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Abstract

tRNA-derived fragments (tRFs) are a class of potent regulatory RNAs. We mined the datasets from 

The Cancer Genome Atlas representing 32 cancer types with a deterministic and exhaustive 

pipeline for tRNA fragments. We found that mitochondrial tRNAs contribute disproportionally 

more tRFs than the nuclear ones. Through integrative analyses, we uncovered a multitude of 

statistically significant and context-dependent associations between the identified tRFs and 

mRNAs. In many of the 32 cancer types, these associations involve mRNAs from developmental 

processes, receptor tyrosine kinase signaling, the proteasome, and metabolic pathways that include 

glycolysis, oxidative phosphorylation, and ATP synthesis. Even though the pathways are common 

to multiple cancers, the association of specific mRNAs with tRFs depend on and differ from 

cancer to cancer. The associations between tRFs and mRNAs extend to genomic properties as 

well: specifically, tRFs are positively correlated with shorter genes that have a higher density in 

repeats, such as ALUs, MIRs, and ERVLs. Conversely, tRFs are negatively correlated with longer 

genes that have a lower repeat density, suggesting a possible dichotomy between cell proliferation 

and differentiation. Analyses of bladder, lung, and kidney cancer data indicate that the tRF-mRNA 

wiring can also depend on a patient’s sex; sex-dependent associations involve cyclin-dependent 

kinases in bladder cancer, the MAPK signaling pathway in lung cancer, and purine metabolism in 

kidney cancer. Taken together, these findings suggest diverse and wide-ranging roles for tRFs and 

highlight the extensive interconnections of tRFs with key cellular processes and human genomic 

architecture.
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Introduction

tRNA-derived fragments (tRFs) are a new molecular category of short non-coding RNAs 

(ncRNAs) that are produced from specific cleavage of precursor and mature transfer RNA 

(tRNA) molecules (1,2). For tRFs that overlap the mature tRNA, four structural categories 

were reported initially: 5´-tRFs, 3´-tRFs, 5´-tRNA halves (5´-tRHs), and 3´-tRNA halves (3

´-tRHs) (3). Our group recently identified and reported a fifth category, the internal tRFs or 

i-tRFs, with numerous and abundant members (4,5).

The production of tRFs changes in response to factors like diet variations (6) and trauma (7). 

It has also been shown that tRFs are produced in a tissue-dependent manner (5), exhibit 

differential abundances in cancer compared to normal tissue (8,9), and are involved in trans-

generational inheritance (10).

Mechanistically, tRFs can regulate translation (11) as well as interact with the ribosome and 

aminoacyl tRNA synthetases (11,12). The specific category of tRHs can be produced under 

stress conditions (11,13) as well as constitutively (5) and its members can have endpoint 

modifications that render them invisible to standard RNA-seq (14). Some of the shorter tRFs 

can interact with Argonaute proteins (3,15,16) in a cell-type specific manner (5). tRFs that 

enter the RNA interference (RNAi) pathway follow base-pairing rules that match those of 

microRNAs (miRNAs) (3,17). Interestingly, tRF loading on Argonaute can be both Dicer-

dependent and Dicer-independent (3,17). Moreover, the decoying of an RNA-binding 

protein (RBP) by tRFs (18) and the potentially extensive binding of tRFs by RBPs (19) can 

affect cancer molecular biology and metastasis.

Previously, we showed that tRFs have links to Precision Medicine and hold promise for 

furthering our understanding of homeostasis and disease. Specifically, we demonstrated that 

the identity and abundance of tRFs depend on a person’s sex, population origin, and race/

ethnicity, as well as tissue, tissue state, and disease type (5,8,19). We also found that the 

associations (‘wiring’) of tRFs with mRNAs and molecular pathways is race/ethnicity-

specific in prostate cancer (PRAD) (8) and triple negative breast cancer (19).

The current literature highlights the heterogeneity of the tRFs’ roles, mechanisms of action, 

and functional impact. Given this heterogeneity, we pursued our studies in an integrated 

manner. We holistically investigated unexplored areas of tRF expression and patterns of 

inter-transcript (tRFs-mRNAs) associations in 32 cancer types of The Cancer Genome Atlas 

(TCGA) cohort. Our analysis distinguished tRFs based on whether they can be traced back 

to the nuclear or the mitochondrial (MT) genome. We also examined the attributes of the 

mRNAs with which the tRFs are correlated and sought potential dependencies of the tRF-
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mRNA associations on cancer type. Lastly, we examined possible links between tRFs and 

the repeat-element content of genes, and between tRFs and sex disparities.

Materials and Methods

Data acquisition and tRNA fragment profile generation

We downloaded 11,198 short RNA-seq datasets (sequenced samples) from TCGA’s Cancer 

Genomic Hub (CGHub) and the respective clinical metadata from TCGA’s data portal. We 

converted TCGA’s small RNA-seq datasets to FASTQ format using bam2FastQ (http://

genome.sph.umich.edu/wiki/BamUtil-v1.0.10). To ensure consistency with previously 

reported TCGA analyses, we worked with the GRCh37/hg19 genome assembly. We used 

MINTmap (20,21) to exhaustively and deterministically mine tRFs in all 11,198 datasets. 

These tRFs were recently made available through an interactive database (4). We computed 

an adaptive minimum-support threshold for each dataset using the Threshold-seq algorithm 

(22) retaining only those tRFs that exceeded threshold and also had mean normalized 

abundance ≥ 1 reads-per-million (RPM) in at least one of the 32 cancer types. We refer to 

tRFs using the “license plate” naming scheme that we introduced previously (5,23). We tag 

tRF sequences as “exclusive” if they exist only within the span of mature tRNAs that contain 

a CCA (the “tRNA space”) and appear nowhere else on the genome; otherwise we tag them 

as ambiguous. In the presented analyses we included the 10,274 “white-listed” datasets that 

contain no special annotations in the associated clinical metadata.

Race/ethnicity

We adhere to the NIH/TCGA designations. White (Wh) refers to person with origins in any 

of the original peoples of the far Europe, the Middle East, or North Africa. Black or African 

American (B/Aa) refers to persons with origins in any of the black racial groups of Africa.

tRF abundances/networks

We define the ‘normalized abundance’ of an isoacceptor (in RPM) for a dataset as the sum 

of the (normalized) abundances of all the tRFs that the isoacceptor produces. We define the 

‘normalized abundance’ of an isoacceptor for a cancer type as the average of the 

isoacceptor’s abundances across all the datasets of this cancer type. For the 5´-tRFs from 

tRNAHisGTG, and separately for each sample/dataset, we computed the ratio of abundance of 

5´-tRF ending at consecutive positions, then log2-transformed it, filtered out infinite values 

in the ratios (divisions by 0), and computed mean and standard deviation separately for 

tumor and normal samples. We distinguished 5´-tRFs starting at position −1 from 5´-tRFs 

starting at position +1 of tRNAHisGTG. Univariate statistical comparisons in abundance were 

carried out with the non-parametric Mann-Whitney U-test. For network visualizations, we 

collapsed all tRFs to the isoacceptor level: e.g., a node labeled “nAspGTC” represents all 
expressed tRFs that overlap the mature nuclear tRNAAspGTC.

tRNA base modifications and mapping with mismatches

We leveraged the known modifications of human tRNAs and the respective sequence 

alignments contained in MODOMICS (24). Per MODOMICS, a base’s “frequency of 

modification” is defined as the ratio of tRNAs with a modification at that base over the 
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number of considered tRNAs. Intuitively, had a modified base at position N of the mature 

tRNA stopped reverse transcription during library preparation, then tRFs from this tRNA 

would have appeared to possess a “pseudo-5´” terminus at position N+1. We examined this 

possibility at each mature tRNA position by counting the number of tRFs starting at that 

position and comparing it to the modification frequency that MODOMICS lists for the 

position immediately upstream.

Additionally, for 3´-tRFs, we also evaluated whether there is benefit in mapping tRFs after 

allowing a single nucleotide mismatch. Such a mismatch would, in principle, alleviate the 

potential impact on the sequenced reads of the known m1A58 modification (methylated 

adenine at position 58 of the mature tRNA). To this end, for all 3´-tRFs, we enumerated all 

possible sequence variations that result from changing exactly one nucleotide anywhere 

along the 3´-tRF at hand. We then examined which of these derivative “3´-tRFs” are: (1) 

supported by the available RNA-seq data; and, (2) can now be found in the genome outside 

of the sequence space of tRNAs identically (without when allowing no mismatch).

Correlations

We computed positive and negative tRF-mRNA Spearman rho correlation coefficients using 

only the tumor datasets, and separately for each cancer type. For bladder urothelial 

carcinoma (BLCA), lung adenocarcinoma (LUAD) or kidney renal clear cell carcinoma 

(KIRC), we split the tumor datasets by sex and carried out the correlations separately for 

each sex. For KIRC, we only considered samples that belonged in the ccA cluster in the 

TCGA analysis (25). For increased stringency, we further required that the median 

normalized abundance of each tRF be ≥ 2 RPM within the group of considered samples. For 

the mRNA profiles, we used TCGA’s files of normalized results 

(“rsem_genes.normalized_results”) filtering out any genes whose average abundance was 

less than the median of the means of abundances of all mRNAs across the primary tumor 

samples of the group under consideration. We determined which tRFs and mRNAs enter the 

correlation analyses separately for each cancer type (or, sex in the case of BLCA, LUAD, 

and KIRC-ccA). We used Python’s numpy (version 1.11.1) and scipy (version 0.18.1) 

packages. We kept tRF-mRNA pairs with Spearman correlation ≤ -0.333 or ≥ 0.333 and an 

associated False Discovery Rate (FDR) ≤ 5%. For most cancer types, we found tens of 

thousands of tRF-mRNA correlations satisfying these constraints. To focus on the strongest 

of the correlations and to balance stringency and specificity, we analyzed only tRF-mRNA 

pairs corresponding to the 5,000 highest (positive) and 5,000 lowest (negative) correlation 

values. All retained correlation pairs, correlation values, and FDRs are listed in the 

Supplement.

We computed commonly and differentially correlated tRF-mRNA pairs as we have 

previously done (19). Specifically, a tRF-mRNA pair is commonly correlated in both cancer 

types (e.g. LUAD and LUSC) or sexes (e.g. BLCA Male and BLCA Female) if it is listed 

among the significant pairs with the same sign in the two categories being compared. A pair 

is differentially correlated if it is listed among the significant pairs in exactly one of the two 

categories being considered or listed among the significant pairs in both categories but with 

opposite signs.
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Computing enrichments

For hierarchical clustering as well as visualizations, we used R and Cytoscape, as described 

previously (5,19). Protein-protein interactions were drawn from PICKLE (26). We carried 

out pathway enrichment analysis with DAVID (27) using as “background” all the genes that 

passed the expression filtering for the respective cancer type. We examined GO terms for 

biological processes (GOTERM_BP_FAT), molecular function (GOTERM_MF_FAT), cell 

compartment (GOTERM_CC_FAT), and KEGG pathways (KEGG_PATHWAY) for 

enrichment filtering at an FDR threshold of 0.05. BP terms in more than 10 cancer types 

were grouped into clusters based on the pairwise Jaccard index matrix measuring how 

common two BP GO terms are in terms of the genes they contain and are correlated with 

tRFs. We reduced and summarized the grouped GO terms with REVIGO (28) (allowed 

similarity=medium, similarity measure=normalized Resnik).

To construct the network of glycolysis/gluconeogenesis we connected the genes whose 

encoded proteins interact with the same metabolite: we downloaded the hsa00010 KEGG 

pathway structure, and identified the genes in the KEGG modules hsa_M00001, 

hsa_M00002, and hsa_M00003. We treated two genes as connected if and only if the 

reactions catalyzed by the encoded proteins include at least one common metabolite as 

substrate or product, collapsing duplicate edges to a single node. We constructed the 

network of purine metabolism in a similar manner by connecting all genes the enzymes in 

the biosynthesis of IMP from Ribose 1-Phosphate (KEGG pathway hsa00230). The gene 

collections for ribosomal and proteasomal proteins are from HGNC (https://

www.genenames.org/cgi-bin/genefamilies/).

Protein localization data are from UniProt (29) (October 10, 2017). For each cancer type and 

the mRNAs participating in correlations with tRFs, we identified the cellular compartments 

and destinations of the corresponding encoded proteins. We used a χ2 test of homogeneity 

of proportions to determine enrichment and/or depletion of compartments within this mRNA 

set compared to the mRNAs not participating in the correlations. We only used enriched or 

depleted compartments with an FDR of <5% and residual scores ≥ +3 (i.e. enriched and 

colored gold) or ≤ –3 (i.e. depleted and colored purple), respectively.

We used RepeatMasker (http://www.repeatmasker.org; hg19 version 4.0.5) to find the 

overlap of human genes with repeat elements. The coordinates of all introns and exons are 

from ENSEMBL 75. We formed a gene’s genomic span by taking the union of all its 

unspliced variants. We define the exonic portion of a gene as the union of all its exons. The 

gene’s intronic portion is what remains of the gene’s span after removing its exonic portion. 

We ran all Monte-Carlo simulations for 10,000 iterations, choosing genes randomly from the 

pool of background genes in each iteration, i.e. the genes that participated in the correlation 

analyses. For the randomly-chosen genes, we computed: the average span of the chosen 

genes, and the average density of each repeat element family, and did so using: (i) only the 

genes’ exonic portion to which we refer as the “mRNA space” of a gene; and, (ii) only the 

genes’ intronic portion. We defined a repeat family’s density (“repeat content”) in a genomic 

region as the fraction of the region that is annotated as belonging to the family. Upon 

completion of all the iterations, we built the ‘expected’ distribution for each parameter and 

used Z-scores to evaluate the enrichment/depletion of the ‘observed’ parameter. We used the 
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mean across the gene set that is correlated (either positively or negatively) with tRFs as the 

‘observed’ value. In total, we carried out 128 rounds of Monte-Carlo simulations (each with 

10,000 iterations). Shades of gold color represent enrichment (Z-score ≥ +2). Shades of 

purple color represent depletion (Z-score ≤ –2). To account for multiple testing, we also 

carried out Kolmogorov-Smirnov tests checking whether the observed distribution is 

statistically significantly different than the background one. The resulting P values were 

corrected to FDR values and are included in the Supplemental Tables.

For the case of BLCA, we carried out two different Monte-Carlo simulations with 10,000 

iterations. In the first simulation, we examined whether the deviations from the diagonal 

(where the number of correlations of an isoacceptor in males equals the ones in females) are 

random. For each iteration, separately for males and females, we randomly selected (with 

replacement) the same number of tRFs as counted in the correlations. We then collapsed the 

tRFs to the isoacceptor level and for each one we calculated the distance from the diagonal, 

i.e. its deviation from exhibiting the same number of correlations in both sexes and 

computed the median distance across them. Thus, we built an expected distribution. We also 

computed the median distance of the data from the diagonal and used the expected 

distribution to calculate the Z-Score. In the second simulation, and separately for each sex, 

we reassigned to each tRF the mRNAs with which it formed correlated pairs: we chose only 

among mRNAs that already participated in tRF-mRNA correlations while maintaining the 

number of correlations for each tRF unchanged: this allows us to estimate the significance of 

the differentially correlated observed tRF-mRNA pairs. At the end of the simulation (10,000 

iterations), we had an expected distribution of the differences in correlation coefficients that 

we plotted against the observed coefficient differences. Additionally, we point out that out of 

the 10,000 iterations, we found only 12 simulated tRF-mRNA pairs that would be 

considered as differentially correlated based on their coefficient and FDR values – this is 

vastly smaller than the 5,520 tRF-mRNA pairs that emerge from our analysis of the BLCA 

datasets, which emphasizes the statistical significance of the findings.

Repeat element density and its correlation with biological processes

In the context of the recent literature around repeats and tRFs, a central finding in our work 

was the link of tRFs with mRNAs with specific distribution in repeats. It is important to note 

that we came to these results by analyzing the relative abundances of transcripts. We did not 

take into account the magnitude of transcript abundance, or any genomic properties. In the 

context of genome organization, several publications previously highlighted the non-

randomness of repeat elements and their correlations with other gene properties, like length 

and GC content (see Results and Discussion). Therefore, it seems reasonable to hypothesize 

that the tRF-mRNA correlations at the transcriptomic level are the dynamic manifestation of 

the (static) genomic landscape. We emphasize the dynamic nature of these transcriptomic 

correlations because we observed that the same genomic properties significantly emerge in 

multiple contexts (cancer types), even though the tRF-mRNA pairs exhibit a strong context-

specific signature. From this perspective, we examined how repeat element distribution is 

associated with biological processes, or, in other words, what is the overarching genomic 
architecture that is intertwined with the transcriptomic results.
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We focused on the repeat elements that are mostly correlated with tRFs, namely SINE (ALU 

and MIR), LINE (L1 and L2), LTR (ERVL-MaLR) and DNA transposons (TcMar-Tigger 

and hAT-Charlie), and their instances that are sense to the whole genomic span of protein-

coding genes. These analyses do not aim at providing a thorough investigation but rather at 

demonstrating the links between biological processes and these repeats. For each repeat 

family, we computed the repeat content as described above and ranked the genes. Then, for 

each gene, we calculated the average rank and sorted the genes based on this metric. We 

considered the top 3,000 and the bottom 3,000 genes corresponding to the genes with the 

highest and lowest, respectively, density in repeats. We note that for the majority of the 

genes with low repeat density, the mean density value is zero, or close to zero. On these two 

lists, we carried out examined enrichments using DAVID with the same parameters as 

described above.

Results

We mined all the datasets (see Methods) of the TCGA repository and identified 23,413 tRFs 

that overlap mature tRNAs. The tRFs can be bulk-downloaded from https://cm.jefferson.edu/

tcga-mintmap-profiles, or, examined interactively through MINTbase at https://

cm.jefferson.edu/MINTbase/ (4,23). We focus the below analyses on 10,274 white-listed 

TCGA samples and the corresponding 20,722 tRFs with significant expression in at least 

one of these datasets (Supplemental Table S1). 16,133 (78%) of the discovered fragments 

belong to the new category of i-tRFs, in complete analogy to what we reported previously 

(5,8,19). We also identified 1,717 5´-tRFs (8% of all the identified tRFs), 2,840 3´-tRFs 

(14%) and 32 5´-tRHs. Fragments with lengths ≥ 28 nt are likely truncated versions of 

longer fragments that have been (artificially) shortened as a result of the 30-cycle limitation 

of the TCGA sequencing protocol (30). This limitation results in an under-representation of 

halves among the identified tRFs. Of the 20,722 tRFs, 13,904 (67%) have sequences that can 

be found only inside the tRNA space (“exclusive” tRFs). The sequences of the remaining 

6,818 (33%) tRFs are of ambiguous genomic origin, i.e., one third of the identified tRFs may 

not arise from tRNA genes.

Because the tRFs we analyze are believed to originate from mature tRNAs, they are 

expected to inherit the parental molecule’s base modifications. In principle, such 

modifications could hinder the reverse-transcription step during sequencing leading to an 

artificial 5´ endpoint for some tRFs, or, to misreading the nucleotide at the modified 

location. Our analysis did not find evidence that the presence of base modifications affects 

the identity of tRFs derived from TCGA (Supplemental Fig. S1A-B). Our analysis also 

confirmed that permitting nucleotide mismatches when mapping reads to the genome greatly 

hinders one’s ability to distinguish among tRFs and non-tRFs (Supplemental Fig. S1C). 

Thus, we enforced exact matching during read-mapping, which is a key property of 

MINTmap (20,21) – see Methods.

The case of 5´-tRFs from the nuclear tRNAHisGTG

Among the many diverse tRFs, the nuclear tRNAHisGTG stands apart as a notable exception 

(Supplemental Figure S1D-G). We previously reported in a model human cell line (BT-474) 
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that 5´-tRNA halves from tRNAHisGTG have the expected guanosine added to their 5´ 

termini (“position −1”) as well as an unexpected uracil (31). We refer to these molecules 

using the “His(−1G)” and “His(−1U)” qualifier, respectively. Examination of the −1 

positions of all 5´-tRFs from tRNAHisGTG across all TCGA samples revealed unexpectedly 

that His(−1U) is the most abundant modification (Fig. 1A). A smaller portion of the 5´-tRFs 

from tRNAHisGTG contain an adenine at the −1 position, or no modification. Even fewer 5´-

tRFs from tRNAHisGTG contain a guanosine or a cysteine (Fig. 1A). We also found that the 

His(−1U) 5´-tRFs exhibit a notable property: as nucleotides are progressively added to their 

3´ terminus, their abundance levels oscillate through position 23: while the absolute 
abundances of these 5´-tRFs change among cancer types (Supplemental Fig. S1D), the 

abundance ratios of His(−1U) 5´-tRFs that differ by 1 base at their 3´ terminus is conserved 

(see Fig. 1B for an example; full data matrix included in (Supplemental Table S2). This ‘see-

saw’ pattern persists across all 32 TCGA cancer types and extends to the normal tissue 

samples as well (Supplemental Table S2; Supplemental Fig. S2A). Note that the His(+1G), 

i.e. the unmodified 5´-tRFs beginning at position +1 of tRNAHisGTG or other isoacceptors do 

not exhibit this exact pattern or can exhibit other patterns (Supplemental Fig. S2B). We note 

that analogous patterns have been reported for tRNA-derived piRNAs in Bombyx mori (32).

Interestingly, the MT tRNAHisGTG does not generate any 5´-tRFs even though it produces a 

similar number of i-tRFs and 3´-tRFs as the nuclear tRNAHisGTG. Comparison of the relative 

abundances of nuclear and MT tRNAHisGTG fragments showed that they are not correlated 

(Fig. 1C). Moreover, across all TCGA datasets and cancer types, tRFs from the MT 

tRNAHisGTG are considerably less abundant than their nuclear counterparts (Fig. 1C, 

diagonal of Fig. 1D, and Supplemental Fig. S1E-F).

tRF lengths and tRNA cleavage patterns depend on the genome of origin

Motivated by the differences between the nuclear and MT tRNAHisGTG, and analogous 

differences we reported previously (5) in healthy and diseased samples, we extended our 

analyses and comparisons to the rest of the nuclear and MT isoacceptors.

In terms of unique tRF sequences, the contribution by the 22 MT tRNAs comparatively 

eclipses that by the 610 nuclear tRNAs. We stress that this statement is about the diversity in 

the identity of the produced molecules and not about their relative abundance levels. The 22 

MT tRNAs (3.5% of all tRNAs) are responsible for 6,031 (29%) of all distinct tRFs we find 

in TCGA. We note here that the human nuclear chromosomes are riddled by MT-like 

sequences (NUMTs) as well as by hundreds of tRNA-lookalikes (33). Thus, it is conceivable 

that MT tRFs are not the product of the MT genome exclusively.

In terms of length distributions, there are concrete differences between tRFs produced from 

nuclearly-encoded tRNAs and their MT-encoded counterparts. These differences persist in 

all analyzed cancer types (Supplemental Fig. S1G and Supplemental Table S3), mirror our 

previous findings in lymphoblastoid cells from healthy individuals (5), and suggest 

potentially distinct roles for nuclear and MT tRFs in cancer.

To investigate the relative contribution of the nuclear and MT genomes to the pool of present 

RNAs, we calculated the abundance of tRFs across cancer types at the isoacceptor level, 
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doing so separately for MT and nuclear isoacceptors. Use of unsupervised hierarchical 

clustering groups separates nearly all MT-encoded isoacceptors from their nuclear 

counterparts. However, Fig. 2A also shows that the abundance of MT tRFs depends on 

cancer type. We investigated this further by correlating the expression of tRFs per 

isoacceptor with the MT DNA copy number in 22 cancer types (34). With the exception of 

adrenocortical carcinoma (ACC) and kidney renal papillary cell carcinoma (KIRP), the 

average correlation coefficient of MT tRFs with mtDNA copy number was low (Spearman’s 

rho < 0.4) (Supplemental Fig. S3).

We also examined the clustering of tRFs when we consider their structural category. 

Separately for MT and nuclear fragments, we computed the abundance levels of 5´-tRFs, i-

tRFs, and 3´-tRFs. Because i-tRFs represent a more heterogeneous group of molecules, we 

divided them into six sub-categories based on the location along the mature tRNA of an i-

tRF’s 5´ terminus. Hierarchical clustering reveals some groupings of the structural 

categories that persist across the 32 cancer types (Fig. 2B): e.g., nuclear and MT i-tRFs that 

begin in region A are correlated with those that begin in the D loop; nuclear i-tRFs that 

begin in region B are correlated with nuclear 3´-tRFs; etc. A detailed cleavage analysis of 

tRNAs, which we carried separately for each of the 32 cancer types and tRF structural 

categories, further supports these findings (Supplemental Fig. S4).

These findings suggest that tRF production strongly depends on their genomic origin, with 

nuclear and MT tRNAs producing characteristically different tRFs, in terms of identity and 

abundance. tRF production and the resulting tRF profiles are the outcome of currently-

unknown mechanisms.

The associations between tRFs and mRNAs depend on molecular context

To identify links between tRFs and biological processes, we studied each of the 32 cancers 

for patterns of statistically-significant correlations between tRFs and mRNAs. We filtered 

these tRF-mRNA correlations using stringent criteria (see Methods) while examining MT 

tRFs separately from nuclear tRFs. We find that the identities of the tRFs and mRNAs that 

are present in the analyzed samples remain largely unchanged across cancer types 

(Supplemental Fig. S5A-C, and Supplemental Tables S4 and S5). However, the identities of 

the tRFs and mRNAs that are statistically-significantly correlated with one another change 

dramatically from one cancer type to the next (Supplemental Fig. S5D-G). Intriguingly, we 

find that the correlations with MT tRFs primarily comprise 3´-tRFs whereas the ones with 

nuclear tRFs include a mixture of all structural categories with a preference for 5´-tRFs or i-

tRFs in some cancer types (Fig. 2C).

To examine whether the observed correlation patterns reflect tissue-specific (and not cancer-

type-specific) events, we considered lung adenocarcinoma (LUAD) and kidney renal cell 

clear carcinoma (KIRC). For these two cancer types, the TCGA has analyzed additional 

types from the same tissue: lung squamous cell carcinoma (LUSC), kidney chromophobe 

(KICH), and KIRP. Examining the number of commonly- and differentially-correlated tRF-

mRNA pairs (19), we found that LUAD is closer to LUSC than to any other cancer type 

(Supplemental Fig. S5H): nonetheless, only a mere 14% of the significantly-correlated tRF-

mRNA pairs in LUAD are shared with LUSC. For KIRC, we found that it is as far from 
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KIRP and KICH as it is from any other cancer type. These data indicate that in addition to 

cancer type representing a major contribution to our analyses (Supplemental Fig. S5I) there 

can also be a tissue-specific contribution for some cancers (Supplemental Fig. S5H). Since 

decoupling the contribution of each component is not comprehensively feasible with the data 

that is available in TCGA, we refer to these correlations as “context-specific.” This is a 

particularly notable observation that echoes our recent report on triple negative breast cancer 

(19).

tRFs are positively correlated with shorter mRNAs and negatively correlated with longer 
mRNAs

With the tRF-mRNA correlation pairs in hand, we examined whether the involved mRNAs 

exhibit length biases. We used Monte-Carlo simulations and Kolmogorov-Smirnov tests 

corrected for multiple testing (see Methods, and Supplemental Table S6) to evaluate the 

length of the mRNA, as the length of the union of the respective exonic sequences. As Fig. 

3A shows, the mRNAs that are positively correlated with tRFs are, on average, significantly 

shorter that the average length of the expressed mRNAs. Also, the mRNAs that are 

negatively correlated with tRFs are, on average, significantly longer. This holds true for both 

nuclear and MT tRFs, and most of the 32 cancer types. To highlight the differences in 

distributions we show in Supplemental Fig. S6 box-plots of the length distributions for each 

of the four combinations: two correlation signs x two genomes-of-origin. These length 

biases persist when instead of mRNAs we examine the length of the intronic portion for 

genes whose mRNAs are correlated with tRFs (Supplemental Fig. S7). These results suggest 

preferential interactions of tRFs with genes of specific genomic architecture.

The localization of the encoded proteins is dependent on the genomic origin of the 
correlated tRFs

Next, we systematically examined the cellular localization of proteins encoded by mRNAs 

that participate in tRF-mRNA correlations. We considered seven destinations: nucleus, 

cytoplasm, endoplasmic reticulum (ER)-Golgi, mitochondrion, cell membrane, secreted, and 

“other” (e.g. vesicles, endosomes, etc.). Again, we separated positive from negative 

correlations, and nuclear tRFs from MT tRFs.

We find that tRFs are correlated with mRNAs whose protein products localize to various 

combinations of the seven destinations following localization patterns that are context-

specific (Fig. 3B-C). As far as positive correlations are concerned, mRNAs encoding nuclear 

proteins are significantly enriched in some cancer types, e.g. breast cancer (BRCA) and 

testicular germ cell tumors (TGCT) (Fig. 3B). But in uveal melanoma (UVM) and thyroid 

cancer (THCA), mRNAs encoding nuclear proteins are significantly depleted (Fig. 3B). We 

note that mRNAs encoding proteins destined for the MT are consistently enriched among 

the positive correlations with MT tRFs in 30 of the 32 cancers.

Analogous observations can be made for the negative correlations (Fig. 3C). In colon 

adenocarcinoma (COAD), rectum adenocarcinoma (READ), esophageal carcinoma (ESCA), 

and TGCT the negative correlations of both MT and nuclear tRFs are depleted in mRNAs 

encoding proteins destined for the nucleus or the MT; yet, they are enriched in the mRNAs 
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of secreted or cell membrane proteins. In other cancer types like PRAD, lower grade glioma 

(LGG), KIRP, and LUAD, the negative tRF-mRNA correlations include more mRNAs 

whose proteins are destined for the nucleus than expected by chance (Fig. 3C). UVM is 

another interesting case: the negative correlations involving nuclear tRFs are enriched in 

mRNAs whose proteins are destined for the nucleus whereas those involving MT tRFs are 

depleted in this regard.

These findings suggest extensive and context-specific flow of information across cellular 

compartments.

The mRNAs that are correlated with tRFs differ by cancer type but often belong to the 
same biological processes

Having established that the identity of mRNAs that are correlated with nuclear or MT tRFs 

depends on the molecular context, we examined whether this dependence extends to 

biological processes (Supplemental Table S7 and S8). We identified multiple examples of 

tRF-mRNA correlations and associated pathways that are enriched in only one cancer type 

(Supplemental Fig. S8A). For example, mRNAs from bile secretion, several amino acid 

metabolic pathways, and xenobiotic metabolism are exclusively prevalent among the tRF-

mRNA correlations in liver hepatocellular carcinoma (LIHC). As another example, mRNAs 

from the steroid biosynthesis pathway are prevalent only among the tRF-mRNA correlations 

in ACC.

We also found pathways that are enriched among the tRF-mRNA correlations in multiple 

cancers. For example, the KEGG pathway “ribosome” (hsa03010) is significantly 

overrepresented in 21 cancer types (Supplemental Tables S7 and S8) and the corresponding 

mRNAs are correlated with both nuclear and MT tRFs (Fig. 4A). For clarity, each tRF node 

in this figure represents all tRFs from the corresponding isoacceptor. Note how four MT 

tRNAs (mt-tRNAValTAC, mt-tRNALeuTAA, mt-tRNAProTGG and mt-tRNAGluTTC) have the 

highest out-degrees and are associated with all three groups of ribosomal proteins, including 

those forming the cytosolic LSU and SSU subunits. We also note that which tRFs are 

correlated with ribosomal proteins depends on the considered cancer type (Supplemental 

Fig. S8B).

We methodically pursued this further by seeking “Biological Process” (BP) Gene Ontology 

(GO) terms that are enriched in > 10 distinct cancer types. To account for the overlap in the 

included genes, we grouped them into clusters and identified the represented processes 

(Supplemental Fig. S8C and S9A-D). The BP GO terms formed four basic groups with a 

multitude of correlations involving nuclear and MT tRFs (Fig. 4B).

The largest group (“red”) of GO terms pertains to development, cell adhesion and signaling. 

Heart, blood vessel, and central nervous system development are included, as well as cell-

matrix adhesion, and receptor tyrosine kinase (RTK) signaling. Genes that are exclusive to 

this cluster include IGF2R, TGFBR2, ELK3, LRP1, ZEB2 and EDF1: all have positive and 

negative correlations with nuclear and MT tRFs in 28 of the 32 cancer types. The second 

largest group (“blue”) pertains to DNA and RNA metabolism, trafficking across 

compartments, and cell division. Notable genes in this category include TOP3B, RECQL, 
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VDAC2, TRAM2, XPOT, IPO11, PQLC2, BOB1 and RAD1. The third group (“magenta”) 

pertains to “oxidative phosphorylation and ATP synthesis.” Lastly, the “green” group 

pertains to genes linked to proteasome degradation, protein ubiquitination, antigen 

presentation, and NF-κB signaling.

We stress that despite the presence of the same pathways in different cancer types, the tRF-

mRNA correlations that fuel these findings involve different tRFs and different mRNAs in 

each cancer type. We demonstrate this with two examples, the proteasome and glycolysis 

pathways.

• For the proteasome, we analyzed the correlations from diffuse large B-cell 

lymphoma (DLBC) and KIRC. Fig. 4C shows the results in each case, with the 

proteasome genes in exactly the same placement to facilitate comparisons. The 

shown edges indicate correlations between tRFs and the respective mRNAs. Note 

how the identities of the correlated partners differ in the two cancers. For 

example, in DLBC, the expression of PSMD5 and PSMD9 exhibit the most 

correlations with tRFs whereas in KIRC it is PSMB3 and PSME2. In DLBC, the 

nuclear tRNAAlaTGC and tRNALeuCAG isoacceptors have the most links with 

mRNAs whereas in KIRC, it is MT tRNAValTAC.

• For the glycolysis, we analyzed the correlations from ESCA, THCA, uterine 

corpus endometrial carcinoma (UCEC), and UVM. Specifically, we dissected the 

correlations of tRFs with metabolism-related genes. Fig. 4D presents a 

reconstructed network of the genes from this pathway. The genes are connected 

based on their known interactions with common metabolites as substrates/

products of consecutive reactions in the pathway (see Methods). In ESCA, TPI1 
and GAPDH attract the attention of positively-correlated tRFs from several 

nuclear and MT isoacceptors. In THCA, it is GPI and PFKM that have the most 

associations (positive and negative) with tRFs. UCEC and UVM exhibit yet 

different correlations patterns involving genes from this pathway.

These examples highlight the existence of strong associations between tRFs and core 

cellular processes (ribosome, proteasome, glycolysis, etc.). Also, the findings indicate that 

the exact details of these associations and underlying putative regulatory links depend 

strongly on cancer/tissue type.

The genomic spans of genes whose mRNAs are correlated with tRFs contain specific 
repeat elements

In earlier work, we showed that the distribution of repeat elements in introns and exons is 

not random and that it captures functional conservation in the absence of sequence 

conservation (35,36). More recent efforts linked tRFs from tRNAGlyGCC to mRNAs in the 

mouse, through the MERVL family (6), and showed that tRFs can interfere with the reverse 

transcription or coding ability of two active mouse ERV families (37). We thus posited a link 

between tRFs and repeat elements at large in human cancers and investigated this possibility 

by mining the tRF-mRNA correlations at hand. Separately for each cancer type, we 

examined possible enrichment/depletion of transcripts in repeat elements distinguishing 

between sense and antisense orientations. We analyzed separately the intronic and exonic 
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portions of the genes (see Methods). We note here that, as our analyses showed, the 

abundance of mRNAs is not correlated with repeat element density in any of the cancer 

types (Supplemental Table S9).

We find multiple repeat families to be specifically enriched or depleted in genes whose 

mRNAs participate in correlations with tRFs (Supplemental Table S9). Fig. 5 shows the 

most frequently occurring ones. A striking link between the sign of the tRF-mRNA 

correlations and the repeat content of the corresponding mRNAs is evident: specifically, the 

introns and exons of genes whose mRNAs are positively correlated with tRFs are 

significantly enriched in several types of repeats. For mRNAs that are negatively correlated 

with tRFs, their genes are significantly depleted in these repeats. ALU and MIR 

retrotransposons are most significantly enriched or depleted across multiple cancer types. On 

average, exons show less pronounced enrichment/depletion scores compared to introns.

MT tRFs are correlated more strongly with repeats than nuclear tRFs. Generally, MT tRFs 

are positively (negatively, respectively) correlated with mRNAs whose introns have high 
(low, respectively) density in these repeats. This is true for exons as well. Unlike MT tRFs, 

nuclear tRFs show less pronounced associations with repeats through their correlated 

mRNAs (Fig. 5A-B). However, see the links between DLBC, KIRP, COAD, READ, head 

and neck squamous cell carcinoma (HNSC), pancreatic adenocarcinoma (PAAD), PRAD, 

and BRCA with ALUs and MIRs.

LINE elements warrant special mention. The introns of genes whose mRNAs are positively 

correlated with MT tRFs are frequently depleted in antisense L1s and consistently enriched 
in both sense and antisense L2s. For genes whose mRNAs are correlated (positively or 

negatively) with nuclear tRFs, their introns are only enriched in antisense L2s.

These results suggest that the links between tRFs and repeat elements are far-ranging and 

extend well beyond the recently-reported links with ERVs. Notably, the findings suggest 

links between MT tRFs and extra-mitochondrial transcripts and have direct implications for 

the roles of repeats in cancer biology.

The density of repeat element in human genes is indicative of the biological process

In our results so far, we focused on elucidating the genomic properties of the mRNAs that 

are correlated with tRFs. In other words, the mRNAs that were linked with tRFs were 

singled out based on abundance relationships between mRNAs and tRFs, and not on 

abundance magnitude or any genomic characteristics selected a priori. As noted above, many 

of the identified genomic properties are not independent. It is known that gene length and 

repeat element density follow specific distributions based on the encoded proteins’ 

involvement in biological processes (38), as well as the evolutionary trajectory of the 

genomic region (39). To link the underlying genome architecture with our results, we took 

an orthogonal approach and examined biological processes from a genomic perspective.

We considered all human genes, independent of expression, and ranked them based on the 

density of the repeat element categories of Figure 5. We then examined which pathways are 

over-represented in the most repeat-dense and the least repeat-dense gene sets (Supplemental 
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Table S10). We found a considerable number of enriched pathways with essentially no 

overlap. The gene set with low repeat density includes ribosomal proteins, homeobox genes, 

G-Protein coupled receptors, keratins, cytokines as well as FOX proteins. The corresponding 

enriched Gene Ontology (GO) terms include development, morphogenesis and 

differentiation. On the other hand, the gene set with high repeat density includes G proteins, 

tyrosine and serine-threonine kinases, as well as proteins with DHR1, DHR2, FERM and/or 

EF-hand domains. Moreover, genes with high repeat density belong to signaling pathways, 

including: MAPK, ErbB, Ras, PI3K-Akt, and cGMP-PKG.

These results emphasize that at the genomic level the architecture of genes and the 

placement of repeat elements is non-random. At the same time, the identified processes have 

considerable overlap with those shown on Fig. 4. This suggests a coupling between the 

transcriptomic level, where we uncovered novel interconnections between tRFs and mRNAs, 

and the architecture of genes at the genomic level.

tRFs are correlated with mRNAs in a sex-dependent manner

We previously showed that tRF-mRNA correlations capture differences between White and 

Black/African-American patients with triple-negative breast cancer (19) and PRAD (8). We 

posited that tRF-mRNA correlations also capture differences between patients of different 

sex. We are not aware of previous work that examined the possibility of molecular links 

between sex disparities and tRFs. To this end, we first focused on bladder urothelial 

carcinoma (BLCA) for which sex disparities with regard to incidence and survival rates have 

been documented (40). Because BLCA also depends on a patient’s race/ethnicity (41), we 

restricted our analysis to only samples from White patients (Supplemental Table S11).

A first, rather striking observation pertains to the number of correlations per tRNA 

isoacceptor in patients of different sex (Fig. 6A). The same isoacceptor is associated with 

markedly different numbers of mRNAs in male (X-axis) and female (Y-axis) patients. In 

fact, more isoacceptors are correlated with more mRNAs in females than in males: 

isoacceptors are labeled if they are associated with ≥ 2x (or ≤ 0.5x) mRNAs in one sex (Fig. 

6A): this difference is statistically very significant (Supplemental Fig. S10A). We also 

analyzed tRF-mRNA correlations in BLCA focusing on those that are either present in only 

one sex or change sign between sexes (Supplemental Table S12; Supplemental Fig. S10B). 

We find that 36% of the tRF-mRNA correlations found in female patients are absent from 

the male patients; and, 19% of the tRF-mRNA correlations found in male patients are absent 

from the female patients. Fig. 6B highlights BLCA’s sex-dependent differences with the 

help of cyclin-dependent kinases (CDK) or proteins interacting with CDKs (Supplemental 

Table S11).

We repeated the same analysis for LUAD (42) as well as for KIRC (43), specifically for 

subtype ccA (25). In LUAD, the case of MAP4K4 stands out: its mRNA has the largest 

number of differential co-expression links (Supplemental Table S11). We examined the 

MAPK signaling pathway further and found that many of its components and direct 

interactors are differentially correlated with tRFs between the two sexes (Fig. 6C). Note the 

presence of critical gene regulatory nodes, like PTEN, CREB1 and CEPBP. Interestingly, in 
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the original TCGA publication on LUAD it was pointed out that mutations could explain 

only part of the activation of the PI(3)K-MAPK pathway (44).

Similarly, in KIRC-ccA, we identified numerous sex-dependent tRF-mRNA correlation pairs 

(Supplemental Table S11), including mRNAs from the purine metabolism pathway 

(Supplemental Table S12). Several mRNAs that encode for enzymes in the biosynthesis of 

inosinic acid (IMP), the precursor of AMP and GMP, show extensive re-wiring with tRFs as 

a function of sex (Fig. 6D). The sex-dependent correlation differences extend beyond this 

pathway. Adenylate cyclase genes (ADCY3, ADCY4 and ADCY7) and nucleoside 

diphosphate kinases (NME1, NME3 and NME7) also exhibit sex-dependent differential 

correlation with tRFs in KIRC-ccA. We note that poor prognosis in KIRC has been 

associated with alterations in several metabolic pathways, including the pentose phosphate 

pathway (25).

These results suggest the possibility of tRFs being involved in the molecular events 

underlying sex disparities in multiple cancer types. They are in complete analogy to our 

previous reports that the tRFs are linked to race/ethnicity disparities in disease (8,19).

Discussion

We analyzed 20,722 tRFs that we mined from 10,274 white-listed TCGA datasets 

representing 32 human cancer types. In concordance with our previous results (5,8), the 

evidence continues to support the view that tRFs represent a novel and complex layer in 

post-transcriptional regulation. The structural category of i-tRFs was the richest in terms of 

the number of distinct tRFs found across the various TCGA datasets. This category, despite 

having been discovered only recently (5), has been gaining independent computational as 

well as experimental validations (4,18,45).

First, we evaluated whether base modifications affect our ability to accurately mine tRFs 

from TCGA. Base modifications in the mature tRNA have been thought to be a 

consideration when working with datasets generated using standard RNA-seq protocols (46). 

Through TCGA-wide analyses, we showed that base modifications have a rather limited 

impact on our ability to mine tRFs from these cancer datasets (Supplemental Fig. S1A-B). 

This is an expected result when the RNA-seq approach involves ligating both adapters prior 

to the reverse transcription step, which is the method used by the TCGA. Indeed, had a 

modification caused the reverse transcriptase to stop, then the corresponding molecule 

would not have been amplified and therefore would not have appeared among the sequenced 

reads. We also evaluated the impact of mapping sequenced reads by allowing mismatches. 

We found that doing so decreases our ability to establish the tRNA provenance (or lack 

thereof) of the considered molecules (Supplemental Fig. S1C).

We systematically investigated the relationships between tRFs and mRNAs, motivated by 

earlier work by others and us showing that tRFs affect mRNA abundance by acting like 

miRNAs (3,5), or by decoying RBPs (18,19). Among the tRF-mRNA pairs that emerge de 
novo from our analyses are several interactions that were validated recently in the literature: 

i-tRFs from tRNAGly and tRNATyr were shown linked to be linked to the mRNAs of 
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HMGA1, CD151, CD97 and TIMP3 through the RNA binding protein YBX1 (18). 

Additionally, the tRF-mRNA pairs also included several hundred correlations between tRFs 

and ribosomal proteins (Fig. 4A), as well as more than one thousand significant correlations 

with aminoacyl-tRNA synthases, including GARS, IARS and MARS: these correlations 

persist across many cancer types and are concordant with recent findings (1,12,13).

Among the mRNAs that are correlated with tRFs, we observed several pathways that are 

consistently present across multiple cancer types (Fig. 4B, and Supplemental Tables S4-S5). 

In addition, we identified other pathways that are unique to individual cancer types. Not 

surprisingly, our analyses show a tissue-specific contribution to the discovered correlation 

patterns. This is in agreement with our previously reported findings of context- and tissue-

specific correlations between miRNAs and mRNAs during cancer development (47) as well 

as other related work on additional levels of biological function (48). Specifically for 

glycolysis (Fig. 4), while the Warburg effect is a hallmark of cancer metabolism, there is 

increasing evidence in support of cancer-type- and context-specific metabolic signatures 

(49). From this perspective, the identified links to tRFs could shed light on the molecular 

events behind their regulation and functions in different tissues and cancer types.

MT tRFs featured prominently in all of our findings. Studies of the tRFs’ sub-cellular 

distributions are in their early stages (3). From this standpoint, the correlation of MT tRFs 

with processes that are not MT-specific suggests possible biogenesis from either MT tRNAs 

that exit from the mitochondrion (50) or from the transcripts of the MT “tRNA-lookalikes” 

we reported in nuclear chromosomes (33). It is worth recalling that the mitochondria have 

manifested roles in cancer, at multiple levels between the genetic (48) and the metabolic 

(51), and that mitochondrial processes can signal and affect the nuclear genome’s state (52). 

Thus, in light of our results, we postulate that tRFs act as mediators of an information 

exchange between the MT and the nucleus. For example, the localization patterns of Fig. 3B 

suggest possible roles of tRFs as regulators marshaling the communication exchange 

between different cell compartments.

Sex disparities are attracting increasing scientific interest. We examined three cancer types, 

BLCA, LUAD and KIRC, with documented disparities in TCGA (53) using a differential 

co-expression approach that provides deeper insights than differential expression (19,54). In 

all cases, we identified pathways that are integral components of the molecular biology of 

each cancer type as well as responsive to the hormone environment. Sex hormones are 

arguably important contributors to sex disparities in the disease context. In fact, sex 

hormones have been shown to regulate cell proliferation in the context of BLCA (55), 

signaling cascades, including the MAPK pathway, in lung cancer (56) as well as the pentose 

phosphate pathway (57). In addition, some tRHs have sex-hormone-dependencies (58). We 

posit that the networks of Fig. 6 depict components of the mechanistic contributions to sex 

disparities in cancer by tRFs.

We also identified links between tRFs and genomic features. Two striking results are the bias 

in the length of the mRNAs that participate in correlations with tRFs (Fig. 3A), and the 

enrichment of their genomic span in specific classes of repeats (Fig. 5). We note that the 

repeat class of ‘tRNA’ was not found enriched among the exons that comprise the mRNAs 
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exhibiting correlations with tRFs (Supplemental Table S9). This indicates that the observed 

tRF-mRNA correlations are not due to an enrichment of exons in tRFs.

In our earlier work, we described the non-random placement of repeat elements within the 

exons of genes (35), and across the genome (36), as well as outlined conspicuous 

interconnections with short RNAs (piRNAs) produced by exonic regions (59). In parallel 

studies of genome-wide methylation, we showed that repeat elements become demethylated 

as stem cell differentiation progresses (60). These previous findings collectively suggested 

potentially important roles for repeat elements.

More recent work highlighted the potential for regulation of repeat elements by tRFs 

(6,37,61). Consequently, the roles of repeat elements in gene expression regulation have 

been attracting attention (36,62). In the context of cancer, repeat elements continue to 

emerge as important components in genomic rearrangements (63) as well as potent 

regulators of gene expression (64), and as determinants of overall survival (65). As repeat 

elements are also associated with chimeric transcripts involving protein-coding exons (66), it 

is conceivable that tRFs can interact with such junctions just like we previously reported for 

miRNAs (67). Our results also suggest that, in addition to interacting with repeat elements to 

protect the genome’s integrity (61), tRFs are also involved in complex gene regulation. 

Indeed, short gene length has been associated with highly expressed genes and a 

proliferative phenotype (39). The state of proliferation is also molecularly unique at 

additional levels of cellular function. The metabolism of proliferative cells has the 

characteristic signature of the Warburg effect, whereas mature tRNA abundance profiles are 

distinct in proliferative cells as compared to differentiated ones (68). In addition, based on 

our genome-level analysis (Supplemental Table S10), pathways promoting proliferation 

include genes dense in repeats whereas differentiation include genes with no, or little, repeat 

content. These results have been discussed in the literature (36). Our analyses place the tRFs 

at crucial junctions of the multi-dimensional and complex process of cell proliferation.

In conclusion, our analyses reveal a dazzling array of complex relationships between tRFs 

and protein-coding mRNAs. These associations suggest the existence of numerous 

molecular interactions that await discovery and characterization. The presence of multiple 

families of repeats in the introns (and exons) of mRNAs with which the tRFs are correlated 

adds yet another level of complexity to these complex relationships.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

Across 32 TCGA cancer contexts, nuclear and mitochondrial tRNA fragments exhibit 

associations with mRNAs that belong to concrete pathways, encode proteins with 

particular destinations, have a biased repeat content, and are sex-dependent.
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Figure 1. The noteworthy case of tRNAHisGTG.
(A) Barplot showing the relative expression of the 5´-tRFs of tRNAHisGTG grouped based on 

their starting nucleotide at the −1 position (see text). “No” corresponds to 5´-tRFs that begin 

at position +1 and have no post-transcriptional additions. (B) Ratios of abundances between 

His(−1U) 5´-tRFs that end at positions i and i+1 respectively of tRNAHisGTG, for primary 

tumors from selected cancer types. The X axis represents ending positions i within the 

mature tRNAHisGTG. Vertical bars represent standard deviation. The ratios of abundances for 

all 32 cancer types as well as normal tissues are included in Supplemental Table S2 and 

Supplemental Fig. S2. (C) The median abundance of the nuclear and the MT tRNAHisGTG 

genes. The abundance is calculated as the sum of the abundances of the tRFs each tRNA 

produces. This is a simplified version of the bar-plots of Supplemental Fig. S1E-F. Cancer 

types are sorted based on the abundance of the nuclear tRNA. (D) Heatmap representing the 

P values (Mann-Whitney U-test) when comparing the abundances of the nuclear- and MT 
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tRNAHisGTG-derived fragments within the same cancer type (the diagonal of the matrix), or 

when comparing the abundance of the MT (upper triangle) or the nuclear (bottom triangle) 

tRNAHisGTG among cancer types. P values are log10-scaled.
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Figure 2. Distinct characteristics between nuclear and mitochondrial tRFs.
(A) Heatmap showing the mean isoacceptor abundance (see Methods). Hierarchical 

clustering (metric: Kendall’s tau distance) groups mitochondrial (MT) and nuclear (N) 

isoacceptors into separate clusters. (B) Heatmaps and hierarchical clustering (metric: 

Kendall’s tau distance) of the mean abundance of each structural category per genome 

(nuclear or MT). The i-tRFs are split into sub-categories based on their the location of the 5´ 

terminus. Note the separation of nuclear and MT tRFs. (C) Heatmap and hierarchical 

clustering (metric: Euclidean distance) of the distribution of tRFs participating in 

correlations with mRNAs, for three structural categories. The values represent number of 

tRFs normalized to the number of i-tRFs 5´-tRFs and 3´-tRFs.
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Figure 3. tRFs are preferentially positively correlated with shorter mRNAs and context-specific 
cellular destinations of the encoded proteins.
(A) Heatmap and hierarchical clustering (metric: Euclidean distance) on the Z-scores of the 

mean length of a gene’s mRNA-space (i.e. the union of the exons) for mRNAs participating 

in tRF-mRNA correlations, compared to the observed length distribution of the transcribed 

mRNAs. Purple color indicates statistically significant depletion whereas gold means 

statistically significant enrichment. (B-C) The localization of the protein products whose 

mRNAs are statistically-significantly correlated either positively (B), or negatively (C), with 

nuclear (top row in each group) and mitochondrial (MT) (bottom row in each group) tRFs. 

The size of the shown rectangles corresponds to the number of protein products that localize 

in the shown compartment. The color of the block represents enrichment (gold) or depletion 
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(purple) compared to the expected distribution (P < 0.001; χ2 test). The shown dendrogram 

results from the hierarchical clustering (metric: Euclidean distance) of cancer types on the 

residual scores, as computed by the χ2 test, of all panels. The vertical red lines separate the 

three main cancer groupings as defined by the dendrogram and serve as visual reference 

points within the figure.

Telonis et al. Page 27

Cancer Res. Author manuscript; available in PMC 2020 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. tRFs correlate with universal processes in a context-dependent manner.
(A) Ribosomal proteins as an example of a core pathway comprising genes whose mRNAs 

are correlated with tRFs in at least three different cancer types. The mRNAs are grouped 

based on the complexes in which the encoded proteins participate. (B) Network of tRFs and 

groups of enriched biological processes are linked if they appear in at least 10 cancer types. 

The thickness and gray tone of the edge is proportional to the number of average 

correlations of the tRF-mRNA pairs across cancers. The GO terms and their groupings are 

shown in Supplemental Fig. S8-S9. (C-D) Examples of context-specific wiring of core 
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pathways with nuclear and mitochondrial tRFs. The proteasome (C) genes are grouped 

based on subunit identity. For the glycolysis network (D), we connected genes if the encoded 

enzymes catalyze consecutive reactions. Gene nodes are colored cyan if they are correlated 

with tRFs in that cancer, otherwise they are shown as cyclical contours. For both the 

proteasome (C) and the glycolysis (D) networks, the mRNAs are arranged in exactly the 

same manner: note how, in different cancer types, the tRFs are correlated with different 

mRNAs within these networks.
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Figure 5. tRFs are correlated with genes of specific repeat element content.
Heatmaps of the Z-scores of the mean density of each repeat element category with 

reference to the background density distribution of mean repeat content in genes correlated 

with nuclear (A) and MT (B) tRFs. The enrichments/depletions were calculated separately 

for the exons (top panel) and the introns (bottom panel) of the genes whose mRNAs are 

correlated with the tRFs. The repeat categories (rows) are ordered in the same way for all 

four panels. The shown dendrogram at the bottom of the figure results from the hierarchical 

clustering (metric: Manhattan distance) on the matrix of the Z-scores of all shown panels. 

Details about the overlap of repeat families with the genes whose mRNAs are correlated 

with tRFs can be found at Supplemental Table S8 for each of the cancer types.
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Figure 6. Sex disparities in the correlation of tRFs with mRNAs in bladder, lung and kidney 
cancers.
(A) Plot showing the number of correlations that the tRFs from different isoacceptors have 

with mRNAs in each sex in primary tumors of BLCA. Isoacceptors are colored and labeled 

if the tRFs that originate in them participate in correlations with mRNAs that are at least 
twice as many in one of the two sexes compared to the other. Note that this is a log2-log2 

plot. (B) Protein-Protein interaction network of CDKs and the proteins that interact with 

CDKs. Nodes are colored based on the mRNAs’ sex-specific correlation patterns in BLCA. 

Specifically, nodes are colored green if the mRNA is correlated with tRFs exclusively in 

male subjects and orange if it is respectively found in female subjects only. If the mRNA is 

differentially co-expressed with different tRFs in each sex, then the node is colored magenta. 

CDKs that are not differentially co-expressed with tRFs are colored cyan. (C) Protein-

protein interaction network of the MAPK signaling network and the proteins that interact 

with them. The nodes are connected to isoacceptors if the corresponding mRNAs are 

correlated with the corresponding tRFs in only one sex. (D) Metabolic network of IMP 

biosynthesis. Nodes are connected if the encoded proteins catalyze consecutive reactions in 

purine metabolism. The nodes are connected to isoacceptors if the corresponding mRNAs 
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are correlated with the corresponding tRFs in only one sex. All analyzed samples in this 

Figure correspond to donors of one race/ethnicity (White).
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