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Abstract

Class B G protein-coupled receptors (GPCRs) comprise a family of 15 peptide-binding members, 

which are crucial targets for endocrine, metabolic, and stress-related disorders. While their protein 

structures and dynamics remain largely unclear, computer modeling and simulations represent a 

promising means to help solve such puzzles. Herein, we present a basic introduction to the 

methodology of molecular dynamics (MD) simulations and two analytical methods to assess the 

conformational ensembles and transitions of Class B GPCRs, using our recent studies of the 

human pituitary adenylate cyclase activating polypeptide (PAC1) receptor as an example. From 

long MD simulations, conformational ensembles with different roles in ligand binding and 

receptor activation are sampled to establish four states identified as either “open” or “closed” for 

the PAC1 receptor. Next, the dynamical network can be applied to analyze the simulations and 

identify key features within each conformational ensemble, which help distinguish the ligand-

bound states of the PAC1 receptor from the ligand-free one. Further, the Markov State Model has 

emerged as a key approach to construct the transition network and connect the GPCR ensembles, 

providing detailed information for the transition pathways and kinetics. For the ligand-free PAC1 

receptor, the transitions within the closed states are near 10–30 times faster than the open-closed 

transitions, which is likely related to the activation mechanism of the receptor. Overall, long MD 

simulations and analyses are useful to assess conformational transitions for the Class B GPCRs 

and to gain mechanistic insight, which is difficult to obtain using other methods.
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1 Introduction

G protein-coupled receptors (GPCRs), the largest family of trans-membrane proteins in the 

human genome, transduce a variety of signals, including hormones, neurotransmitters, 

odorants, tastants, and light, to regulate virtually all physiological responses for homeostasis 

[1, 2]. The more than 800 canonical heptahelical receptors are divided into 5 major classes 

based on sequence and structural similarities: rhodopsin (Class A); secretin (Class B); 

glutamate (Class C); adhesion and frizzled/taste. Class A is the largest class of more than 
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700 members with ~40 unique structures available. With just 15 members, the Class B 

secretin/glucagon/VIP family of GPCRs is critically important with respect to neural 

development, body calcium homeostasis, glucose metabolism, circadian rhythm, 

thermoregulation, inflammation, feeding behavior, pain modulation, stress and related 

endocrine responses [3–5]. Accordingly, these receptors are pharmacological targets for a 

variety of disorders including osteoporosis, hypercalcemia, type 2 diabetes, obesity, 

migraine and related chronic pain disorders, anxiety and depression. Despite the great 

pharmacological interests, only two full-length Class B receptor structures [6–8] have been 

determined. The three-dimensional molecular structures remain entirely or partially elusive 

among most Class B members. As a result, the detailed knowledge of receptor activation and 

regulation, such as the transitions among various states, is still incomplete. Therefore, for 

insight into ligand selectivity, activation, and regulation mechanisms, it is crucial to apply 

computer modeling to study the conformational states, as well as the associated transition 

pathways. Such insight will also serve as the foundation to design structure- and mechanism-

based strategies to modulate Class B GPCRs.

Class B GPCRs are activated by well-studied peptide hormones, such as corticotropin-

releasing factor (CRF), calcitonin gene-related peptide (CGRP), glucagon, glucagon-like 

peptide (GLP), pituitary adenylate cyclase activating polypeptide (PACAP), parathyroid 

hormone (PTH), secretin, and vasoactive intestinal peptide (VIP). The functional states are 

associated with distinct protein conformations as well as the presence of various ligands. 

One of the major challenges in studying the conformational transitions of Class B receptors 

is capturing the dynamics of the full-length receptor structure to accurately simulate the two-

domain binding model for receptor activation [9]. In contrast to Class A GPCRs, which 

contain only the heptahelical transmembrane domain (7TM), each Class B receptor 

possesses an additional extracellular domain (ECD) of ~120 amino acid residues that is 

crucial for high affinity peptide binding and dynamics that allow bound-ligand presentation 

to the 7TM for receptor activation. Given such structural complexity, the choreography of 

Class B receptor activation—induced by the neuropeptide—is likely different from that of 

Class A receptors.

Although only few are available in full-length structures in Class B family, e.g. the glucagon 

receptor (GCGR, PDBIDs: 5XEZ and 5YQZ) and glucagon-like peptide 1 receptor 

(GLP-1R, PDBID: 5NX2), the construction of full-length models of other Class B receptors 

is viable with current knowledge of the 7TM and ECD structures. The 7TM structures of 

four members had been determined between 2013 and mid-2018: GCGR (PDBIDs: 5XEZ, 

5YQZ, 5EE7, and 4L6R), corticotropin-releasing factor receptor (CRF1R, PDBID: 4K5Y), 

GLP-1R (PDBIDs: 5NX2, 5VAI, 5VEW, and 5VEX), and calcitonin receptor (PDBID: 

5UZ7). The ECD structures of nine members are known: glucose-dependent insulinotropic 

polypeptide (GIP) receptor (PDBID: 2QKH), GCGR (PDBIDs: 4ERS and 4LF3), GLP-1R 

(PDBIDs: 3IOL, 5E94, 3C59, 3C5T, and 4ZGM), PACAP receptor type 1 (PAC1R, PDBIDs: 

2JOD and 3N94), VIP/PACAP receptor type 2 (VPAC2R, PDBID: 2X57), PTH1 receptor 

(PDBIDs: 3CM4 and 3H3G), CRF1R (PDBIDs: 2L27, 3EHS, and 3EHU), CRF2R 

(PDBIDs: 1U34 and 3N96), and CGRP receptor (PDBIDs: 3N7P, 3N7R, and 3N7S). These 

experimental efforts allow the exploration of function-related conformational states and the 

assessment of transitions among these states via protein modeling and molecular dynamics 
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(MD) simulations. Under physiological conditions, GPCRs are not static and often transition 

fluidly and fleetingly from one conformation to another, forming ensembles of receptor 

microstates that kinetically constitute macrostates. These constitutive macrostates may 

respond to binding of specific ligands and allosteric modulators or preferentially favor 

particular signaling events. Thus, long MD simulations (conventional or with enhanced 

sampling) followed by structural-based analysis are suitable to sample and distinguish these 

states, as well as to identify their transitions.

However, despite the large body of simulation studies of Class A GPCRs [10–16], the 

growth of MD simulations to investigate Class B GPCRs (with the full-length or 7TM 

models) has only emerged recently, due to the increasing amount of 7TM crystal structures. 

These simulation studies range from a few hundred nanoseconds to tens of microseconds 

and have provided valuable information regarding the molecular basis of receptor dynamics 

[17, 18], stabilizing effects from point mutations [19], hydrogen bonding network at an 

allosteric site [20], and inactive-to-active transitions focusing on TM displacement [21, 22]. 

Often in good agreement with experimental evidence, these recent studies provide invaluable 

mechanistic insight, which is typically costly and lengthy to study using experimental 

approaches alone. With advances in high-performance computing (HPC) [23, 24] and 

multiscale modeling technology [16, 17, 24–27], MD simulations have become useful tools 

to explore more complex systems (i.e., Class B GPCRs in the oligomeric states, the ligand-

bound states, or the G protein/arrestin-bound states) on biologically relevant timescales. In 

this chapter, we provide a basic introduction to the methodology of MD simulation and the 

analysis to study conformational transitions of Class B GPCRs involving large-scale domain 

motions and helical displacements, using our studies of the PAC1 receptor as an example.

2 Methods

2.1 Description of the MD Protocol

2.1.1 Conventional MD Simulations—An MD simulation describes the motion of a 

collection of molecules over time in a system of interest according to the physical and 

chemical principles. Such a system often contains essential chemical/biological components 

(such as proteins, water, lipids, and ions) in a three-dimensional box at a condition to mimic 

real-world experiments (such as temperature and external pressure). Generally, in an all-

atom model, each atom is represented by a particle at a specific position in the simulation 

box with periodic boundary conditions, while the covalent bonds are treated like springs. 

The interactions between particles are described by equations and parameters—the so-called 

force field. According to the Newton’s laws, the particle motions are calculated in discrete 

time steps analogous to the film frames in a movie. The positions of atoms are updated from 

one step to the next; in a continuous fashion, as atoms move and time advances, a cinematic 

feature is constructed to show the conformational changes or transitions in the simulation 

box. In real practice, the time step for biological simulations is often chosen to be around 1 

to 2 femtoseconds (fs). Therefore, for a typical simulation of 100 nanoseconds (ns), the 

number of steps approximates a million for over ten thousand atoms in the system; multiple 

simulation trajectories (or replicas) are needed for each model construct to ensure reliable 
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data collection. With such high computational demands, MD simulations (i.e., for GPCRs) 

often require supercomputing resources.

In one of our studies of the PAC1 receptor, for example, each model system contains a PAC1 

receptor model, a lipid bilayer of ~219 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC) molecules, ~28,500 TIP3P water molecules, counter ions, and 0.15 M NaCl, 

totaling ~126,000 atoms in a periodic box of 95 × 95 × 134Å3. All the simulations were 

performed with CHARMM36-cmap force field on the specialized Anton supercomputer 

using the Anton software 2.13.0 [23, 28]. Microsecond-long MD simulations (2–2.9 μs) for 

four conformational states were performed in an NPT ensemble (310 K, 1 bar, Berendesn 

thermostat and semi-isotropic barostat) with a time step of 2 fs (see Note 1).

2.1.2 Preparation of the Starting GPCR Models—The conformational transition 

between two states of biomolecules, initial state (A) and final state (B), is often under 

thermodynamic (downhill energy profile) and/or kinetic control (uphill energy profile) [29]. 

For systems where the probability of reaching B is very low, a strategy is to start with 

multiple intermediate points which may proceed to A or B while their early conformational 

evolutions can structurally overlap within a certain range (initial region). Our current class B 

GPCR study [17] indicated that in a microsecond-long MD simulation, the dynamic free-

swinging process of the ECD, exposed to the solution, occurred during the first few hundred 

nanoseconds, after which the ECD interacted with the extracellular loops (ECLs) of the 7TM 

to greatly restrict its mobility. The large-scale domain motions lead to different ECD 

orientations with slight positional variations at the ECD–7TM interface. Thus, it is 

appropriate to choose initial conformations that have ECD free of interactions with ECLs 

and of different orientations relative to 7TM to initiate the conformational sampling. 

Notably, these starting conformations are likely metastable, and thus require them to be well 

equilibrated in short MD simulations. In our preparation of the PAC1 receptor models, four 

homology models, differing in the ECD orientations by dihedral rotation at the linker region, 

were generated from multiple short MD simulations for microsecond-long production 

simulations [17]. Additionally, the initial models can also be generated using enhanced 

sampling methods, such as replica exchange [30], adaptive tempering [31], steered MD [32], 

and accelerated MD [33]. In particular, these methods can accelerate a kinetic-control 

process, for example, the transition from inactive to active receptor states and vice versa 

involving the displacement of the intracellular structures related to transmembrane helix 6 

(TM6) [21, 22].

2.2 Analytical Methods for Conformational Transitions

While MD simulations provide direct visualization of GPCR conformations and 

conformational changes, the rich detail of atom positions also allows qualitative and 

quantitative characterizations of each conformational state and the transition from one state 

to another. For example, from four microsecond-long MD simulations [17], we obtained two 

major conformations distinct in the ECD orientations as the closed (G1, G2, and G3) or open 

(G4) states (Fig. 1), which implicate differential roles in ligand binding and receptor 

activation. Herein, we introduce two typical methods to analyze the conformational 

ensembles of Class B GPCRs and their transitions.

Liao et al. Page 4

Methods Mol Biol. Author manuscript; available in PMC 2019 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2.1 Dynamical Network Analysis—Given the conformational ensembles of variant 

ECD orientations, analysis of the dynamical network has been applied to identify the shared 

features of interactions and communication within the ligand-free PAC1 receptor (G1, G2, 

G3, and G4), in comparison with a trajectory in the ligand-bound state. Such analysis can be 

readily carried out with the Network View plugin [34–36] in the VMD program [37]. 

Dynamical networks were created from the last 150 ns of each trajectory. To define the 

dynamical network, each Cα atom of amino acid residues represents a node; two nodes are 

connected by an edge if any two of their heavy atoms are within4.5Å for more than 75% of 

the simulation time [36]. The edge distances dij are derived from the pairwise correlations 

(Cij) calculated by the program Carma v1.3 [38]. The community substructure of the 

network is obtained by the Girvan–Newman algorithm [39]. With correlation-based weights, 

communities correspond to sets of residues that move in concert with each other. The 

connections between nodes (representing amino acid residues) within one community 

should be stronger than the connections between nodes across different communities.

TM6 and the third intracellular loop (ICL3) play an essential role in the signaling process of 

GPCRs—by facilitating the binding of G proteins or other effector proteins at the 

intracellular receptor face after an outward conformational shift of the TM6/ICL3 segments 

(in the active state) [11]. The community decompositions of TM6 with weighted edges are 

displayed in Fig. 1 for four ligand-free states of the PAC1 receptor, in comparison with a 

ligand-bound state. In the ligand-free G1, G3, and G4 states of the PAC1 receptor, TM6 can 

be divided into two communities with its extracellular half (Fig. 1, purple) merging into 

communities containing TM3 or TM7. In G2, although the entire TM6 lies in the same 

community, it also joins the community containing the intracellular half of TM3. Thus, in all 

ECD open or closed ligand-free states, TM6 can be separated into two communities and 

exhibits topological dependency with adjacent TM helices (stronger correlations). By 

contrast, in the agonist-bound state, the entire length of TM6 behaves as a single community 

together with the intracellular half of TM5 and fewer correlations with TM3. The stronger 

communication within TM6 in the agonist-bound state may associate with signal 

propagation from the agonist-bound orthosteric pocket to the intracellular G protein-binding 

site. In direct terms, with fewer correlations with other neighboring TM helices, the single 

TM6 community permits an easier outward shift of the helix for the conformational changes 

necessary at the intracellular receptor face for G protein coupling and signaling.

2.2.2 Markov State Models—By applying the analysis based on the Markov State 

Model (MSM) to the extensive MD trajectory datasets, we have revealed the microsecond to 

millisecond-scale dynamics between open and closed PAC1 receptor conformations, 

interconnected within an ensemble of transitional states—timescales toward GPCR 

activation. The open-to-closed transition, together with the intrinsic features of the receptor, 

can provide important insight into signaling mechanisms and potential druggable sites. In 

the following, we describe the general concept and implementation of MSM, our 

construction and validation of MSM, and our transition paths and timescales among the 

PAC1 receptor ECD open and closed states.

We used the program MSMBuilder 3.2.0 [40, 41] to build a reversible MSM (see Note 2 for 

examples of execution). An MSM contains a set of state definitions and a transition matrix 
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characterizing the kinetics on this state space. MSM can model long-time scale kinetics from 

much shorter trajectories by efficiently sampling transitions between these metastable states 

[42–45]. For MD simulations, the MSM approach first transforms a collection of MD 

trajectories into a discrete set of S = {1, …, m} microstates in the conformation space. A m 
× m transition matrix T(τ) is computed, where each element Tij measures the probability of 

system going from one microstate (i) to another (j) within an observation time interval τ (lag 

time), by T i j = ci j/∑k = 1
m cik. Here, cij counts the number of times the system traverses from 

i to j at time τ. At timescales slightly longer than the microstate lag time, i.e. 2τ, …, nτ, the 

transition counts become less between microstates and fewer microstates are kinetically 

connected in a transition matrix. For a Markov process, the vector of probabilities of the 

system to be in any of its microstate at time (nτ) must meet the Chapman–Kolmogorov 
equation [42, 46].

p(nτ) = p(0) T(nτ) ≈ p(0)[T(τ)]n (1)

1. Dataset preparation.: First, we prepared all trajectories using the Cα coordinates of 

residues 30–419 in the PAC1 receptor, as the Cα atoms are often used to represent the overall 

protein structure. The first five and the last five amino acid residues were excluded, because 

they are highly dynamic in the N- and C-termini. The time evolutions of the receptor 

structures show that each PAC1 receptor model reached a relatively stable structure after 

200–500 ns; continuous structure relaxation improved the stability for another 1.5–2.5 μs 

(Fig. 2b). The last 1.5–2.5 μs of each microsecond simulation with stable final 

conformations were not included in building an MSM (see Note 3). Hence, the collected six 

shorter MD simulations of 20–50 ns each, and the first 200–550 ns of the microsecond long 

simulations, totaling 6324 configurations were used to build the MSM.

2. Clustering.: Next, the MD trajectories were transformed into a dataset of microstates 

based on structural similarities. We used the k-centers algorithm [40] to group the dataset 

into 55 clusters by RMSD metric with a mean distance of ~0.34Å and a maximum distance 

of ~0.56Å, which were within the range of the RMSD standard deviations of the last ~1.5 μs 

in Fig. 2b. The small cluster number, different from the hundreds to thousands of intrinsic 

conformations of previous protein folding/unfolding studies [47, 48], is the result of limited 

conformational changes like the ECD rotation around the melting linker.

3. Lumping and validation.: A series of transition matrices in the evolution of the 

observation interval (lag time) at τ, 2τ, …, nτ were constructed using maximum likelihood 

estimation. As the lag time is increased, fewer microstates are kinetically relevant 

(kinetically reach each other on timescales faster than the lag time) [49]. Thus, those 

kinetically relevant microstates can be lumped into macrostates (larger and coarser grained) 

using the Perron-Cluster Cluster Analysis (PCCA) method [50]. Validation was carried out 

to examine if the model at lag time = τ appears Markovian with increasing lag time = 2τ, …, 

nτ using both implied timescales and the Chapman–Kolmogorov test [46]. If the macrostate 

partitions were less robust along implied timescales or if the Markov model errors between 
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the true probability density at time nτ and the probability density predicted by the Markov 

model at the same time were large, then a refinement of the partition [46] or an improvement 

of the initial dataset [49] would be necessary.

4. Implied timescales.: The implied timescales as a function of the lag time and the 

eigenvalues of the transition matrix are shown in Fig. 3. Four macrostates were selected, 

given the number of the major gaps of the implied timescales as well as the number of 

eigenvalues of the transition matrix that were close to 1 [50]. For a transition matrix of 

microstates, the partition of four macrostates was calculated from the eigenfunction structure 

using PCCA [50]. Consistently, the conformations of G1, G2, G3, and G4 were lumped into 

the four macrostates, labeled as A, B, C, and D, respectively.

5. Chapman–Kolmogorov test.: In general, given a set of states A that contains either an 

individual microstate or set of micro-states, we compared the true probability density of 

T(nτ) based on the transition counts (known as observed trajectory) and the probability 

density predicted by [T(τ)]n [46, 48]. The initial stationary distribution at time τ restricted to 

a set A is given by

wi
A =

πi
∑ j ∈ Aπ j

i ∈ A

0 i ∉ A
, (2)

where π is the stationary probability of the m × m transition matrix T(τ). The trajectory-

based time-dependence of the probability after time nτ with starting distribution wA is given 

by

pMD(A, A; nτ) = ∑
i ∈ A

wi
ApMD(i, A; nτ), (3)

where pMD(i, A; nτ) is the trajectory-based estimate of the stochastic transition function 

given by

pMD(i, A; nτ) =
∑ j ∈ Aci j

obs(nτ)
∑ j = 1

m ci j
obs(nτ)

, (4)

where ci j
obs(nτ) is the number of transition counts between states i and j at time nτ. Likewise, 

the probability to be at A by the Markov model is given by

pMSM(A, A; nτ) = ∑
i ∈ A

wA TTn(τ)
i
, (5)
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We tested how well the equality pMD(A, A; nτ) = pMSM(A, A; nτ) holds, as whether the 

solid line is within the error bar range of the dash line in Fig. 4. The uncertainties of the 

transition probabilities estimated from the MD trajectories are computed as:

ϵMD(A, A; nτ) = n
pMD(A, A; nτ) − pMD(A, A; nτ) 2

∑i ∈ A ∑ j = 1
m ci j

obs(nτ)
. (6)

There are around 27 microstates that constitute the shortest and second shortest transition 

pathways between the closed and open states; they are identified as four subsets based on the 

macrostate division. The Chapman–Kolmogorov test of the four subsets is shown in Fig. 4, 

all of which ensure the test within statistical uncertainty. The transition probabilities from 

MSM agree well with the probabilities in observed trajectory within statistical uncertainty at 

a lag time of 1.68 ns. Thus, we built a four-macrostate MSM with 94% data in use with the 

lag time of 1.68 ns.

We used transition path theory (TPT) [48, 51–53] to calculate the minimum transition net 

flux of the shortest pathway connecting the ECD closed states or from the ECD open states 

to the closed states in the transition matrix. For state space S = {1, …, m}, we define the 

source set A, the target set B, and the intermediate set I. The rate of transitions observed 

from A → B per τ (time unit) is given by:

kAB = F / τ∑i = 1
m πi 1 − qi

+ (7)

where F gives the total transition flux by F = ∑i ∈ A ∑ j ∉ AπiT i jq j
+, πi is the stationary 

probability at state i, and qi
+ is a committor probability, qi

+ = 0 for i ∈ A, qi
+ = 1 for i ∈ B, 

qi
+ = ∑ j ∈ S T i jq j

+ for i ∉ {A, B} [48, 51, 54, 55]. With the lag time divided by the minimum 

transition net flux, we obtained the time to travel from one set of states to the other. The 

minimum transition net flux, number of micro-states, and the estimated transition time in the 

shortest pathway between the ECD closed and open states are summarized in Table 1. The 

pathways connecting the closed states (G1, G2, and G3) are relatively short, but from the 

closed states to the open states (G4) it is rather remote, suggesting a clear partition in the 

conformational states. Regarding the minimum transition flux, the reversible transitions 

within the closed states are about 10–30 times faster than the transition from open states to a 

closed one. Key conformations in the shortest pathways among closed and open states are 

summarized in Fig. 5.

3 Conclusions

In summary, conformational ensembles with different roles in ligand binding and receptor 

activation can be discovered using long MD simulations. Using the dynamical network 

analysis, shared features can be revealed in conformational ensembles of variant ECD 

orientations, comparing with a ligand-bound state. With the construction of Markov State 
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Model, the transition network kinetically connecting various GPCR ensembles can be 

identified. Overall, long MD simulations combined with these structural and kinetic analyses 

are useful tools to assess conformational transitions for the Class B GPCRs, based on which 

mechanistic insight can be gained to guide future designs of therapeutics to target these 

receptors.

4 Notes

1. In the MD simulations run by the program NAMD [56], we used the technology 

of Langevin dynamics [57] with a low damping coefficient of 1 ps−1 for the 

temperature control and the Nose-Hoover Langevin piston pressure control [58, 

59] with a piston period of 0.05 ps and a piston decay time of 0.025 ps (default 

settings). In the microsecond-long MD simulations performed on the Anton 

supercomputer, Berendesn thermostat/barostat were applied for the NPT 

ensemble.

2. Examples of Execution (Modules may change according to different versions of 

MSMBuilder):

### building microstates

msmb KCenters --inp ‘trajectory_path/*.dcd’ --transformed 

kcenters_rmsd.h5 --metric

rmsd --top trajectory_path/ca.pdb --n_clusters 55 --random_state 

1746

### building a transition matrix (in python interface)

from msmbuilder.dataset import dataset

from msmbuilder.cluster import KCenters

from msmbuilder.msm import MarkovStateModel

ds = dataset(‘kcenters_rmsd.h5’)

model = MarkovStateModel(lag_time=1, verbose=True).fit(ds)

for i in range(0, len(model.transform(ds))):

                      print i, len(model.transform(ds)[i])

sample = model.draw_samples(ds, 5)

###-scan implied_timescales---

tscale=[]
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n=[]

for i in range(1, 50):

                        model = MarkovStateModel(lag_time=i, n_timescales=10, 

verbose=True).fit(ds)

                        n.append(model.n_states_)

                        tscale.append(model.timescales_)

### lumping microstates to macrostates

model.eigtransform(ds, right=True, mode=‘clip’)

model.eigenvalues_

### choose number of macrostates base on model.eigenvalues_ that 

are closed to 1.

from msmbuilder.lumping import PCCAPlus

pcca = PCCAPlus.from_msm(model, n_macrostates=4)

macro= pcca.microstate_mapping_

###-stationary population–

model = MarkovStateModel(lag_time=1, verbose=True).fit(ds)

mydict = {i:model.populations_[i] for i in range(0, 

model.n_states_)}

top_pi=sorted(mydict, key=mydict.__getitem__, reverse=True)

### key attributes for Chapman-Kolmogorov test

model.mapping_

model.populations_

model.countsmat_

model.transmat_

### find the first five shortest paths

from msmbuilder.tpt import net_fluxes
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from msmbuilder.tpt import paths

netflux = net_fluxes(int, lst, model)

topN = paths(int, lst, net, num_paths=5)

commitor = committors(int, lst, model)

3. The last 1.5–2.5 μs of each microsecond simulation with stable final 

conformations were not included in building an MSM. A few trial tests showed 

that large population of final states caused the MSM to trim off the initial regions 

of less population and keep only some final states of large population to be most 

kinetically relevant.
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Fig. 1. 
Community analysis of the ligand-free ECD closed and open states, and the agonist-bound 

active state of the PAC1 receptor. The community decompositions of TM6 are displayed 

with weighted edges (thicker edges show greater correlation). The dynamical networks were 

created from the last 150 ns of each trajectory. In the ligand-free states G1, G3, and G4, 

TM6 splits into two communities, its extracellular half joins communities containing TM3 

or TM7. In G2, TM6 merges into the community with the intracellular half of TM3. In the 

agonist-bound conformation, the entire TM6 behaves as a single community with the 

intracellular half of TM5 and fewer correlations with TM3. Thus, in the agonist-bound PAC1 

receptor, residues within TM6 can propagate information relatively easily through multiple 

routes from the extracellular side to the intracellular face of the receptor without 

perturbations from other TM helices
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Fig. 2. 
(a) Plot of the ECD tilt angle (θ) against the ECD–7TM distance. Starting points are labeled 

with larger markers. (b) Time evolution of overall RMSD of the PAC1 receptor. RMSDs 

were computed by backbone alignments on initial structures with standard deviations of 

0.34–0.56Å in the last ~1.5 μs. Each model of the PAC1 receptor reached a relatively stable 

state after 200–500 ns, which had been continuously relaxed to demonstrate model stability 

for another 1.5–2.5 μs. The conformational states between which we calculated the shortest 

pathways are circled. Reprinted from Liao C, Zhao X, Brewer M, May V, Li J (2017) Sci 

Rep 7 (1):5427 with permission from Scientific Reports
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Fig. 3. 
Left panel: Implied timescales as a function of the lag time. There are three major gaps 

lasting from 2 to ~9 ns, implying four macrostate partitions (count as one more than the 

number of implied timescales above the major gap) [40]. Right panel: eigenvalues of the 

transition matrix at lag time of 4.8 ns. Only the first seventeen data are shown. There were 

four points close to 1. Reprinted from Liao C, Zhao X, Brewer M, May V, Li J (2017) 

Scientific Reports 7 (1):5427 with permission
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Fig. 4. 
Microstates, which constitute the shortest and second shortest transition pathways between 

the closed and open states, were divided into four subsets (a, b, c, and d) according to the 

macrostate division and examined by the Chapman–Kolmogorov test. The transition 

probabilities from MSM agreed well with the probabilities in the observed trajectories 

within statistical uncertainty. Reprinted from Liao C, Zhao X, Brewer M, May V, Li J (2017) 

Scientific Reports 7 (1):5427 with permission
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Fig. 5. 
Illustration of the PAC1 receptor’s conformational transition between the ECD open (G4) 

and closed (G1–G3) states with representative states from MSM and the transition-path 

theory. Vectors (showing the N-to-C direction of helix 1 in ECD) show the ECD 

orientations; and the ECD N-terminus is highlighted in a purple surface representation. 

Reprinted from Liao C, Zhao X, Brewer M, May V, Li J (2017) Scientific Reports 7 (1):

5427 with permission
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