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Abstract

Purpose: To identify immune subtypes and investigate the immune landscape of squamous cell 

carcinomas (SCCs), which share common etiology and histological features.

Experimental Design: Based on the immune gene expression profiles of 1,368 SCC patients in 

the Cancer Genome Atlas (TCGA), we used consensus clustering to identify robust clusters of 

patients, and assessed their reproducibility in an independent pan-SCC cohort of 938 patients. We 

further applied graph structure learning-based dimensionality reduction to the immune profiles to 

visualize the distribution of individual patients.

Results: We identified and independently validated 6 reproducible immune subtypes associated 

with distinct molecular characteristics and clinical outcomes. An immune-cold subtype had the 

least amount of lymphocyte infiltration and a high level of aneuploidy, and these patients had the 

worst prognosis. By contrast, an immune-hot subtype demonstrated the highest infiltration of 

CD8+ T cells, activated NK cells, and elevated IFN-γ response. Accordingly, these patients had 

the best prognosis. A third subtype was dominated by M2-polarized macrophages with potent 

immune-suppressive factors such as TGF-β signaling and reactive stroma, and these patients had 

relatively inferior prognosis. Other subtypes showed more diverse immunological features with 

intermediate prognoses. Finally, our analysis revealed a complex immune landscape consisting of 

both discrete clusters and continuous spectrum.

Conclusion: This study provides a conceptual framework to understand the tumor immune 

microenvironment of SCCs. Future work is needed to evaluate its relevance in the design of 

combination treatment strategies and guiding optimal selection of patients for immunotherapy.
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Introduction

Immunotherapy is becoming a pillar of modern cancer treatment. In particular, immune 

checkpoint blockade (ICB) such as anti-PD1 antibodies have demonstrated durable response 

and unprecedented clinical benefit in a subset of patients across multiple types of solid 

tumors (1–6). However, the response rates for single-agent ICB are relatively low, and not all 

patients benefit from immunotherapy (7). A critical unmet need is to identify mechanisms of 

response and resistance and design rational combination strategies with immunotherapy (8–

10). However, because of its complex and dynamic nature, our understanding of the immune 

response in tumor microenvironment remains incomplete (11,12).

Squamous cell carcinomas (SCCs) arise from epithelial tissues of the aerodigestive or 

genitourinary tracts. They are frequently found in head and neck, esophagus, lung, and 

cervix. SCCs share common histological features and certain risk factors such as smoking, 

alcohol consumption, and human papillomavirus (HPV) infection (13). Recent TCGA 

studies (14,15) have revealed that SCCs also demonstrate similar molecular patterns that are 

distinct from other cancer types. These studies were primarily focused on tumor cell-

intrinsic characteristics such as somatic mutations (16), copy number alternations, and 

dysregulated pathways. Although the immune microenvironment has been recently analyzed 

in a pan-caner or cancer specific settings (17–20), there are no studies that provide a 

comprehensive immune characterization specifically for SCCs.

In this study, we identified 6 robust pan-SCC immune subtypes based on consensus 

clustering of immune-related gene expression profiles, and further validated their 

reproducibility in an independent meta-cohort. We showed that each of the 6 immune 

subtypes was associated with distinct gene expression patterns, molecular and cellular 

characteristics, as well as clinical outcomes. Finally, our analysis revealed a complex 

immune landscape consisting of both discrete clusters and continuous spectrum across 

patients.

Materials and methods

Patients and datasets

This study was approved by the institutional review board (IRB) and conducted in 

accordance with ethical guidelines such as the Declaration of Helsinki. Patient informed 

consent was waived given the use of existing, de-identified public datasets. For the study 

design, please refer to supplementary methods and Fig. S1. The discovery cohort for 

identifying the immune subtypes consists of 1,368 patients with squamous cell carcinoma in 

TCGA (Supplementary Table S1). Four major cancer types were included: head and neck 

squamous cell carcinoma (HNSC), lung squamous cell carcinoma (LUSC), cervical 

squamous cell carcinoma (CESC), and esophageal squamous cell carcinoma (ESCA). Four 

independent cohorts (total n = 938), each representing the single largest public gene 

expression dataset outside TCGA for each of the four cancer types, were used to validate the 

immune subtypes (Supplementary Table S1). For details about data preprocessing, please 

refer to supplementary methods.
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Discovery and validation of the immune subtypes

Based on the expression of 1,989 immune-related genes (Supplementary methods and 

Supplementary Table S2), we used consensus clustering (21,22) (Supplementary methods) to 

identify robust clusters of patients, i.e., immune subtypes (IS) and immune gene modules 

(GM). Then, we validated the immune subtypes in a large independent meta-cohort collected 

from GEO. The in-group proportion (IGP) (23) and Pearson correlation among centroids of 

gene module scores were used to quantitatively measure the consistency in subtype 

identification at both patient and subtype levels in the discovery and validation cohorts 

(Supplementary methods).

Assessing clinical, molecular, cellular characteristics associated with the immune 
subtypes

We first evaluated the distribution of the immune subtypes according to cancer type and 

HPV infection status. Next, we assessed the prognostic value of the immune subtypes using 

log-rank test and multivariable Cox regression with age, stage, cancer type, gender and HPV 

infection status as covariates, using overall survival (OS) and progression-free survival 

(PFS) as the endpoint. Death and progression events after 60 months were censored due to a 

relatively short follow-up time and small number of late events in TCGA cohorts (24). The 

association of immune subtypes with a variety of immune-related molecular and cellular 

features (Supplement methods) (17) was assessed with ANOVA (Supplementary Table S3).

Defining the immune landscape

Considering the dynamic nature of the immune system, we conducted dimensionality 

reduction analysis using a graph learning-based method to reveal the intrinsic structure and 

visualize the distribution of individual patients (Supplementary methods). Briefly, this 

analysis projects the high dimensional gene expression data to a tree structure in a low 

dimensional space, where the local geometric information is preserved (25). This approach 

was previously used to model cancer progression and define developmental trajectory using 

bulk and single-cell gene expression data (25–27). Here, we extend the analysis to the 

immune gene expression profiles. This immune landscape reflects the relationship among 

patients in a nonlinear manifold, which may complement the discrete immune subtypes 

defined in the linear Euclidean space.

After defining the immune landscape, the intra-cluster heterogeneity within immune subtype 

1, 2, 4 and 6 was assessed in terms of gene module expression with ANOVA. The survival 

difference of 3 subgroups of immune subtype 4 was also compared using log-rank test.

Results

Immune subtypes and functional gene modules

By performing consensus clustering of 1,368 tumors based on the immune-related gene 

expression profile, we identified 6 robust immune subtypes and 7 gene modules in the 

TCGA discovery cohort (Supplementary Fig. S2). The patient-level annotation of the 

immune subtypes is shown in Supplementary Table S4. Gene modules appeared to be more 

closely clustered compared with immune subtypes. The functions of gene modules 
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correspond to angiogenesis, inflammation, reactive stroma, T cell, IFN-γ, TGF-β and 

differentiation (Supplementary Table S5). Specifically, our gene module of reactive stroma 

was consistent with a previously proposed 25-gene stromal signature (28), in which 23 out 

of 25 genes were included in our immune-related gene set and all 23 genes were assigned to 

this module. Gene module 6 was defined as TGF-β related due to its correlation with the 

TGF-β response score (29) (Spearman ρ = 0.47, P < 2.2×10−16). The annotation of gene 

module 7 as a differentiation module was further supported by its significant correlation with 

histological grade (Supplementary Fig. S3).

Each of the 6 immune subtypes was associated with distinct immune gene expression 

patterns (Fig. 1A and B). Among all subtypes, immune subtype 3 (IS3) had the lowest 

expression in the gene modules of inflammation, T cell, and IFN-γ, suggesting an immune-

cold phenotype. This is closely followed by IS6, which also had a low inflammation signal 

but with an intermediate level of T cell and IFN-γ module expression. By contrast, IS5 had 

the highest expression for most gene modules such as inflammation, reactive stroma, and 

TGF-β (except IFN-γ), implying an immune-hot but suppressive microenvironment. On the 

other hand, IS4 had a more favorable anti-tumor immune response with the highest T cell 

and IFN-γ gene expression and low reactive stroma and TGF-β, suggesting a favorable 

immune-activated phenotype. The remaining two subtypes IS1 and IS2 demonstrated an 

intermediate immune infiltration toward an immune-suppressive phenotype with elevated 

expression of reactive stroma and TGF-β modules.

To validate our findings in TCGA cohort, we assessed reproducibility of the immune 

subtypes in an independent GEO meta-cohort. The gene module expression patterns were 

highly concordant between discovery and validation cohorts with an average linear 

correlation of 0.93 (Supplementary Table S6 and Fig. S4). At the individual patient level, 

there was moderate to good agreement between the two cohorts (IGP from IS1 to IS6: 0.61, 

0.63, 0.61, 0.60, 0.72 and 0.55). All IGP values were significantly higher (P < 2×10−16) 

relative to a random partition into 6 groups (IGP = 0.17).

Clinical characteristics and prognoses of the immune subtypes

Each of the 6 immune subtypes included patients of all 4 types of SCC, and vice versa. The 

distribution of immune subtypes within each cancer type was tissue-specific (Chi-squared P 
< 2.2×10−16, Fig. 1C). For instance, a majority (~75%) of lung SCCs were clustered into 

subtypes 1 and 5, while around 80% of cervical SCCs were clustered into subtypes 4 and 6. 

On the other hand, the distribution of head and neck SCCs was much more diverse. Of note, 

the majority of patients with HPV+ disease were clustered in two subtypes (IS4: 40.9% and 

IS6: 32.3%, Fig. 1C).

We observed significantly prognostic impact of the immune subtypes in TCGA cohort (P < 

0.005, Fig. 2). Overall, IS4 was associated with the best prognosis for both OS and PFS. By 

contrast, the immune-cold subtype IS3 was associated with the worst outcomes among all 

subtypes. This survival difference was independent of cancer type, stage, age, gender, and 

HPV infection status (Table 1). The remaining subtypes had intermediate prognoses. Similar 

patterns were observed in TCGA CESC and HNSC cohorts (Supplementary Fig. S5A, B). In 

TCGA LUSC dataset, IS6 and IS4 had a marginally better OS compared with others (P = 
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0.071) (Supplementary Fig. S5C). No clear pattern was observed in TCGA ESCA dataset, 

likely due to a limited sample size (Supplementary Fig. S5D). Of note, among HPV+ 

patients, there was significant difference in OS between two major subtypes (IS6 vs IS4: HR 

= 2.04, 95% CI: 1.06 – 3.95, P = 0.034, Supplementary Fig. S6). The prognostic effect of 

gene modules was shown in Supplementary Fig. S7. Consistent with previous studies, we 

found that a higher expression score of T cell module was significantly associated with 

improved survival, while higher scores of reactive stroma and TGF-β modules were related 

to inferior survival.

Molecular and cellular characteristics of the immune subtypes

We assessed the relation between the immune subtypes and 57 previously defined immune-

related molecular features. Consistent with an immune-cold phenotype, tumors in IS3 had 

the least leukocyte and stromal fraction (Supplementary Fig. S8), the lowest lymphocyte 

infiltration signature score (30) and TCR diversity (Fig. 3A and B). Interestingly, IS3 was 

also associated with the highest degree of somatic copy number variation such as a high 

aneuploidy score (Fig. 3C and Supplementary Fig. S8). A closely related subtype is IS6, 

which also had low leucocyte and stromal fraction (Supplementary Fig. S8). However, 

compared with IS3, IS6 had an increased percentage of lymphocytes including CD8+ T and 

activated natural killer (NK) cells (Fig. 3D, E and Supplementary Fig. S9). The CD8+ T cell 

repertoire still appeared to be highly restricted (Fig. 3B). In addition, IS6 expressed 

relatively high proliferation (17) and wound healing scores (31) as well as the lowest 

aneuploidy and TGF-β response score (29) (Supplementary Fig. S8 and Fig. 3C, F).

Contrary to immune-cold IS3, IS5 had the highest leukocyte fraction, lymphocyte infiltration 

signature score and TCR diversity, which is consistent with an immune-hot phenotype (Fig. 

3A, B and Supplementary Fig. S8). Notably, IS5 was associated with the highest 

macrophage regulation score with macrophages consisting more than 40% of the leukocyte 

infiltration (Fig. 3G and Supplementary Fig. S8). However, the majority of tumor-associated 

macrophages tended to have a pro-tumor M2-polarized phenotype (Fig. 3H). Additionally, 

IS5 had one of the highest TGF-β response score (Fig. 3F). These data suggest that the 

tumor microenvironment of IS5 was immune-hot but highly immune-suppressive.

Different from the extreme cold/hot immune microenvironment in the above subtypes, IS4 

demonstrated a more balanced and favorable immune profile. Similar to IS5, IS4 also had 

high leukocyte fraction, lymphocyte infiltration signature score and a diverse TCR repertoire 

(Fig. 3A, B and Supplementary Fig. S8). One major difference from IS5 is that the immune 

composition in IS4 was enriched with lymphocytes, such as activated CD4+ memory T cells, 

Tfh cell, CD8+ T cell, and activated NK cells (Fig. 3D, E and Supplementary Fig. S9). Not 

surprisingly, IS4 had the highest local cytolytic activity (32), suggesting a preexisting 

antitumor immune microenvironment (Fig. 3I). Of note, IS4 was associated with the highest 

M1 to M2 ratio (Fig. 3H). In addition, IS4 had an elevated level of IFN-γ response (33) and 

suppressed TGF-β response (Supplementary Fig. S9 and Fig. 3F). A low genome aberration 

was also observed in IS4 (Fig. 3C and Supplementary Fig. S8).

The remaining two immune subtypes (IS1 and IS2) were more diverse with intermediate 

levels of immune features. Both IS1 and IS2 had relatively high stromal fraction, with 
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intermediate-to-low lymphocyte infiltration, TCR diversity and cytolytic score (Fig. 3A, B, I 

and Supplementary Fig. S8). IS1 had a high percentage of tumor-associated macrophages 

with an M2-polarized phenotype (Fig. 3H). IS1 also tended to be biased towards humoral 

immunity with high percentages of naïve B cells and plasma cells (Supplementary Fig. S9). 

Additionally, IS1 had high genome aberration, CTA score, and TGF-β response score (Fig. 

3C, F and Supplementary Fig. S8). On the other hand, a low genome aberration and tumor 

mutation burden (16), and the highest IFN-γ response score were observed in IS2 

(Supplementary Fig. S8).

Immune landscape of SCC

To facilitate visualization and uncover the underlying structures of the distribution of 

individual patients, we applied the graph learning-based dimensionality reduction technique 

(25,27) to the immune gene expression profiles. This analysis cast individual patients into a 

manifold with sparse tree structures, and defined the immune landscape of SCC (Fig. 4A). 

Consistent with our previously defined immune subtypes, many patients were segregated 

into distinct clusters, e.g., subtypes 3, 5, and 6. The location of individual patients in the 

immune landscape represents the overall characteristics of the tumor immune 

microenvironment in the corresponding subtype. For instance, the immune-hot subtype IS5 

and immune-cold subtype IS3 were distributed at the opposite end of the horizontal axis in 

the immune landscape. Therefore, we hypothesized that the horizontal axis in the immune 

landscape represents the overall immune infiltration. Indeed, the horizontal coordinate was 

highly correlated with the inflammation and T cell modules (ρ = 0.91 and 0.78, respectively; 

both P < 2.2×10−16). On the other hand, the vertical coordinate of the immune landscape 

appeared to be more complex and may reflect multiple biological processes, mainly the 

reactive stroma and TGF-β gene modules (ρ = 0.61 and 0.62, respectively; both P < 

2.2×10−16).

The immune landscape further revealed significant intra-cluster heterogeneity within each 

subtype. We observed that certain subtypes appeared to be more diverse and heterogeneous 

than others. For instance, IS1 could be further divided into 3 subgroups based on their 

location in the immune landscape, which showed different immune gene expression profiles 

in specific modules (Supplementary Fig. S10A). Similar results were obtained for IS2 and 

IS6 (Supplementary Fig. S10B and C). Interestingly, the three subgroups of patients in IS4 

as stratified by the immune landscape (Fig. 4B) were associated with distinct gene 

expression patterns and prognoses (Fig. 4C and D), and the same survival pattern was 

observed within cervical and head and neck cancer specifically (Supplementary Fig. S11). 

Within IS4, the subset of patients with the best prognosis (IS4A) was associated with the 

highest expression of T cell module. Although these patients were located very close to IS5 

in the immune landscape, their prognoses were rather different from IS5 (Fig. 4D). These 

results indicate that our immune landscape analysis provided complementary value to 

previously identified immune subtypes.
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Discussion

Immunotherapy is being used to treat an increasing number of cancers including squamous 

cell carcinomas (SCCs) in clinical practice or ongoing trials (4,5,34–36). However, response 

and survival benefit is typically limited to a subset of patients. A better understanding of the 

tumor immune microenvironment is needed for designing novel immunotherapies to 

improve response and outcomes. Here, we present the identification, independent validation, 

and comprehensive characterization of 6 reproducible immune subtypes of SCCs in a multi-

cohort retrospective study. We found that each of the immune subtypes was associated with 

distinct gene expression profiles, and accordingly demonstrated widely different patterns in 

tumor genetic aberrations, cytokine profiles, tumor-infiltrating immune cell composition, 

functional orientation and, importantly, clinical outcomes. This study provides a conceptual 

framework to understand the immune response of SCCs, and may have clinical implications 

for personalized immunotherapy.

Our work differs from recent immune landscape studies in several important aspects. First, 

we focused on squamous carcinomas that have the same histology and similar risk factors, 

e.g. viral infection or exposures to exogenous carcinogens. In a recent pan-cancer analysis, 

Thorsson et al. discovered (17) 6 immune classes across 33 cancer types of various tissues 

and etiology, where the vast majority (90–95%) of SCCs fell into two subtypes (C1: wound 

healing and C2: IFN-γ dominant) with almost identical prognoses. Our analysis further 

stratified these patients within the C1/C2 classes (Supplementary Table S7). Second, instead 

of using established signatures, we carefully curated a comprehensive set of genes reflecting 

various immunological processes. Third, we assessed the reproducibility of our immune 

subtypes in an independent cohort. Last but not least, our study further extends beyond 

previous studies for patient subtyping based on simple clustering analyses. The discrete 

subtype information failed to capture inter- and intra-cluster relationships and did not 

provide the overall structure of the patient distribution. To remedy those shortcomings, we 

applied graph learning approaches to uncover the tree structures of immune profiles among 

patients, which provided complementary information to clustering analysis and offered new 

insight into the complex immune landscape of SCC.

In a recent study specifically focused on head and neck cancer, Chen et al. proposed 3 

immune classes, i.e., active, exhausted, and non-immune class (19). Consistent with these 

findings, all patients in our immune-cold subtype IS3 were classified as the non-immune 

class defined by Chen et al. (19) in TCGA cohort (Supplementary Table S8). Similarly, the 

vast majority (91%) of patients in our immune ‘favorable’ IS4 belonged to the active 

immune class. On the other hand, the distribution for other immune subtypes was more 

heterogeneous with respect to the 3 immune classes. There was no dominant immune 

subtype within immune classes, and each class consisted of patients from at least 4 immune 

subtypes. Therefore, our study provides a different perspective of the complex immune 

landscape in head and neck cancer that complements previous analyses.

The impact of the tumor immune microenvironment on patient survival is well established in 

multiple cancer types (37). In our study, squamous carcinomas of IS4 demonstrated the 

highest levels of infiltration by immune effectors such as CD8+ T and activated NK cells, 
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and elevated expression of IFN-γ response. Accordingly, patients in subtype 4 had the best 

prognosis. In comparison, tumors of subtype 6 had reduced lymphocyte infiltration and thus 

these patients had relatively worse outcomes. Importantly, the same survival pattern was 

observed within the subgroup of patients with HPV-associated head and neck cancer and 

cervical cancer. This suggests that the immune profile may be a key determinant of 

outcomes across cancer types and could potentially be incorporated into future biomarker-

based risk stratification strategy for personalized therapy of HPV-associated cancer. Finally, 

the immune-cold tumors of subtype 3 had minimal lymphocyte infiltration, which is likely 

due to its high level of aneuploidy (38). Consequently, these patients appeared to have the 

worst survival. These results are consistent with previous studies showing that preexisting 

anti-tumor immunity generally results in improved prognosis across cancers (32).

The relative dominance between immune stimulatory and suppressive factors is critical in 

determining prognosis. Although tumors of subtype 5 demonstrated a high level of immune 

infiltration similar to subtype 4, its immune composition was dominated by M2-polarized 

macrophages with highly immune-suppressive factors such as TGF-β signaling and reactive 

stroma. Accordingly, patients in subtype 5 had significantly worse prognosis compared with 

subtype 4. Similar patterns were also observed for tumors of subtypes 1 and 2, which had 

high macrophage/lymphocyte ratio, and low infiltration by CD8+ T cells and activated NK 

cells, leading to an inferior prognosis. These data add to the accumulating evidence that the 

immune composition, functional orientation (39) and immune-suppressive mechanisms such 

as TGF-β signaling (40) play critical roles in determining therapeutic response and 

outcomes.

Traditionally, an individual-based model is often used to develop predictive and prognostic 

biomarkers, which requires the response to therapy and clinical outcomes to be known for 

each individual patient. By contrast, our approach is ‘unsupervised’, which relies on the 

immune-related gene expression profiles to reveal the underlying structures of the immune 

landscape within tumors. In future, the intrinsic properties of immune landscape may be 

incorporated when developing biomarkers. It is conceivable that a hierarchical model, first 

stratifying patients into subgroups and then applying individual-based risk stratification, 

might be used to predict clinical outcomes with biological relevance. The idea of ‘subtype-

specific’ biomarkers has been successfully applied to improve outcome prediction in breast 

and colorectal cancer (41,42). Therefore, integrating subtype analyses and individual-based 

model could be a promising approach to developing clinically relevant biomarkers.

While the immune landscape by and large recapitulated the immune subtypes based on 

clustering analyses, it also uncovered previously unappreciated intra-cluster heterogeneity 

with potential clinical relevance. For instance, a fraction of patients in IS4 were shown to 

have a superior prognosis relative to others in the same subtype. This insight could be only 

gained by integrating information from both immune subtyping and landscape analyses. 

Similarly, subtypes 1 and 2 showed divergent behaviors with intermediate transition states in 

the immune landscape. This raises the intriguing question of how to optimally modulate the 

host immune response so that patients are mobilized toward more favorable states, providing 

a roadmap to more successful immunotherapy.
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Our study has potential therapeutic implications for the rational design of combination 

immunotherapy strategies. For patients with a favorable immune microenvironment (e.g., 

subtype 4), immune checkpoint blockade (ICB) may be used to enhance the preexisting anti-

tumor immunity of these patients and further improve their survival. However, for patients in 

other subtypes, ICB alone may be insufficient due to the suboptimal immune activation or 

presence of immune-suppressive mechanisms. Combination of ICB with immune co-

stimulatory antibodies such as OX-40 and 4–1BB may be used to amplify or boost the 

dampened immune response for patients in subtype 6. On the other hand, for those with an 

immune-cold tumor (i.e., subtype 3), ICB should be optimally combined with cancer 

vaccines, oncolytic viruses, radiotherapy, chemotherapy, which may convert non-inflamed 

tumors into inflamed tumors by triggering an inflammatory response (43). For the remaining 

patients in subtypes 1, 2, and 5, depending on their specific immune and stromal 

microenvironment, macrophage (44) or NK cell targeted (45,46) therapies, CAF-targeted 

therapy (47), anti-TGF-β (48) or anti-angiogenic (49) therapies might be used together with 

ICB to revert the ineffective anti-tumor immune response.

In summary, we identified 6 reproducible immune subtypes of squamous cell carcinomas 

with distinct molecular characteristics and clinical outcomes. Our study provides a 

conceptual framework for the future design of rational combination treatment strategies as 

well as optimal selection of patients to improve immunotherapy outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational relevance

Immunotherapy is being used to treat an increasing number of patients with cancer 

including several types of squamous cell carcinomas (SCC). However, the response rates 

are relatively low and survival benefit is limited to a subset of patients. A better 

understanding of the tumor immune microenvironment is needed to improve response 

and outcomes for immunotherapy. In this multi-cohort retrospective study, we present the 

identification, independent validation, and comprehensive molecular characterization of 6 

reproducible immune subtypes of SCCs. We found that each of the immune subtypes was 

associated with distinct gene expression profiles, and accordingly demonstrated widely 

different patterns in tumor genetic aberrations, tumor-infiltrating immune cell 

composition and functional orientation (immune stimulating vs. suppressive), cytokine 

profiles, and, importantly, clinical outcomes. This study provides a conceptual framework 

to understand the tumor immune microenvironment of SCCs, and may have clinical 

implications for the design of novel immunotherapies and rational combination strategies.
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Figure 1. 
The immune subtypes and gene modules in TCGA pan-SCC cohort.

(A) Columns and rows represent patients and genes, respectively. Patients are arranged 

based on their immune subtypes and genes are ordered based on the gene modules. Cancer 

type and HPV infection status are also annotated for each patient. (B) Expression patterns of 

7 gene modules across 6 immune subtypes. The middle bar in each box represents the 

median expression level of corresponding gene module score in certain immune subtype. (C) 

The distribution of immune subtypes among cancer types and HPV infection status in the 

TCGA cohort.
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Figure 2. 
Five-year Kaplan-Meier curves for overall survival and progression-free survival of all 

patients stratified by the immune subtypes.

P value was calculated by the log-rank test among subtypes.
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Figure 3. 
Molecular and cellular characteristics associated with the immune subtypes.

The middle bar in each box represents the median level of corresponding features in certain 

immune subtype. The FDR-adjusted P values for all features were less than 0.05.
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Figure 4. 
The immune landscape of SCC and the intra-cluster heterogeneity within immune subtype 4.

(A) The immune landscape of SCC: each point represents a patient with colors 

corresponding to the immune subtype defined previously. (B) Patients of immune subtype 4 

could be further stratified into 3 subgroups based on their location in the immune landscape. 

(C) Gene module expression patterns were shown to illustrate the intra-cluster heterogeneity 

of immune subtype 4. * denotes FDR-adjusted P of ANOVA less than 0.05. (D) The three 

subgroups of patients in immune subtype 4 as stratified by the immune landscape were 

associated with distinct prognoses. Log-rank P value was calculated among subgroup 

stratification.
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Table 1.

Multivariable Cox regression analysis of overall survival and progression-free survival including immune 

subtype, cancer types, stage, age, gender, and HPV infection status

OS PFS

Variables HR 95% CI P HR 95% CI P

Immune subtypes

1 1.40 0.95 – 2.06 0.087 * 1.19 0.81 – 1.75 0.38

2 1.43 0.95 – 2.16 0.085 * 1.15 0.77 – 1.73 0.50

3 1.63 1.08 – 2.48 0.021 ** 1.52 1.01 – 2.29 0.046 **

4 1.00 - - 1.00 - -

5 1.35 0.90 – 2.03 0.14 1.13 0.75 – 1.71 0.56

6 1.55 1.02 – 2.35 0.040 ** 1.35 0.89 – 2.04 0.15

Cancer type

CESC 1.00 - - 1.00 - -

ESCA 1.16 0.65 – 2.07 0.62 1.54 0.88 – 2.67 0.13

HNSC 0.57 0.35 – 0.91 0.020 ** 0.57 0.35 – 0.92 0.022 **

LUSC 0.83 0.51 – 1.36 0.46 0.69 0.42 – 1.14 0.15

Age 1.02 1.01 – 1.03 0.00096 *** 1.01 1.00 – 1.02 0.089 *

Stage

I 1.00 - - 1.00 - -

II 1.23 0.93 – 1.63 0.14 1.34 0.99 – 1.81 0.059 *

III 1.78 1.33 – 2.38 0.00012 *** 1.75 1.27 – 2.42 0.00071 ***

IV 2.70 1.92 – 3.82 1.58 × 10−8 *** 2.88 2.01 – 4.14 1.00 × 10−8 ***

Gender (Male) 1.00 0.80 – 1.25 0.97 1.09 0.85 – 1.39 0.51

HPV+ 0.54 0.37 – 0.79 0.0017 ** 0.57 0.39 – 0.83 0.0030 ***

*
denotes P < 0.1

**
denotes P < 0.05

***
denotes P < 0.01.

Immune subtype 4 was used as the baseline for survival risk comparison for immune subtype variable.

CESC was used as the baseline for survival risk comparison for cancer type variable.

Stage I was used as the baseline for survival risk comparison for stage variable.
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