data
from seven time-periods (Fig. 1). It is unlikely that any
conventional stratification method for constraining the
randomisation by cluster size could be implemented in
this design set up. The primary outcome is patient satis-
faction score, measured via a series of questions on a
Likert scale. It is hoped that the intervention will lead to
a 0.2 increase in patient satisfaction from a mean (SD)
patient satisfaction of 3.2 (0.8). For illustration we as-
sume the ICC is in the region of 0.05.
Each time-period will be one month in duration, and

different patients will be included at each time-period,
so that the design is cross-sectional. It is expected that
each cluster will contribute an average of 50 patients per
time-period, so that an estimated 2100 observations (=
50x6x7) will be available. However, it is known that the
cluster sizes will vary. We outline two proposed ap-
proaches for accommodating this variation in cluster

Fig. 1 Schematic representation of a stepped-wedge cluster
randomised trial with six clusters and six sequences. Each square
indicates a set of observations for a given cluster at a given time-period
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sizes by way of example to illustrate the concept of a dis-
tribution of power across randomisation orders, and
then proceed to describe the technical details of
implementation.

Estimating power with known cluster sizes
Let us first assume that the average cluster size per
time-period for clusters 1 to 6 are: 15, 25, 35, 45, 80, and
100. This corresponds to an average of 50 observations
per cluster-period, and a coefficient of variation of 0.66
– a value which is not dissimilar to that reported in UK
general practice [3]. With six clusters and six sequences,
there are 720 (=6x5x4x3x2x1) possible permutations of
the randomisation order. The power can be calculated
for each randomisation order using the methods de-
scribed by Hussey and Hughes (described in detail forth-
with), and is illustrated in Fig. 2a.
If equal cluster sizes had been assumed, then the

power would be 80.75%. Allowing for the variation in
cluster sizes and the associated different randomisations,
the average (median) power across all randomisation or-
ders is 80.2% (IQR: 78.4 to 81.6%, range: 75.0 to 82.5%).
The minimum power is found when the randomisation
order is: 25, 45, 100, 80, 15, and 35, and the maximum

power when the order is: 100, 15, 45, 35, 25, and 80.
Therefore, whilst on average the design may obtain 80%
power, the randomisation order could produce a design
in which the power is less than this, and it could be as
low as 75%.

Estimating power with unknown cluster sizes
Let us now assume that the cluster sizes are not known,
but it is known that average cluster size across clusters
(per period) will be 50, and the coefficient of variation of
cluster sizes will be 0.66. To acknowledge varying cluster
sizes, potential (unequal) cluster sizes could be simu-
lated, and an estimate of the power calculated using the
Hussey and Hughes formula ([9], full details below). Be-
cause, the average and distribution of the possible power
is of interest, the simulation of cluster sizes can be re-
peated a large number of times to create a distribution
of the power. The distribution of power with 4000 simu-
lated cluster-period sizes is given in Fig. 2b. The median
power is 80.9% (IQR: 78.8 to 82.1%, range: 63.9 to
83.7%). Therefore, whilst on average the design may ob-
tain 80% power, the randomisation order could produce
a design in which the power is less than this, and it is es-
timated it could be as low as 64%.

Fig. 2 Variation in power for a cross-sectional SW-CRT with six clusters and six sequences when the cluster sizes are a) known and b) not known.
a The clusters sizes are known pre-trial and are unequal in size – the cluster-period sizes are: 15, 25, 35, 45, 80 and 100. The power has been
calculated for each possible randomisation order of the six clusters using the methods derived by Hussey and Hughes. b The clusters sizes are
unequal but not known, but it is expected that the average cluster size per cluster-period = 50, and the coefficient of variation = 0.66. Potential
cluster-period sizes have been simulated and used to estimate the power using the methods derived by Hussey and Hughes. This has been
repeated 4000 times, with each simulation containing new cluster-period sizes. The SW-CRT contains six general practices randomised over six
sequences, with one general practice crossing from the control to intervention condition every month. The SW-CRT is designed, such that the
difference to detect = 0.2 (SD: 0.8); type 1 error = 5%
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Methods
Firstly, for completeness, we present the method to esti-
mate power in a SW-CRT, as presented by Hussey and
Hughes [9]. This will include an illustration of how the
power can be estimated for a fixed set of known, but
varying, cluster sizes. We then present a simulation
method to estimate the average and distribution of
power across a simulated set of randomisation orders
when only the mean and variance of the cluster sizes are
known. We illustrate that randomisation to a particular
sequence induces a conditional power and highlight the
need to consider the average and distribution of power
at the design stage. We then describe a simulation study
that investigates the importance of variance design fea-
tures (number of sequences, cluster-mean correlation,
number of clusters, and coefficient of variation of cluster
sizes) on the effect of the power of a SW-CRT with vary-
ing cluster size for continuous outcomes. Finally, for a
limited set of scenarios we explore the correlation be-
tween the power and balance of total sample size ob-
served under both treatment conditions.

Estimating power in a SW-CRT with known cluster sizes
(equal or unequal)
The power can be estimated in a SW-CRT using analyt-
ical methods described by Hussey and Hughes [9]. For
this, a multi-level mixed effect model is assumed:

yijk ¼ μþ β j þ xijδ þ αi þ εijk ð1Þ

Where, yijk is the outcome for participant k in cluster i
at time j, μ is the mean outcome in the unexposed
period in the first time-period, βj is a time effect, fixed
for time-periodsj = 2,… , T (β1 = 0 for identifiability), δ is
the treatment effect, αi is a random effect for cluster i
defined as: αi~N(0, σb

2), εijk is the residual error (~N(0,
σw

2)) and xij is an indicator of treatment exposure of
cluster i at time j (1 = treatment, 0 = control). Under this

model, the ICC can be defined as σb2

σb2þσw2.

The power in a SW-CRT to detect a specified differ-
ence (δ) can be estimated using a Wald test, if the vari-
ance components are known, as:
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Here, Z1 − α/2 is the 1 − α/2th quantile of the standard
Normal distribution function, X is a design matrix that
describes the cell means for the linear parameters (the
intervention effect, δ, the time parameters β1,… , βj and
the intercept μ) and V is a variance-covariance matrix of
the cell means, made up of CT ×CT blocks, where C is
the number of clusters and T the number of time-

periods. Each T × T block of V refers to a particular clus-
ter and describes the correlation between the cluster
means over time, and has the form:
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Here mi refers to the cluster-period size for cluster i.
The mi ′ s are known but unequal, in general.
If the cluster sizes are unequal, then the power is

dependent on the randomisation order – since the ran-
domisation will impact matrix V. A distribution of power
can be calculated by considering all possible permutations
of the randomisation order or a large enough sample of
unique randomisation orders; and then determining the
power under each of these randomisation orders.

Estimating power in a SW-CRT with unknown (but
varying) cluster sizes by simulation
In a SW-CRT in which the exact cluster sizes are not
known in advance, the mean cluster-period size (φ) and
the CV can be used to simulate potential cluster-period
sizes (mi). Since it is expected that cluster sizes will ex-
hibit a positive skew, and a non-negative distribution is
required, we assume that the cluster-period sizes follow
a Gamma distribution, such that:

mi∼Γ α; βð Þ

E mið Þ ¼ α� β ¼ φ

V mið Þ ¼ σm2 ¼ α� β2 ¼ φ2 � CV 2

The simulated values can be used in the above frame-
work (Eq. 2) by replacing the mi values in the matrix V
in order to estimate the power. Following this, the mean
cluster-period size and the CV are used to simulate a
new set of cluster-period sizes. The new mi values are
used to calculate matrix V, which is used in Eq. 2 to cal-
culate a new estimate of the power. This process is re-
peated to generate a set estimates of power, which
provides an average (and distribution of ) power. The
number of repetitions will influence the degree of preci-
sion surrounding the mean (and possible SD) of the dis-
tribution of power.
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A simulation study to assess the impact of varying cluster
size in a SW-CRT
Now, we consider the impact of various design features
(such as the number of sequences and cluster-period
sizes) on the power in a SW-CRT, where the cluster
sizes vary. This is shown through a simulation study,
which we describe below. We present estimates of the
relative efficiency, which compares the precision of a
SW-CRT with unequal cluster sizes to the precision in a
SW-CRT with equal cluster sizes; under the prerequisite
than both designs have the same total sample size. The
precision is used as it is invariant to the target effect
size.
We consider five key design features: the number of

sequences; the number of clusters; the cluster-period
size; the ICC (ρ); and the coefficient of variation of clus-
ter sizes. The cluster mean correlation (CMC) is a func-
tion of the average total cluster size (M) and the ICC [5]
(see Fig. 3), and represents the correlation between the
cluster means of two repeated sets of observations taken
from the same cluster and is defined as:

R ¼ M � ρ
1þ M−1ð Þρ

It has previously been established that the efficiency of
a SW-CRT with equal sized clusters hinges on the value
of the CMC [5]. However, in the scenarios described
below – i.e. Gamma-distributedcluster-sizes – the distri-
bution of precision/power depends on M and ρ only
through the CMC. This means that the number of di-
mensions in the simulation study is conveniently re-
duced by presenting results in terms of the CMC, rather

than M and ρ separately. This has substantial presenta-
tional advantages. In what follows any result that de-
scribes the qualitative effect of an increased CMC can be
re-interpreted in terms of increased ρ, or of increased
M. The full spectrum of potential values of the CMC
was used (0 to 1). The majority of SW-CRTs contain
four or fewer sequences [14] but we included two larger
values to capture the full effect of the number of se-
quences on the design and crucially because we are in-
terested in the situation where the randomisation cannot
be stratified on cluster size, which is more likely to occur
in situations with a larger number of sequences. The
number of clusters is based upon multiples of the num-
ber of sequences to ensure an equal number of clusters
randomised per sequence. The degree of cluster size
variation ranged from small (CV = 0.25) to large (CV =
1.5). A full list of the values chosen is given in Table 1.
A full factorial design was used, giving 1320 possible sce-
narios. To maintain a Monte Carlo error around the
precision smaller than 1%, 4000 simulations were used
for each scenario [1].
In every simulation a cluster-period size (mi) is gener-

ated for each cluster (i) by sampling from a Gamma dis-
tribution with shape parameter α. The mis are then
scaled to ensure that the total sample size in the simu-
lated design is equal to the total sample size in the cor-
responding equal-cluster design with cluster-period size
φ. (The scaling ensures that the variation in simulated
precision is a consequence of cluster inequality rather
than differences in study-size.) The scaled mis are used
to calculate matrix V, which in turn is used to estimate
the precision using Eq. 2, which is then compared to the
precision of a SW-CRT with equal sized clusters to give
the relative efficiency. This process is repeated 4000

Fig. 3 The cluster mean correlation (CMC) as a function of the total cluster size and the intracluster correlation (ICC)
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times with a new set of cluster-period sizes simulated
each time, to produce 4000 estimates of the relative effi-
ciency. When referring to the distribution (or variation)
of the relative efficiency, we focus on the IQR rather
than the actual range – since the range is impacted by
the number of simulations.

A simulation study to assess the impact of varying cluster
size in a P-CRT
The notion of the randomisation of clusters impacting
the precision in a SW-CRT led us consider whether the
precision in a P-CRT with varying cluster sizes should
also be represented as a distribution of values, rather
than a singular value – which is usually assumed. The
methods described above for a SW-CRT can also be
used to evaluate the precision in a P-CRT [8]. This al-
lows us to simulate potential cluster-period sizes for a P-
CRT for a variety of different scenarios, and examine the
impact of unequal cluster sizes in a P-CRT. The scenar-
ios chosen were identical to that used to assess the im-
pact of unequal cluster size in a SW-CRT (see Table 1),
with the exception of the number of sequences – which
can be conceptualised by two arms in a P-CRT (the total
number of clusters are therefore assumed to be rando-
mised evenly across the two arms). A full factorial design
was used, giving 264 possible scenarios.

Results
The impact of varying cluster sizes on both the average
and distribution of power (or precision) of a SW-CRT
depends on the design features of the study, such as the
number of randomisation sequences, the CMC, and the
number of clusters. We discuss the impact of each de-
sign feature in turn. The results are presented using the
relative efficiency (RE), which compares the precision of
a CRT with unequal cluster sizes to the precision in a
CRT with equal cluster sizes; with a prerequisite that
both CRTs have identical designs and sample sizes. We
also discuss what impact the imbalance of observations

between control and intervention conditions may have
on the precision and power of a study.

Key results
On average, the precision is lower when the cluster sizes
are unequal compared to the case with equal sized clus-
ters, for both the P-CRT and the SW-CRT (Fig. 4).
Under most scenarios considered, the average effect of
varying cluster sizes on precision was smaller in a SW-
CRT than in a P-CRT (Fig. 4, Table 2). However, the true
impact of varying cluster sizes in any given SW-CRT will
depend on the randomisation of clusters to sequences.
In an illustrative example, a SW-CRT with clusters of
unequal size could have up to 80% less precision than a
SW-CRT with equal sized clusters (Fig. 5). In the same
illustrative example, somewhat surprisingly, it could
transpire that a SW-CRT with clusters of unequal size
could have up to 30% more precision than a SW-CRT
with equal sized clusters (Fig. 5). Therefore, the antici-
pated precision in a SW-CRT with unequal cluster sizes
might differ from a SW-CRT with equal cluster sizes,
and the actual realised loss or gain in efficiency might be
high and this crucially depends on the actual randomisa-
tion (i.e. there will be a range across this relative effi-
ciency and this is not necessarily below 1).
The magnitude of the loss or gain in efficiency and its

possible range across randomisation orders is impacted by
the design features of the SW-CRT, which are discussed in
more detail below. We focus on the inter-quartile range
so as not to put undue emphasis on extremes.

Stepped-wedge CRTs
Coefficient of variation of cluster sizes
Any increase to the amount of variation in cluster sizes
leads to a greater average precision loss in a SW-CRT (i.e.
the RE is less than one). Figure 4a illustrates a small
amount of variability in cluster sizes (CV = 0.25) has negli-
gible impact on the average RE, but larger amounts of
cluster size variability could provide a design with sub-
stantial losses in efficiency compared to a design with

Table 1 Values of the design features in a stepped-wedge cluster randomised trial and parallel cluster randomised trial that were
used in the simulation study

Study design Variable Values used

Stepped-wedge cluster randomised trial Number of sequences 2, 3, 4, 6, 12

Number of clusters 12, 24, 48, 96

Cluster mean correlation 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Coefficient of variation of cluster sizes 0.25, 0.50, 0.75, 1.00, 1.25, 1.50

Parallel cluster randomised trial Number of clusters 12, 24, 48, 96

Cluster mean correlation 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Coefficient of variation of cluster sizes 0.25, 0.50, 0.75, 1.00, 1.25, 1.50

Total number of possible scenarios: 1320 for stepped-wedge cluster randomised trial and 264 for parallel cluster randomised trial
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Fig. 4 Impact of: a) coefficient of variation; b) cluster mean correlation; and c) number of clusters on the relative efficiency of a SW-CRT and
parallel CRT, and impact of d) number of sequences on the relative efficiency of a SW-CRT. CV: Coefficient of variation. Efficiency is calculated as
the ratio of the precision in a CRT with unequal cluster sizes compared to the precision in a CRT with equal cluster sizes. The green plots (with
diamonds) are for a parallel CRT. The solid line indicates the median relative efficiency. The dashed lines indicate the lower and upper quartiles
for the relative efficiency (short dashed line indicates SW-CRT). The default values for the design characteristics are (unless specified): number of
clusters – 12; CV – 0.75; CMC – 0.2; number of sequences (SW-CRT only): 4

Table 2 Impact of trial design on the median and inter-quartile range of possible efficiency of a SW-CRT with unequal cluster size
compared so a SW-CRT with equal cluster size

CV CMC SW3 SW12 PD

12 clusters 96 clusters 12 clusters 96 clusters 12 clusters 96 clusters

0.25 0 1.00 (0.98–1.07) 1.00 (0.99–1.01) 1.00 (0.97–1.02) 1.00 (0.99–1.01) 1.00 (0.99–1.00) 1.00 (1.00–1.00)

0.2 0.99 (0.98–1.04) 1.00 (0.99–1.00) 0.99 (0.98–1.01) 1.00 (0.99–1.00) 0.99 (0.98–0.99) 0.99 (0.99–0.99)

0.5 0.99 (0.98–1.02) 1.00 (0.99–1.00) 0.99 (0.98–1.00) 0.99 (0.99–1.00) 0.99 (0.98–0.99) 0.98 (0.98–0.99)

0.8 1.00 (0.99–1.01) 1.00 (1.00–1.00) 0.99 (0.99–1.00) 1.00 (1.00–1.00) 0.99 (0.99–0.99) 0.99 (0.99–0.99)

0.75 0 0.97 (0.90–1.02 1.00 (0.98–1.01) 0.96 (0.90–1.02) 0.99 (0.97–1.02) 0.98 [0.94–1.00) 1.00 (0.99–1.00]

0.2 0.95 (0.90–0.99) 0.97 (0.96–0.98) 0.94 (0.89–0.99) 0.96 (0.95–0.98) 0.91 (0.88–0.94) 0.92 (0.91–0.93]

0.5 0.95 (0.91–0.98) 0.97 (0.96–0.98) 0.94 (0.90–0.97) 0.96 (0.95–0.97) 0.88 (0.85–0.91) 0.88 (0.87–9.90)

0.8 0.96 (0.92–0.99) 0.99 (0.98–0.99) 0.96 (0.93–0.97) 0.98 (0.98–0.99) 0.90 (0.88–0.93) 0.93 (0.89–0.91)

1.25 0 0.91 (0.79–1.00) 1.00 (0.95–1.02) 0.89 (0.78–0.99) 0.98 (0.94–1.02) 0.94 (0.82–0.99) 0.99 (0.98–1.00)

0.2 0.88 (0.78–0.95) 0.93 (0.91–0.95) 0.85 (0.76–0.93) 0.92 (0.90–0.94) 0.81 (0.74–0.86) 0.82 (0.80–0.83)

0.5 0.88 (0.79–0.93) 0.93 (0.91–0.95) 0.85 (0.79–0.90) 0.91 (0.90–0.92) 0.73 (0.67–0.78) 0.73 (0.71–0.75)

0.8 0.90 (0.81–0.95) 0.96 (0.95–0.98) 0.88 (0.83–0.92) 0.95 (0.94–0.96) 0.76 (0.70–0.81) 0.75 (0.73–0.77)

CMC Cluster mean correlation, CV coefficient of variation in cluster sizes, SW3 Stepped-wedge trial with 3 sequences, SW12 Stepped-wedge trial with 12 sequences
(one cluster per sequence), PD Parallel design
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equal sized clusters. In addition, the range of the distribu-
tion of RE values widens as the CV increases. For example
a 12-clusterSW-CRT with 12 sequences and a CMC of
0.2, the RE has an IQR of 0.98 to 1.02 when the CV is
small (CV = 0.25) (Table 2); whereas there is a much wider
IQR of 0.76 to 0.93 when the CV is large (CV = 1.25).

Cluster mean correlation
The average loss in precision in a SW-CRT due to the
presence of unequal sized clusters is relatively unaffected
by the CMC (Fig. 4b). However, the actual value of the
RE can vary substantially from the average depending on
the randomisation of clusters to sequences. Figure 4b il-
lustrates how the range (or distribution) of the RE is
widest when the CMC is small; and at its narrowest
when the CMC is large. This is emphasised by an ex-
ample from Table 2, in which for a SW-CRT with 3 se-
quences and 12 clusters the average RE is 0.91 [IQR:
0.79–1.00] for a CMC of 0; and 0.90 [IQR: 0.81–0.95]
for a CMC of 0.8 (illustrative CV = 1.25).

Number of clusters
The average loss in efficiency due to unequal sized clus-
ters does depend on the number of clusters and is
greater when the number of clusters is small (Fig. 4c).
The range of the RE also depends on the number of
clusters. Figure 4c illustrates that the range of the RE is
widest when the number of clusters is smaller; and at its
narrowest when the number of clusters is large. For ex-
ample, the average RE for the 12 sequence design is 0.88

[IQR: 0.83–0.92] for a study with 12 clusters (Table 2);
and 0.95 [IQR: 0.94–0.96] for a study with 96 clusters
(illustrative CV = 1.25 and CMC = 0.8).

Number of sequences
The average loss in precision due to the presence of un-
equal sized clusters is relatively unaffected by the number
of sequences. The range (or distribution) of the RE is not
greatly impacted by the number of sequences when the
SW-CRT has more than two sequences (Fig. 4d). For ex-
ample from Table 2, in a SW-CRT with 12 clusters the
average RE for a design with 3 sequences is 0.90 [IQR:
0.81–0.95]; and 0.88 [IQR: 0.83–0.92] for a design with 12
sequences (illustrative CV = 1.25 and CMC= 0).

SW-CRT vs P-CRT The effect of varying cluster sizes
on the average loss (or gain) in efficiency is smaller in a
SW-CRT compared to the P-CRT (Fig. 4a, c, Table 2).
However, as is the case for the SW-CRT, the actual rea-
lised precision (or power) in a P-CRT might be different
from the expected (or average) precision. The relation-
ship between the average and distribution of precision,
and the number of clusters and amount of variation in
cluster sizes (CV) is similar to that of the SW-CRT. Any
increase in the CV leads to a decrease in the average RE,
and a widening of the range of RE values. P-CRTs with
fewer clusters may have a lower RE and a wider range of
RE values than designs with a greater number of clus-
ters. However, the relationship between the relative effi-
ciency and the cluster-mean correlation in a P-CRT is

Fig. 5 Illustrative example of the distribution of efficiency in a cross-sectional SW-CRT with 12 clusters and 4 sequences (CV = 1.5). CMC: Cluster
mean correlation. Efficiency is calculated as the ratio of the precision in a SW-CRT with unequal cluster sizes compared to the precision in a SW-
CRT with equal cluster sizes from 44,000 simulations (4000 simulations for each value of the cluster mean correlation). The solid line indicates the
median value, the dashed line indicates the lower and upper quartiles, and the dotted line indicates the minimum and maximum values. The
black solid horizontal line indicates the reference line. Above the line favours an unequal cluster size design, below the line favours an equal
cluster size design
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somewhat different to in a SW-CRT (Fig. 4b). As previ-
ously discussed, the impact of the CMC in a SW-CRT is
small. However in a P-CRT, increases to the CMC be-
tween 0 and 0.5 lead to decreases in the RE, but in-
creases in the CMC between 0.5 and 1.0 increase the
RE, and so the P-CRT follows a parabolic pattern when
comparing RE and the CMC. Furthermore, in a SW-
CRT it is possible for designs with unequal cluster sizes
to obtain more precision – and hence a greater power –
than an identical SW-CRT but with equal sized clusters.
However, a P-CRT with unequal cluster sizes can never
have greater precision than a P-CRT with equal sized
clusters (Fig. 4a, c, Table 2).

Imbalance of observations between control and
intervention condition (sample size imbalance) In a
SW-CRT with clusters of unequal sizes, the randomisa-
tion process could lead to an imbalance in the number
of observations contributing to the control and interven-
tion conditions (sample size imbalance). However, the
guarantee of an equal number of observations observed
under control and intervention conditions does not
guarantee that a SW-CRT will have optimal precision or
power. A comparison of precision and sample size im-
balance has been illustrated for four scenarios in Fig. 6
(12 cluster SW-CRT with 4 or 12 sequences and a CMC
of 0.2 or 0.5). Generally, the lowest precision was found

when there was a small degree of sample size imbalance.
The greatest precision is not necessarily achieved when
the number of observations is equal in control and inter-
vention conditions. The results are consistent with
changes to the number of sequences and changes to the
CMC. However, despite these scenarios showing a posi-
tive correlation between sample size imbalance and pre-
cision, in several other examples (a SW-CRT with 4
clusters and 4 sequences, and a SW-CRT with 5 clusters
and 5 sequences), we observed the opposite relationship
(see Additional file 1: Figure S1).

Discussion
It is well known that the precision or power of a cluster ran-
domised trial is lower when the cluster sizes are unequal
compared to the case with equal sized clusters. This is
known to be the case for both the P-CRT and the SW-CRT.
More recently, it has also been established that the average
reduction in relative precision in a SW-CRT is lower than in
a P-CRT [6]. However, we have shown that whilst the ex-
pected or average impact of varying cluster sizes is relatively
small, the actual impact might be much larger. This is be-
cause conditional on the randomisation order, a SW-CRT
with clusters of unequal size could possibly have more or
less precision than a SW-CRT with equal sized clusters. In
some designs with unequal cluster sizes, some randomisa-
tions could lead to as much as a 30% increase in precision

Fig. 6 The impact of imbalance of observations between control and intervention condition on the precision of a stepped-wedge cluster
randomised trial. CMC: Cluster mean correlation. The balance statistic was calculated as: (number of observation in intervention condition –
number of observation in control condition)2. A larger value of the balance statistic indicates greater imbalance. Each point is the balance statistic
and power for a particular set of simulated cluster sizes. The default values for the design characteristics are: number of clusters: 12; CV: 1.5

Martin et al. BMC Medical Research Methodology          (2019) 19:123 Page 9 of 11



compared to a design with equal sized clusters. However,
other randomisations could lead to an 80% decrease in pre-
cision compared to a design with clusters of equal size.
These potentially large reductions (or sometimes increases)
in precision are particularly of concern in SW-CRTs with
large variation between cluster sizes, a small number of clus-
ters or small cluster-mean correlation (i.e. smaller cluster
sizes or smaller intra-cluster correlation).
We also demonstrated similar, although less marked

properties in the P-CRT. This is something that has not
been noted in the literature to date. In the P-CRT it has
been established that the loss of (average) efficiency due to
variation in cluster sizes rarely exceeds 10% [6, 19]. How-
ever, this average or expected loss in efficiency holds
under the assumption of a size-stratified randomisation
scheme [6]. When not stratifying the randomisation on
cluster size, the loss of efficiency can greatly exceed 10%
depending on the randomisation order. It is fairly typical
for a P-CRT to stratify or constrain the randomisation on
cluster size [11]. A constrained randomisation approach
has been recommended to minimise loss in power in a
SW-CRT [16]. We observed (for a limited set of scenarios)
that on average, the smaller the sample size imbalance, the
greater the precision. However, for a few limited scenarios,
we observed an inverse correlation between sample size
imbalance and precision. Further work is therefore needed
to determine when a constrained randomisation in SW-
CRTs, where the constraint minimises any sample size im-
balance, will achieve desired aims of increasing power and
where it might decrease power.

Limitations
Although the methods and results described here have been
for continuous outcomes, we suggest that until further re-
search is conducted these results are also assumed to hold
for binary outcomes. In this work, we have assumed an ex-
changeable correlation structure with only random cluster
effects. Further work is needed to consider more general
auto-correlation structures. For example, the inclusion of a
random cluster by time interaction [6, 10, 15], or an expo-
nential correlation model [13]. We also assumed observa-
tions were sampled uniformly across time-periods, which is
consistent with standard approaches for longitudinal cluster
randomised trials, but may not always be an assumption
that will hold in practice.

Conclusions
The actual realised power in a stepped-wedge trial with
unequal cluster sizes depends on the order of random-
isation of clusters to sequences. Design inflation factors,
allowing for varying cluster sizes, all assume a size-
stratified randomisation scheme. Only under this as-
sumption is the impact of varying cluster size known to
be minimal. Where randomisation schemes either do

not, or where it is infeasible to implement a size-
stratified randomisation scheme, the realised power
could be substantially higher or lower than the expected
power, even after allowing for variation in cluster sizes.
This is particularly important when there are a small
number of clusters or the variability in cluster sizes is
large. Constraining the randomisation on cluster size,
where feasible, might mitigate this effect.

Additional file

Additional file 1: Figure S1. The impact of imbalance of observations
between control and intervention condition on the precision of a
stepped-wedge cluster randomised trial with few clusters. The balance
statistic was calculated as: (number of observation in intervention condition
– number of observation in control condition). A larger value of the balance
statistic indicates greater imbalance. Each point is the balance statistic and
precision for a particular randomisation order. Values were calculated for all
possible randomisation orders. The cluster sizes for the 4 cluster design (a)
are: 10, 50, 100, and 500. The cluster sizes for the 5 cluster design (b) are: 15,
25, 50, 100, and 200. (PNG 40 kb)

Abbreviations
CMC: Cluster mean correlation; CRT: Cluster randomised trial; CV: Coefficient
of variation; DE: Design effect; ICC: Intracluster correlation; P-CRT: Parallel
cluster randomised trial; SW-CRT: Stepped-wedge cluster randomised trial

Acknowledgements
Not applicable.

Authors’ contributions
This work forms a chapter of JMs PhD (awarded 2017). JM undertook all the
simulations and wrote the first draft of the paper, under supervision of KH
and AG. KH and AG made a substantial contribution to all stages of the
project; including writing significant parts of the manuscript. All authors read
and approved the final manuscript.

Funding
This research was partly funded by the UK NIHR Collaborations for
Leadership in Applied Health Research and Care West Midlands initiative.
Karla Hemming is funded by a NIHR Senior Research Fellowship SRF-2017-
10-002. The funding body played no role in the design of the study, the
analysis and interpretation of results, or in the writing of the manuscript.

Availability of data and materials
The datasets used and analysed during the current study are available from
the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 21 January 2019 Accepted: 21 May 2019

References
1. Baio G, Copas A, Ambler G, Hargreaves J, Beard E, Omar RZ. Sample size

calculation for a stepped wedge trial. Trials. 2015;16:354.
2. Copas AJ, Lewis JJ, Thompson JA, Davey C, Baio G, Hargreaves JR.

Designing a stepped wedge trial: three main designs, carry-over effects and
randomisation approaches. Trials. 2015;16:352.

Martin et al. BMC Medical Research Methodology          (2019) 19:123 Page 10 of 11

https://doi.org/10.1186/s12874-019-0760-6


3. Eldridge SM, Ashby D, Kerry S. Sample size for cluster randomized trials:
effect of coefficient of variation of cluster size and analysis method. Int J
Epidemiol. 2006 Oct;35(5):1292–300.

4. Eldridge SM, Ashby D, Feder GS, Rudnicka AR, Ukoumunne OC. Lessons for
cluster randomized trials in the twenty-first century: a systematic review of
trials in primary care. Clinical trials. 2004;1(1):80–90.

5. Girling AJ, Hemming K. Statistical efficiency and optimal design for stepped
cluster studies under linear mixed effects models. Stat Med. 2016;35(13):
2149–66.

6. Girling A. Relative efficiency of unequal cluster sizes in stepped wedge and
other trial designs under longitudinal or cross-sectional sampling. Stat Med.
2018:1–13.

7. Hemming K, Haines TP, Chilton PJ, Girling AJ, Lilford RJ. The stepped wedge
cluster randomised trial: rationale, design, analysis, and reporting. BMJ
(Clinical research ed). 2015a;h391:350.

8. Hemming K, Lilford R, Girling AJ. Stepped-wedge cluster randomised
controlled trials: a generic framework including parallel and multiple-level
designs. Stat Med. 2015b;34(2):181–96.

9. Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster
randomized trials. Contemporary clinical trials. 2007;28(2):182–91.

10. Hooper R, Teeresntra S, De Hoop E, Eldridge S. Sample size calculations for
stepped wedge and other longitudinal cluster randomised trials; 2016.

11. Ivers NM, Halperin IJ, Barnsley J, Grimshaw JM, Shah BR, Tu K, et al.
Allocation techniques for balance at baseline in cluster randomized trials: a
methodological review. Trials. 2012 Aug;13(1):120.

12. Kerry SM, Bland JM. Unequal cluster sizes for trials in English and welsh
general practice: implications for sample size calculations. Stat Med. 2001;
20(3):377–90.

13. Kasza J, Hemming K, Hooper R, Matthews J, Forbes AB. Kasza J, Hemming K,
Hooper R, Matthews J, Forbes AB; ANZICS Centre for Outcomes & Resource
Evaluation (CORE) Committee. Impact of non-uniform correlation structure
on sample size and power in multiple-period cluster randomised trials. Stat
Methods Med Res. 2017. 1:962280217734981.

14. Martin J, Taljaard M, Girling AJ, Hemming K. Systematic review finds major
deficiencies in sample size methodology and reporting for stepped-wedge
cluster randomised trials. BMJ Open. 2016;6:e010166. https://doi.org/10.
1136/bmjopen-2015-010166.

15. Martin J, Girling A, Nirantharakumar K, Ryan R, Marshall T, Hemming K. Intra-
cluster and inter-period correlation coefficient for cross-sectional cluster
randomised controlled trials for type-2 diabetes in UK primary care. Trials.
2016b;17:402.

16. Moulton LH, Golub JE, Durovni B, Cavalcante SC, Pacheco AG, Saraceni V,
King B, Chaisson RE. Statistical design of THRio: a phased implementation
clinic-randomized study of a tuberculosis preventive therapy intervention.
Clin Trials. 2007;4(2):190–9.

17. Pan W. Sample size and power calculations for correlated binary data.
Control Clin Trials. 2001;22(2):211–27.

18. Rutterford C, Copas A, Eldridge S. Methods for sample size determination in
cluster randomized trials. Int J Epidemiol. 2015;44(3):1051–67.

19. Van Breukelen GJ, Candel MJ. Comments on ‘efficiency loss because of
varying cluster size in cluster randomized trials is smaller than literature
suggests. Stat Med. 2012;31(4):397–400.

20. Woertman W, et al. Stepped wedge designs could reduce the required
sample size in cluster randomized trials. J Clin Epidemiol. 2013;66(7):752–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Martin et al. BMC Medical Research Methodology          (2019) 19:123 Page 11 of 11

https://doi.org/10.1136/bmjopen-2015-010166
https://doi.org/10.1136/bmjopen-2015-010166

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Aims and objectives
	Motivating example
	Changing clinical communications: a stepped-wedge cluster randomised trial
	Estimating power with known cluster sizes
	Estimating power with unknown cluster sizes


	Methods
	Estimating power in a SW-CRT with known cluster sizes (equal or unequal)
	Estimating power in a SW-CRT with unknown (but varying) cluster sizes by simulation
	A simulation study to assess the impact of varying cluster size in a SW-CRT
	A simulation study to assess the impact of varying cluster size in a P-CRT


	Results
	Key results
	Stepped-wedge CRTs
	Coefficient of variation of cluster sizes
	Cluster mean correlation
	Number of clusters
	Number of sequences


	Discussion
	Limitations
	Conclusions

	Additional file
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

