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Abstract

Understanding how cognitive processes affect the responses of sensory neurons may clarify the 

relationship between neuronal population activity and behavior. However, tools for analyzing 

neuronal activity have not kept up with technological advances in recording from large neuronal 

populations. Here, we describe prevalent hypotheses of how cognitive processes affect sensory 

neurons, driven largely by a model based on the activity of single neurons or pools of neurons as 

the units of computation. We then use simple simulations to expand this model to a new 

conceptual framework that focuses on subspaces of population activity as the relevant units of 

computation, uses comparisons between brain areas or to behavior to guide analyses of these 

subspaces, and suggests that population activity is optimized to decode the large variety of stimuli 

and tasks that animals encounter in natural behavior. This framework provides new ways of 

understanding the ever-growing quantity of recorded population activity data.
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INTRODUCTION

Cognitive processes that improve perception, such as attention, learning, and motivation or 

arousal, are unique tools in the study of the relationship between neurons and behavior. 

Understanding what changes in the responses of sensory neurons when behavioral 

performance improves is key to understanding what aspects of the neural code are most 

important for encoding sensory stimuli and guiding behavior in the first place.

The effects of cognition on small numbers of sensory neurons are well studied. Numerous 

studies have shown that cognitive processes multiplicatively scale, or change the gain of, the 

trial-averaged responses of individual sensory neurons (Gilbert & Sigman 2007, Maunsell 

2015). Recently, a growing number of studies have demonstrated that cognition also affects 

the response variability shared between pairs of neurons [termed spike count or noise 

correlations, or rSC] (for a review, see Cohen & Kohn 2011).
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However, linking these changes in small numbers of neurons to performance has been 

difficult. The relationship between single sensory neurons and behavior is weak and requires 

large amounts of data to quantify (Nienborg et al. 2012). Models have focused on whether 

response changes associated with cognition improve the amount of sensory information 

encoded by neuronal populations, but the relationship between single neurons, noise 

correlations, and information is complex (Kohn et al. 2016).

Most models designed to relate neuronal activity to perception are built on the idea that the 

individual neuron is the critical unit of neural computation. These models have been 

invaluable for generating hypotheses and integrating experimental data. However, while 

improvements in recording technology have made it possible to monitor the responses of 

larger populations of neurons, our understanding of neural coding has not kept pace with the 

technology. It has become clear that understanding the relationship between large 

populations and performance is not simply a matter of scaling up old analyses and models.

Instead, we propose that the relationship between sensory neurons and behavior requires a 

new conceptual framework and experimental and analytical strategy. We propose the 

following:

1. The relevant units of computation are arbitrary combinations of the responses of 

many neurons rather than average firing rates of groups of neurons with certain 

properties.

2. To gain insight into how these subspaces guide behavior, it is critical to compare 

population activity to either the activity of neuronal populations in other brain 

areas or the animal’s behavior on a trial-to-trial basis.

3. Rather than optimally discriminating responses to a specific pair of stimuli in a 

laboratory task, animals naturally read out stimulus features using decoding 

strategies that would work for the large set of stimuli and behavioral tasks they 

encounter in natural vision.

Here, we describe the framework that has guided much of the research in this 

field, review insights from new experiments, and use novel simulations to 

investigate the implications of these new ideas.

THE POOLING MODEL

The conceptual foundation for nearly all efforts to understand the relationship between 

sensory neurons and behavior is a simple model that is often referred to as the pooling model 

(Shadlen et al. 1996). This model has provided a rigorous basis for making and testing 

predictions about the relationship between neuronal activity and behavior, and it is arguably 

the primary reason that our understanding of the neural computations underlying perceptual 

decision making outpaces our understanding of the mechanisms underlying other systems 

and behaviors. Accordingly, the pooling model has had a broad influence across many fields 

of neuroscience (Brody & Hanks 2016, Carandini & Churchland 2013, Gold & Shadlen 

2007, Heekeren et al. 2008).
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The pooling model was developed to explain the responses of motion direction-selective 

neurons in the middle temporal area (MT) while rhesus monkeys performed a challenging 

perceptual discrimination task (Parker & Newsome 1998). In the basic conception of the 

model, the responses of groups of MT neurons encode sensory evidence in favor of each of 

the two possible behavioral choices. For example, in a left-right discrimination task, a pool 

of leftward-preferring MT neurons would provide evidence in favor of leftward choices and 

an analogous pool would provide evidence in favor of rightward choices. The model makes 

decisions by comparing the average responses of the neurons in the two pools.

For the study of cognition and behavior, the pooling model’s greatest strength is that its 

simple conceptual framework generated many testable hypotheses about how neuronal 

activity might depend on cognition and how those changes might improve perception. In 

fact, although it is rarely cited for this inspiration, all the predominant hypotheses about how 

cognition improves perception can be thought of as coming from the framework of the 

pooling model.

PREDOMINANT HYPOTHESES ABOUT HOW COGNITIVE PROCESSES 

IMPROVE PERCEPTION

Hypothesis 1: Cognitive Processes Improve Sensory Information Encoding

Support—The first and, by far, most studied hypothesis is that cognitive processes improve 

performance by improving the amount of stimulus information that is encoded in the activity 

of a population of neurons. In the context of the pooling model, improving the signal-to-

noise ratio of the mean rate of the neurons in each pool would create a larger difference 

between the responses of the two pools.

Essentially all studies that have focused on how cognitive processes affect the responses of 

neurons in one area of visual cortex have addressed this first hypothesis. Numerous studies 

spanning many visual cortical areas and tasks have revealed that directing attention to a 

particular location or feature increases the gain of the mean firing rates of neurons that are 

tuned for that location or feature (for reviews, see Anton-Erxleben & Carrasco 2013, 

Desimone & Duncan 1995, Maunsell 2015, Maunsell & Cook 2002, Maunsell & Treue 

2006, Reynolds & Chelazzi 2004, Yantis & Serences 2003), and global cognitive processes 

such as arousal have similar effects (Boudreau et al. 2006). Attention (Cohen & Maunsell 

2009, Mitchell et al. 2007) and learning (Raiguel et al. 2006) are also associated with 

modest decreases in the trial-to-trial variability of individual neurons. Both of these 

observations are consistent with the idea that cognition improves perception by increasing 

the signal-to-noise ratio of single neurons.

Additionally, the pooling model suggests that noise correlations can affect stimulus 

information because positively correlated noise cannot be averaged out by the pooled signal 

(Abbott & Dayan 1999, Averbeck et al. 2006, Shadlen et al. 1996). A seminal study by 

Zohary and colleagues (1994) made the now oft-replicated (Kohn et al. 2016) finding that 

noise correlations between pairs of MT neurons in the direction discrimination task tend to 

be small but positive.
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Although recent studies suggest that the relationship between noise correlations and 

information coding is more complex than the simple idea that lower correlation is good 

(Kohn et al. 2016), many studies have shown that performance improves in situations in 

which noise correlations decrease. Predominantly, attention decreases noise correlations 

between neurons that have similar tuning properties (Cohen & Maunsell 2009, 2011; 

Gregoriou et al. 2014; Herrero et al. 2013; Luo & Maunsell 2015; Mayo & Maunsell 2016; 

Mitchell et al. 2009; Nandy et al. 2016; Ruff & Cohen 2014a; Verhoef & Maunsell 2017; 

Zénon & Krauzlis 2012). Other cognitive processes, such as arousal (Ruff & Cohen 2014b) 

and learning (Gu et al. 2011, Jeanne et al. 2013, Yan et al. 2014), are also associated with 

decreases in noise correlations.

The pooling model makes a second prediction about the role of noise correlations in 

decision making. In contrast to correlations between pairs of neurons in the same pool, 

positive noise correlations between neurons in different pools should help information 

coding, because shared variability can be subtracted out when the activity of the two pools is 

compared. We recently tested this hypothesis by recording from groups of neurons in area 

V4 that represented evidence in favor of both possible choices during a contrast 

discrimination task (Ruff & Cohen 2014a). Consistent with model predictions, we found that 

attention increased noise correlations between pairs of those same neurons when they were 

in different pools (while decreasing correlations within each pool). Together, these results 

suggest that attention and other cognitive processes change correlations in ways that are 

broadly consistent with the predictions of the pooling model.

Limitations—It is curious that so much evidence supports the prediction that cognitive 

processes improve information coding despite recent modeling efforts suggesting that only a 

very small subset of these changes to correlations should affect information at all 

(Kanitscheider et al. 2015b, Kohn et al. 2016, Moreno-Bote et al. 2014). This work shows 

that information coding is affected only by the small subset of correlated variability that 

aligns with the dimensions in population space in which the signal (e.g., motion direction) is 

encoded (called information-limiting correlations) when the neuronal population is large 

enough. This argument is based on the sensory information that could be gleaned by an 

optimal, high-dimensional decoder that has unlimited access to information about the stimuli 

being discriminated, as opposed to access to the average activity of pools of neurons. The 

intuition is that with large enough neuronal populations (and therefore very high-

dimensional representations), correlated activity is likely to be orthogonal to (and easily 

separated from) the dimensions in which a particular stimulus feature is encoded. Whether 

animals can decode stimuli in this way is an open question that we address below.

Another probable limitation of the hypothesis that attention improves performance by 

improving information coding is that it relies on the idea that the amount of sensory 

information encoded in sensory cortex is what limits behavioral performance. However, 

numerous examples show that even small populations of neurons can encode far more 

information than a monkey appears to use (Parker & Newsome 1998). Therefore, cognition-

related improvements in perception may instead, or may also, result from changes in other 

aspects of neural processing.
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Hypothesis 2: Cognitive Processes Improve Communication Between Cortical Areas

Support—An alternative explanation for the improvements in performance associated with 

cognitive processes is that cognition reduces the information that is lost (Sprague et al. 

2015) when it is communicated to downstream areas (i.e., the areas that perform the pooling; 

Figure 1). Quantifying the amount of stimulus- or task-related information that is 

communicated between areas is difficult, but evidence suggests that attention increases the 

interdependence of neural activity in different areas across a range of timescales from both 

recordings (Bichot et al. 2005, Bosman et al. 2012, Buschman & Miller 2007, Fries 2015, 

Fries et al. 2001, Gregoriou et al. 2009, Lakatos et al. 2008, Miller & Buschman 2013, 

Saalmann et al. 2007, Saproo & Serences 2014, Womelsdorf & Fries 2007, Womelsdorf et 

al. 2006) and causal manipulations such as electrical microstimulation (Briggs et al. 2013; 

Dagnino et al. 2015; Klink et al. 2017; Moore & Armstrong 2003; Ruff & Cohen 2016a, 

2017). Furthermore, spatial attention increases noise correlations between neurons in 

different cortical areas (Oemisch et al. 2015; Pooresmaeili et al. 2014; Ruff & Cohen 

2016a,b).

Limitations—In general, task-related changes in communication between areas, across all 

timescales, are small. This potentially limits their role in the framework in a simple pooling 

model, in which synchrony affects communication between different pools of neurons. 

Furthermore, there is something fundamentally strange about the observed increase in noise 

correlations between pairs of neurons in different areas while there is simultaneously a 

decrease in noise correlations between pairs of neurons within an area. It is tempting to think 

that the decreases in correlation within an area serve to improve the information represented 

in that area, which, in turn, is then more faithfully communicated to a downstream area via 

increased correlations. However, mathematical and biological constraints may limit the 

strength and importance of correlation changes whose sign is different within and across 

areas.

Hypothesis 3: Cognitive Processes Improve the Way Sensory Information Is Decoded from 
Neuronal Populations

Support—At its most basic, the pooling model suggests that the readout of sensory 

information by a downstream neuron or a decision-related brain area simply involves 

comparing the average response of neurons in the two competing pools (i.e., that the 

responses of all neurons that belong to a pool are given the same weight). One possibility is 

that cognitive processes improve performance by changing the weighting function to make 

readout closer to optimal.

One of the most common tools used to make inferences about readout is choice probability, 

which measures the relationship between choices and the trial-to-trial fluctuations in an 

individual neuron’s responses (Britten et al. 1996, Nienborg et al. 2012). This measure is, by 

definition, correlative, and there has been ample debate surrounding the origins of choice-

predictive activity in sensory neurons (Cohen & Newsome 2009, Cumming & Nienborg 

2016, Nienborg & Cumming 2009, Wimmer et al. 2015).
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However, there is evidence consistent with the idea that the weighting of different neurons 

for decision making depends on their tuning. It has commonly been observed that neurons or 

voxels that are best tuned for the task at hand are also those with highest choice probability 

(Nienborg et al. 2012). Furthermore, choice probabilities of the most informative neurons 

increase throughout learning (Law & Gold 2008). More generally, researchers have 

suggested that a neuron’s contribution to behavior can be changed by training (Chowdhury 

& DeAngelis 2008, Liu & Pack 2017).

Limitations—In many ways, the idea that readout weights are flexible has to be true. For 

the direction discrimination task, it may seem straightforward for the brain to divide neurons 

into appropriate pools based on their direction tuning, a feature which is neatly organized in 

columns in MT (Albright & Desimone 1987, Born & Bradley 2005). However, several 

factors suggest that readouts must involve flexible, nonuniform weights. Neurons are tuned 

for multiple stimulus features, there are many tasks and features where a clean division into 

pools would be complicated, and the mapping from stimuli to behavior is extremely flexible, 

making it unlikely that the brain solves tasks by cleanly dividing neurons into groups. A 

more realistic possibility is that decisions are based on flexibly weighted combinations (or 

subspaces) of the activity of the entire population (Cunningham & Yu 2014). In this 

scenario, cognitive processes such as attention could improve performance by making 

weightings more optimal.

The biggest limitation of this idea is the lack of experimental evidence. Although several 

studies have discussed the idea that subspaces of population activity, rather than groupings 

of neurons, are the important units of computation for readout (Churchland et al. 2012, 

Cunningham & Yu 2014, Elsayed et al. 2016, Elsayed & Cunningham 2017, Kaufman et al. 

2014, Miri et al. 2017, Semedo et al. 2016, Yuste 2015), few studies have analyzed the 

relationship between population subspace activity and either the activity of downstream 

neurons or behavior. Some insights about how population subspace activity guides behavior 

have come from brain-machine interfaces (BMIs) in the motor system (Golub et al. 2016). 

BMI studies have shown that the representation of different actions and motor plans is 

relatively low dimensional and that animals cannot learn to access neuronal activity outside 

of key subspaces (Ganguly et al. 2011, Golub et al. 2016, Law et al. 2014, Sadtler et al. 

2014). In sensory systems, the idea that decisions are based on population subspaces, not 

pools, has been slower to take hold (but see DiCarlo & Cox 2007, DiCarlo et al. 2012, 

Kriegeskorte 2009, Jazayeri & Afraz 2017, Pitkow & Angelaki 2017, Quian Quiroga & 

Panzeri 2009), but we believe that it will be of critical importance. A successful example of 

this approach has been in the study of visual object processing where population recordings 

and deep-learning neural networks have begun to elucidate the nature of high-level object 

representations (Cadieu et al. 2014, Khaligh-Razavi & Kriegeskorte 2014, Pagan et al. 2013, 

Yamins et al. 2014, Yamins & DiCarlo 2016).
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MOVING BEYOND PAIRS OF NEURONS: SUBSPACES OF POPULATION 

ACTIVITY AS THE UNITS OF NEURAL COMPUTATION

While technological advancements have led to rapid growth in the number of studies using 

multineuron recordings in behaving monkeys, our understanding has lagged behind these 

new data. We propose that progress has been slow because our data analysis techniques take 

the pooling model too literally and focus on single neurons or average firing rates in a pool 

as the units of neural computation. As explained below, there is reason to believe that 

focusing on population subspaces (Figure 2) will allow us to understand the relative 

importance of the three hypothesized neuronal mechanisms underlying cognitive processes 

and can resolve several paradoxes in the current literature.

In the face of correlated variability, it is difficult to use population recordings to infer the 

role, or weighting, of each neuron in the decision-making process and therefore to infer the 

amount of sensory information that is communicated to downstream readout areas. 

Simulations have shown that an animal’s choices can be predicted from the responses of 

neurons that play no role in the decision but whose responses are correlated with those of 

neurons that do (Cohen & Newsome 2009, Nienborg et al. 2012). Inferring the contribution 

of different neurons in a population or the extent to which correlated variability affects the 

amount of stimulus information encoded in a population of neurons would require 

simultaneous recordings from many thousands of neurons over an even larger number of 

behavioral trials (Kanitscheider et al. 2015b, Kohn et al. 2016, Moreno-Bote et al. 2014). 

Although technology for recording from more and more neurons is ever improving, the work 

ethic of experimental subjects is not, and the number of behavioral trials required to infer the 

role of all of those neurons is prohibitive [which theoretical work suggests is an order of 

magnitude larger than the number of neurons (Bishop et al. 2017)].

We performed a simple simulation to gain intuition about what can and cannot be learned 

from recordings from small subsets of large populations of neurons over hundreds or 

thousands of trials. We made many simplifying assumptions, and the result is almost 

certainly not an accurate account of perceptual decision making in the brain. Our goal was 

illustrative and to suggest directions for future work.

Our simulation takes as its basis the published pooling model (Shadlen et al. 1996), but 

instead makes decisions based on arbitrary combinations of many neurons instead of the 

average firing rate of groups of neurons with different properties. We imagined that 

perceptual decisions about a single sensory feature (e.g., motion direction discrimination) 

are based on a linear combination of the responses of 5,000 neurons. The neurons in our 

simulation had cosine tuning for two sensory features (e.g., motion direction and binocular 

disparity). We imposed trial-to-trial noise correlations so that the variance of the spike count 

equaled the mean rate. Using previously published methods (Cohen & Maunsell 2009, 

Shadlen et al. 1996) and consistent with published observations (Cohen & Kohn 2011, Kohn 

& Smith 2005), we imposed noise correlations that were proportional to signal correlations 

(where signal correlations reflected mean responses to all combinations of the two sensory 

features).
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As in the original pooling model, our simulation made decisions based on the combined 

responses of many neurons. However, our simulation incorporated decisions based on the 

activity of subspaces of the population. Population subspaces can be thought of as linear 

combinations of large numbers of neurons. We therefore imposed flexible weighting: We 

assigned each neuron a weight (which could be positive, negative, or 0) using one of several 

candidate weighting functions and based decisions on whether the weighted average 

response of the population was positive or negative. We then selected random subsets of 100 

neurons to determine what we could and could not learn from the responses of this subset of 

simulated neurons and the simulation’s behavior on each trial.

Our simulations give good reason for optimism, and this optimism can be tested in future 

experiments. The responses of small populations can be used effectively to understand 

important qualities of the entire simulated neural population, can be used to evaluate the 

relative importance of the three hypothesized ways that cognitive processes improve 

perception, and can offer a resolution to a longstanding paradox about whether animals can 

optimally decode sensory information from neuronal populations. Put another way, the 

detailed weightings of each neuron in a large population are not important: Many weightings 

achieve similar performance in simple tasks. In this situation, small populations can be used 

to distinguish between different decoding strategies without identifying the precise neuron 

weights. Whether this will hold in systems with complex dynamics or nonlinear decoding 

strategies remains to be seen. But these simulations suggest that the hypothesis that 

subspaces of the responses of populations of neurons are the units of neural computation 

will be testable in experimentally feasible data sets.

Insights Related to Hypothesis 1: Small Populations Can Reveal the Stimulus or 
Behavioral Information that Is Encoded by or Communicated Between Neural Populations

The first hypothesis posits that cognitive processes improve perception by improving the 

amount of sensory information encoded by a neural population. Calculating information in 

neural populations is tricky because it relies on assumptions about the readout functions that 

can be used in the brain (da Silveira & Berry 2014, Kanitscheider et al. 2015a, Kohn et al. 

2016). We discuss this issue separately below.

A related hypothesis that is more straightforward to address is that cognitive processes 

improve the sensory information that is used to make decisions or that is communicated to 

downstream areas. We tested this idea in our simulation by using linear regression to infer 

the weights of the 100 selected neurons that would allow us to best predict the simulation’s 

choices (which are based on the entire population) on one set of 500 trials and then 

calculating the simulation’s performance at a different simulated stimulus coherence using 

those weights on a separate set of 500 trials.

This simulation showed that although the discrimination performance of small populations is 

worse than that of the entire simulated population, the performance of decoders based on 

small populations covaries with the performance of the population. Figure 3a plots the 

proportion of correct discriminations using the weighted sum of the responses of the 100 

selected neurons and of the entire population. Although the full population outperformed the 

selected subset of neurons, the similar relationship between the full and subpopulations and 
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coherence suggests that recordings from small populations can be used to determine whether 

cognitive processes have improved the sensory information used to guide an animal’s 

choices.

Insights Related to Hypothesis 2: Small Populations Can Reveal the Strength of 
Communication Between Subspaces of Different Neuronal Populations

The second hypothesis posits that cognitive processes change the efficiency or strength of 

functional communication between brain areas.

Detecting such changes requires simultaneous recordings from multiple areas, and a 

measure of functional communication. Previous studies have used rSc between neurons in 

different areas as such a measure (Ruff & Cohen 2016a, Klink et al. 2017, Poort et al. 2016).

To illustrate how changes in the number or activity of shared or independent inputs might 

change cross-area rSC, we extended our simulation to include a second population of 

neurons. We simulated the activity of each neuron in the second population as a linear 

combination of the responses of neurons in the first population (shared inputs) and 

independent inputs (that could come from any other area).

In this scenario, when the number or activity of independent inputs is small (so most inputs 

come from the first population), cross-area rSC is high (Figure 3b, small numbers on the x-

axis). When the number or activity of independent inputs is large, cross-area rSC is low 

(large numbers on the x-axis).

In real recordings, correlations between projections onto subspaces of population activity in 

each area may be even better measures of functional connectivity. Standard statistical 

methods like canonical correlation analysis may be especially useful for identifying 

subspaces of activity that are shared between populations (Semedo et al. 2016) and 

determining how the strength of functional communication depends on cognitive processes 

like attention.

Insights Related to Hypothesis 3: Small Populations Can Reveal the Weighting Function 
Used to Make Decisions but Not the Weights of Particular Neurons

The third hypothesis posits that cognitive processes improve performance by changing the 

way that sensory information is read out to guide behavior (e.g., by changing the weighting, 

or contribution, of each neuron). Our simulation suggests that while recordings from small 

populations cannot be used to infer the weightings of any particular neurons, they can be 

used reliably to detect the distribution of weights and therefore whether that distribution 

changes. We used two weighting schemes to make our simulation make choices based on the 

responses of the full population. The first scheme is the one used in the pooling model: Each 

neuron had a weight of −1, 0, or 1 depending on whether its responses contributed to the 

first pool, no pool, or the second pool. In the second scheme, we used the weights that would 

comprise an optimal linear decoder for this stimulus feature (obtained using linear 

regression). We then tested subsets of 100 randomly selected neurons on 1,000 randomly 

selected trials and used linear regression to infer a set of weights that would allow us to best 

predict the simulation’s choices from the responses of the 100 selected neurons as above.
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The results suggest that recordings from small populations on reasonable numbers of trials 

can easily distinguish between the two weighting schemes. Figure 3c shows the distributions 

of inferred weights in the pooling and optimal schemes. A Hartigan’s dip test found 

significant bimodality in the inferred weights in 88% of the 1,000 resampled small 

populations using the pooling scheme and only 4.8% of resampled populations using the 

optimal scheme. Furthermore, the inferred weights correlated with each individual neuron’s 

ability to distinguish two adjacent stimuli (quantified as the d’ between responses to the two 

stimuli over 1,000 trials) in the optimal but not the pooling scheme (R = 0.33, P < 10−5 in 

the optimal scheme; R = 0.01, P = 0.38 in the pooling scheme).

However, our simulations indicate that recordings from small populations cannot be used to 

infer the actual weightings of individual neurons. The correlation between the inferred and 

actual weights was 0.04 (P = 0.12) in the pooling scheme and 0.03 (P = 0.18) in the optimal 

scheme.

USING POPULATIONS TO FIGURE OUT THE ROLE OF NOISE 

CORRELATIONS

Together, our simulations suggest that recordings from small subsets of a large population 

can provide important insights about the mechanisms underlying cognitive improvements in 

perception. However, these simulations are gross oversimplifications of the complexity of 

real neuronal population data. We therefore provide an example from our own work of the 

insights that can be gleaned by considering population subspaces.

The role of correlated variability in limiting performance on perceptual tasks has been under 

heavy debate. Theoretical studies show that the bulk of correlated variability should not 

affect the amount of information encoded by a neuronal population because it is not part of 

the subspaces of activity (oriented along the same dimensions) that are read out by optimal 

stimulus decoders. However, this finding seems at odds with the large number of studies 

showing that cognitive processes such as attention, learning, and arousal change correlations 

(Cohen & Maunsell 2009, 2011; Gregoriou et al. 2014; Gu et al. 2011; Herrero et al. 2013; 

Jeanne et al. 2013; Luo & Maunsell 2015; Mayo & Maunsell 2016; Mitchell et al. 2009; 

Nandy et al. 2016; Ruff & Cohen 2014a,b, 2016a, Verhoef & Maunsell 2017, Yan et al. 

2014, Zenon & Krauzlis 2012). We recently analyzed subspaces of simultaneously recorded 

V4 neuronal population activity to show that noise correlations are much more closely 

aligned with the population subspaces that matter for behavior than theoretical studies 

suggest they should be (Ni et al. 2017).

Noise correlations are by definition calculated over many trials. Determining the relationship 

between correlated variability and individual choices required us to derive a single trial 

measure of correlated variability from the activity of the populations of V4 neurons we 

recorded while monkeys performed an orientation change-detection task. We used principal 

component (PC) analysis on population responses to repeated presentations of the same 

stimulus to identify the axis in population space that accounted for the most correlated 

variability. The variance explained by the first PC during each recording session was highly 

correlated with the mean noise correlation of all neuron pairs recorded during that session, 
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consistent with recent observations that noise correlations are typically low dimension 

(Ecker et al. 2016; Goris et al. 2014, Kanashiro et al. 2017, Rabinowitz et al. 2015) (Figure 

4a).

To determine the relationship between this correlated variability axis and the monkey’s 

choices, we projected the population responses to the stimulus the monkey was charged with 

detecting onto the PCs calculated as described above. We then compared those projections 

between trials in which the monkey correctly versus incorrectly detected the stimulus.

We found that we could predict the monkey’s choices using just the first PC as well as we 

could from the entire recorded population response (Figure 4b, green line). Put another way, 

projections onto the first PC, our single trial measure of correlated variability, explained 

essentially all the available choice-predictive activity in the recorded neuronal population.

This relationship between correlated variability and the performance of the choice decoder is 

particularly striking when compared to the relationship between correlated variability and 

the performance of an optimal stimulus decoder. The stimulus decoder (Figure 4b, black 
line) distinguished between the population responses to the two stimuli. Unlike the choice 

decoder (Figure 4b, green line), the stimulus decoder’s performance improved significantly 

when based on more PCs, meaning that it was not as influenced by correlated variability. 

This is in line with a prior study that found that while correlated variability decreased with 

training on a perceptual task, those changes in correlated variability had little effect on the 

population coding efficiency of an optimal stimulus decoder (Gu et al. 2011).

The schematic in Figure 4c illustrates a potential scenario that could explain why correlated 

variability has a different relationship with choice and stimulus decoders. The choice 

decoding axis may be aligned with the correlated variability axis (the first PC), while the 

stimulus decoding axis may be based on multiple PCs. This finding suggests that monkeys 

are suboptimal in a very specific and perplexing way: Their decisions are aligned with the 

axis of correlated variability. Below, we discuss a potential explanation: The animals may be 

optimal, but for something other than the very specific task they performed in each trial in 

the lab.

A NEW HYPOTHESIS: OPTIMALITY FOR GENERALITY

We propose an explanation for the relationship between the effects of cognitive processes on 

sensory neurons (which by all theoretical accounts should have a very limited effect on 

information coding) and behavior: that animals perform optimally, but for the much more 

general set of tasks they encounter in the natural world rather than the limited task they 

perform in the lab. We hypothesize that the relationship between signal and noise 

correlations that has been observed in many cortical areas means that this general sensory 

readout is truly affected by correlated variability and by the mean rates of sensory neurons.

The logic behind most conventional analyses [e.g., computing neurometric thresholds in 

single neurons (Britten et al. 1992, Parker & Newsome 1998) or decoding stimulus 

information from neuronal populations] is that there could be a new decoder (i.e., new 

weights) for each pair of stimuli. In the context of the motion direction discrimination task, 

Ruff et al. Page 11

Annu Rev Neurosci. Author manuscript; available in PMC 2019 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



one decoder is set up to discriminate 3% coherence leftward motion from 3% coherence 

rightward motion, and a separate decoder is set up to discriminate 6% coherence leftward 

motion from 6% coherence rightward motion. (This is the way we set up the decoding in 

Figure 3a.) In a fine discrimination task, the decoders might be very different for each 

stimulus pair: The neurons that would be most useful for discriminating a difference 

between 30°- and 32°-oriented gratings are different from the neurons that would be most 

useful for discriminating between 120°- and 122°-oriented gratings.

This scenario is not suitable for natural vision. If you are about to cross a busy street, you 

need to determine whether a car is headed your way, no matter its starting position or its 

features. Features such as color, size, or shape are irrelevant for motion discrimination but 

still modulate the responses of the same MT neurons that guide motion discrimination. 

Likewise, the many-decoders scenario is not likely to be true even for simple laboratory 

tasks. For monkeys to use a decoder that depends on the stimulus implies that they use a 

two-step decision process: identifying the stimulus followed by doing the actual 

discrimination. This is extremely unlikely; if animals could successfully identify the 

stimulus, there would be nothing left to discriminate.

A much more realistic scenario is that animals use a more general decoder that is at least 

capable of discriminating arbitrary pairs of the stimuli used in any task. For example, 

animals performing the motion direction discrimination task might use a general motion 

decoder that can discriminate any moving object.

As a decoder gets more general (i.e., it has to contend with stimuli that vary in more feature 

dimensions), its weights depend on more and more tuning properties. Consider, for example, 

two rightward-selective MT neurons in the context of a left-right motion direction 

discrimination task. If they have the same binocular disparity tuning, then a large response 

from them might indicate rightward motion, near disparity, or a combination of those two 

features. This is irrelevant if the decoder considers only stimuli with identical disparity, but a 

more general decoder would need to resolve this discrepancy by choosing weights of these 

and other neurons that take their disparity tuning into account.

Therefore, the weights in a more general decoder would depend on the tuning of all neurons 

to all stimulus features to which they respond, which means that decoding weights would 

depend on exactly the same factors as noise correlations. It is well established that noise 

correlations depend on tuning similarity for all features. For example, spike count 

correlations between pairs of MT neurons depend on tuning similarity for motion direction 

(Bair et al. 2001, Cohen & Newsome 2008, Solomon et al. 2015, Zohary et al. 1994), speed 

(Huang & Lisberger 2009), sensory normalization (Ruff et al. 2016), and, as has been shown 

in other areas, cortical distance (Smith & Kohn 2008, Smith & Sommer 2013).

This dependence of signal and noise on the same feature set means that the optimal decoder 

might be aligned with the population subspaces containing the most correlated variability (as 

in Figure 4). Put another way, correlated variability is in a position to have a large effect on 

the performance of the generalized optimal decoder.
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The idea that the weights of a general decoder depend on the same features as noise 

correlations explains some confusing results in the literature. Noise correlations can either 

help or hurt the performance of a specific optimal decoder (Abbott & Dayan 1999, Averbeck 

et al. 2006), but the vast majority of studies report that attention and other cognitive 

processes decrease correlations overall (Cohen & Maunsell 2009, Gregoriou et al. 2014; Gu 

et al. 2011; Herrero et al. 2013; Jeanne et al. 2013; Luo & Maunsell 2015; Mayo & 

Maunsell 2016; Mitchell et al. 2009; Nandy et al. 2016; Ruff & Cohen 2014a, Verhoef & 

Maunsell 2017; Yan et al. 2014; Zenon & Krauzlis 2012). Similarly, attention and other 

cognitive processes typically increase the trial-averaged response gains of all neurons, 

regardless of their tuning for the specific stimuli to be discriminated (Maunsell 2015, 

McAdams & Maunsell 1999). Both results make sense if a generalized, rather than a 

specific, decoder is being optimized.

DESIGNING EXPERIMENTS TO TEST THE IDEA OF OPTIMALITY FOR 

GENERALITY

What would experimental evidence for the idea of a general decoder look like? Our 

simulations suggest that experiments should incorporate a richer stimulus set or behavioral 

task, but that a small amount of richness can go a long way.

To illustrate this idea, we adapted our simulation to make the neurons tuned for two features 

[i.e., direction and disparity, two features whose tuning preferences in MT are independent 

and largely separable (DeAngelis & Uka 2003, Smolyanskaya et al. 2013)1, and we had the 

simulation discriminate the direction of stimuli whose disparity varied. For example, the 

simulation needed to discriminate rightward from leftward motion in the face of stimuli with 

highly variable disparities. The neuron weights of the optimal decoder that has to contend 

with variable disparity are only weakly correlated with those of a decoder that works only on 

stimuli with constant disparity (R = 0.18; Figure 5a). Furthermore, changing the mean noise 

correlation across the population from 0.1 to 0.05 (which is in the range of attention- and 

learning-related changes in mean rSC) had a much greater effect on the decoder that 

contended with multiple disparities than on the decoder that dealt only with constant 

disparity (compare the left and right sets of bars in Figure 5b). This large effect of changing 

noise correlations on the general decoder’s performance is much more in line with our prior 

experimental findings than the effect of noise correlations on the decoder that only dealt 

with constant disparity. We found a robust, consistent relationship between changes in noise 

correlations and changes in behavioral performance, whether those changes occurred 

quickly with attention or slowly with learning (Ni et al. 2017). Our simulation suggests that 

this relationship between changes in noise correlations and behavioral performance is better 

explained by a general decoder.

These simulations suggest that adding a small amount of complexity to laboratory tasks 

might provide qualitatively new insights. It is not necessary to move to natural stimuli and 

uncontrolled behaviors. Instead, our simulations suggest that using stimuli that vary in a 

single, task-irrelevant stimulus feature or adding a small amount of complexity to the 

behavior is sufficient to distinguish between specific and general decoders. For example, 
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simple statistical techniques to infer the neuron weights that best explain activity in another 

brain area or the animal’s choices would give very different answers if the true decoder were 

specific or general.

Our simulations suggest that general decoders may provide a superior account of the effects 

of cognitive processes like attention and learning on behavior. For this reason, determining 

whether animals in fact use general decoders and the extent to which their decoders depend 

on the particular stimuli and task conditions will be an important avenue for future work.

EXPERIMENTAL EVIDENCE FOR AND AGAINST OPTIMALITY

Even though there are practical benefits of decoding a feature in a general enough way to 

work for all stimuli, it is reasonable to hypothesize that a trained animal might optimize its 

decoder for the set of stimuli or task conditions it encounters in the lab. Indeed, a few studies 

have shown that the effects of attention or learning on spike count correlations depend on the 

relationship between the tuning of the neurons and the stimulus dimension being 

discriminated (Jeanne et al. 2013, Ruff & Cohen 2014a, Verhoef & Maunsell 2017). These 

results suggest that the effects of cognitive processes on sensory neurons can be optimized 

for a specific task. However, attention was associated with overall decreases in average 

correlation in addition to the tuning-specific effects in two of those studies (Ruff & Cohen 

2014a, Verhoef & Maunsell 2017), suggesting that the extent to which decoders can be 

optimized is limited.

A study by Clery and colleagues (2017) found that while neurons in area V2 exhibited 

decision-related activity in a fine disparity discrimination task, the relationship between the 

neuronal responses and the monkeys’ psychophysical performance levels was not 

compatible with an optimal linear readout of available sensory information. Even when they 

restricted their analysis to sessions in which the psychophysical performance of the monkeys 

exceeded neuronal sensitivity, they monkeys did not appear to read out the sensory 

information in V2 optimally.

On the other hand, numerous studies have shown that in certain situations, subjects do 

appear to behave optimally based on the available sensory information (Drugowitsch et al. 

2014, Ernst & Banks 2002, Fetsch et al. 2011, Jacobs 1999, Knill 2007, Pitkow et al. 2015). 

Provocatively, many of these studies suggesting optimal decoding strategies have used 

multisensory stimuli or otherwise involved the integration of multiple modalities of sensory 

information (Chandrasekaran 2017, Kording & Wolpert 2006). In a study by Fetsch and 

colleagues (2011), monkeys demonstrated the ability combine visual and vestibular inputs in 

a near-optimal manner, with the activity of multimodal neurons in the dorsal medial superior 

temporal area giving a fair account of this behavioral optimization.

One possibility is that animals always read out stimulus information as if the stimuli vary 

across multiple task-relevant and -irrelevant feature dimensions, regardless of whether the 

task requires them to do so. Consistent with this idea, in our simulation, merely accounting 

for a second additional feature dimension makes readout appear nearly optimal. In this case, 

behavior would approach optimality for studies using multisensory stimuli.
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There might be a biological explanation for why even well-trained animals might settle on a 

strategy that uses a generalized decoder. We and our collaborators recently showed that the 

simplest way to modulate spike count correlations and rates in cortical circuit models in 

ways that are consistent with physiological data is to change the balance of excitation and 

inhibition (Huang et al. 2017, Kanashiro et al. 2017). For example, modulating inhibition 

more than excitation increases response gain and decreases correlated variability in ways 

that are consistent with data from attention tasks. Perhaps this sort of simple mechanism by 

which cognitive processes affect visual cortex is easier to implement in biological circuits 

than the complex weight changes required for stimulus- or task-specific cognitive effects.

CONCLUSION

Much of our understanding of the neuronal basis of behavior is based on a framework that 

focuses on the activity of single neurons or pools of neurons as the units of neural 

computation. However, true population activity is far richer, and we propose that considering 

subspaces of population activity as the relevant units of computation and considering the 

wide variety of stimuli and tasks that animals contend with in natural behavior will allow us 

to gain a better understanding of neuronal computations. We suggest methods for finding the 

population subspaces relevant to behavioral performance: comparisons of population activity 

to trial-by-trial behavioral choices, or comparisons to the activity of neuronal populations in 

other brain areas. This conceptual framework for understanding how neuronal activity 

relates to behavior will allow our analytical techniques to keep pace with our ever-growing 

technical abilities.

This is an especially exciting time to be a neuroscientist interested in understanding the 

relationship between the activity of neurons and behavior. Standing on the shoulders of 

decades of important experimental and quantitative work, the field is ideally positioned to 

ask critical questions about this relationship. We believe, with the guidance provided by this 

new theoretical framework bolstered by the use of bleeding edge technology, that we have 

never been better positioned to find these answers.
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Figure 1. 
Schematic of the pooling model (adapted from Shadlen et al. 1996), highlighting cognition-

related changes to neuronal responses that would provide evidence in favor of each of the 

three hypothesized underlying mechanisms (color coded for each mechanism). 

Abbreviation: rSC, spike count or noise correlation.
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Figure 2. 
Schematic of a population subspace framework. Visual stimuli contain many features, a 

subset of which are relevant for a given perceptual task. For example, populations of MT 

neurons encode both motion direction and spatial frequency, even when the task concerns 

only motion direction. The activity of k MT neurons (neurons n1, n2, n3,…, nk) can be 

plotted in a k-dimensional space, but the subspace corresponding to motion direction (blue) 

is likely lower dimensional. Similarly, neuronal populations in downstream areas encode a 

variety of stimulus, cognitive, and premotor factors, a subset of which are relevant for 

perceptual choices. We hypothesize that communication between the areas (double-ended 
arrow) will also be low dimensional and task specific. The subspaces of neural activity that 

are relevant for each task can be thought of as linear (or nonlinear) combinations of the 

responses of all of the neurons in the population.
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Figure 3. 
Insights from a set of simple simulations. (a) Proportion of correct discriminations of the full 

population (red) and of subsets of 100 selected neurons (black) using weights inferred from 

the simulation’s choices (which are based on the full population). Error bars represent 95% 

confidence intervals based on 1,000 random draws (without replacement) of 100 neurons. 

The full population outperforms the subsets, but performance using small populations 

covaries with that of the full population. If this property is true in real neuronal populations, 

modest improvements in the sensory information that the animals use should be observable 

from recordings of realistic numbers of recorded neurons. (b) When neuronal responses are 

based on linear combinations of inputs that are either shared or private to each neuron, 

correlations between simulated populations are inversely related to the strength of private 

inputs. In this scenario, changes in the proportion of private and shared inputs could be 

observed by measuring rSC between areas. (c) Differences in weighting functions can be 

detected using recordings from small populations. The distribution of inferred weights of a 

conventional pooling model (top) is bimodal and broad. The distribution of inferred weights 

from a model that uses an optimal readout scheme (bottom) is narrow and unimodal.
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Figure 4. 
Correlated variability is related to performance (Ni et al. 2017). (a) The variance explained 

by the first PC, based on PCA of the recorded population’s responses to repeated 

presentations of the same stimulus, was highly correlated with the mean rSC of all neuron 

pairs in the recorded population across experiments. Thus, the first PC provided a single trial 

measure of rSC. (b) The first PC (and thus correlated variability) explained essentially all the 

choice-related population activity, as the choice decoder performed just as well based on the 

first PC as it did with additional PCs. In contrast, the stimulus decoder’s performance 

improved with additional PCs. (c) Population responses illustrated for the first and second 

PCs only. The first PC (x-axis) is by definition the axis that explains the most correlated 

variability. The stimulus decoding axis (black line) detects differences between neuronal 

responses to stimulus 51 and stimulus 2, while the choice decoding axis (green line) detects 

differences between when the subject made the correct versus the incorrect choice [e.g., 

target 2 would be the correct choice, and target 1 the incorrect choice, when stimulus 2 was 

presented (ovals 2 and 1)]. Abbreviations: PC, principal component; PCA, principal 

component analysis; rSC, spike count or noise correlation.
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Figure 5. 
An optimal general decoder uses very different weights than an optimal decoder tailored for 

each stimulus and accounts for known experimental results. (a) In simulation, the weights of 

a decoder that contends with two stimulus features (one task-relevant and one task-irrelevant 

feature; y-axis) are only weakly correlated with the weights of a decoder that contends with 

stimuli that vary only in a single, task-relevant feature. (b) Changing the mean rSC has a 

much larger effect on the general decoder that contends with variability in two stimulus 

features (right) than the decoder for stimuli that vary only in a single stimulus dimension 

(left).
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