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Abstract

The quantitative use of cone beam computed tomography (CBCT) in radiation therapy is limited 

by severe shading artifacts, even with system embedded correction. We recently proposed effective 

shading correction methods, using planning CT (pCT) as prior information to estimate low- 

frequency errors in either the projection domain or image domain. In this work, we further 

improve the clinical practicality of our previous methods by removing the requirement of prior 

pCT images.

Clinical CBCT images are typically composed of a limited number of tissues. By utilizing the low 

frequency characteristic of shading distribution, we first generate a ‘shading-free’ template image 

by enforcing uniformity on CBCT voxels of the same tissue type via a technique named 

partitioned tissue classification. Only a small subset of voxels in the template image are used in the 

correction process to generate sparse samples of shading artifacts. Local filtration, a Fourier 

transform based algorithm, is employed to efficiently process the sparse errors to compute a full-

field distribution of shading artifacts for CBCT correction. We evaluate the method’s performance 

using an anthropomorphic pelvis phantom and 6 pelvis patients.

The proposed method improves the image quality of CBCT for both phantom and patients to a 

level matching that of pCT. On the pelvis phantom, the signal non-uniformity (SNU) is reduced 

from 12.11% to 3.11% and 8.40% to 2.21% on fat and muscle, respectively. The maximum CT 

number error is reduced from 70 to 10 HU and 73 to 11 HU on fat and muscle, respectively. On 

patients, the average SNU is reduced from 9.22% to 1.06% and 11.41% to 1.67% on fat and 

muscle, respectively. The maximum CT number error is reduced from 95 to 9 HU and 88 to 8 HU 

on fat and muscle, respectively. The typical processing time for one CBCT dataset is about 45 s on 

a standard PC.
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1. Introduction

On-board cone-beam CT (CBCT) imaging has been playing an increasingly important role 

in modern radiation therapy. Advanced modalities of radiation therapy, including image-

guided radiation therapy (Jaffray et al 2002, Letourneau et al 2005), adaptive radiation 

therapy (Yang et al 2007, Lutgendorf-Caucig et al 2011), and CBCT- guided proton therapy 

(Landry et al 2015, Arai et al 2017), require high accuracies of CBCT images. Despite the 

continuous development in imaging hardware and software, however, CBCT still suffers 

from severe shading artifacts, impeding its quantitative use. We recently proposed effective 

shading correction methods for CBCT in radiation therapy, using planning CT (pCT) as 

prior information to estimate low-frequency errors in either the projection domain (Niu et al 
2010, 2012) or the image domain (Shi et al 2017a). These methods demonstrate high 

correction efficacy on both phantom and patient cases, with different advantages. In this 

work, we further improve the clinical practicality of our previous methods by removing the 

requirement of prior pCT images.

Shading artifacts lead to reduced soft tissue contrast and inaccurate HU values on CBCT 

images, causing problems in tumor delineation and dose calculation. In photon therapy, it 

has been reported that the dose discrepancy due to HU inaccuracy can be up to 11% without 

shading correction and less than 1% with correction (Li et al 2013). In recent years, proton 

therapy has been introduced to cancer treatment because of its superior precision in dose 

delivery and normal tissue sparing (Lomax et al 2001, 2004). It is expected that dose errors 

caused by shading artifacts are even more prominent in proton therapy than those in photon 

therapy, since calculations of proton range are more susceptible to small HU difference 

(Park et al 2015, Arai et al 2017).

A major source of shading artifacts on CBCT images is the scatter contamination stemming 

from irradiation of a large volume in a single projection. Scatter correction for volumetric 

CT has been an active research area for decades (Niu and Zhu 2010). Generic methods 

include scatter rejection by optimizing imaging geometry or using an anti-scatter grid, and 

scatter estimation for each projection via measurement (Tang et al 2001, Siewerdsen et al 
2004), analytical modelling (Seibert and Boone 1988, Wiegert et al 2005, Sun and Star-Lack 

2010, Shi et al 2017b), Monte Carlo simulation (Colijn and Beekman 2004, Zbijewski and 

Beekman 2006, Xu et al 2015, Shi et al 2016, Wang et al 2018) or primary modulation (Zhu 

et al 2006, Gao et al 2010, 2017, Zhu 2016). Despite promising results of image 

improvements, most of the existing methods are considered inconvenient for clinical use, as 

they require expensive computation, or modifications of imaging hardware and scanning 

protocols. Commercial systems therefore favor expedited software-based methods, at the 

cost of reduced correction efficacy. For example, Varian Medical Systems (Palo Alto, CA) 

developed a state-of-art correction scheme employing a fast adaptive scatter kernel 

superposition (fASKS) technique for use on their on-board CBCT of TrueBeam system (Sun 
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and Star-Lack 2010). However, as documented in recent publications (Niu and Zhu 2010, 

Zhao et al 2016, Wang et al 2018), the image quality of TrueBeam CBCT still has a 

substantial margin for further improvements.

High-quality pCT images are routinely available in current radiation therapy, which opens 

possibilities of pCT-based shading correction specialized for CBCT in radiation therapy. 

Existing literatures have shown superior performances of these methods on improving the 

quality of CBCT images (Marchant et al 2008, Niu et al 2010, 2012, Shi et al 2017a). One of 

the key challenges is to avoid false anatomical information on pCT being carried over to the 

corrected CBCT. Using pCT as prior information, we have developed methods to remove 

lowfrequency errors of CBCT either in the projection domain (Niu et al 2010, 2012) or in 

the image domain (Shi et al 2017a). In the projection-domain method, we retain the 

anatomical difference between pCT and CBCT during the signal processing of shading 

correction, using the fact that scatter predominantly contains low-frequency components. To 

improve the computation efficiency and reduce the memory burden, we then translated the 

method to the image domain, removing the necessity of access to the projection data. A 

highly efficient algorithm, referred to as local filtration, is employed on sparse pCT samples 

to avoid false structural information on the corrected CBCT images. Although our pCT-

based methods have shown promising results on both phantoms and patients, the 

requirement of pCT images remains as the last hurdle toward their clinical adoption. The 

signal processing of both methods includes registration between pCT and CBCT, which not 

only complicates the workflow but also reduces the method’s robustness. For example, the 

registration accuracy may significantly drop when a patient experiences significant weight 

loss over the entire course of radiation therapy treatment, or when CBCT contains severe 

truncation artifacts (Shi et al 2017a).

A few recent studies have shown promise on CBCT shading correction via an iterative 

workflow similar to that in pCT-based correction (Niu et al 2012) but without using prior 

pCT images (Li et al 2011, Wu et al 2015, Zhao et al 2016). The performances of these 

methods heavily rely on the accuracy of image segmentation: (Zhu et al 2006, Marchant et al 
2008) performed thresholding based image segmentation on uncorrected CBCT to generate 

a template image, based on which a first-pass correction on each CBCT voxel is obtained. Li 

et al (2011) proposed a modified fuzzy C-mean (FCM) tissue classification model to 

iteratively estimate the shading distribution on uncorrected CBCT. Though these methods 

demonstrate promising results, direct segmentation employed on the uncorrected CBCT 

induce false classification and therefore requires a time-consuming iterative process to 

correct. In this work, we propose an improved method of CBCT shading correction without 

using prior pCT images. Distinct from existing approaches, the proposed method does not 

perform standard image segmentation or iteratively process the entire image domain. 

Instead, by utilizing the low frequency characteristic of shading distribution, it generates 

distributions of confidence scores for different tissues on partitioned regions of CBCT with 

little shading artifacts, and chooses only sparse samples with high confidence levels for 

CBCT correction. The proposed method is evaluated on one anthropomorphic pelvis 

phantom and 6 pelvis patients.
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2. Method

As shown from the results of our previous pCT-based shading correction in the image 

domain (Shi et al 2017a), very sparse samples (<25% of the entire data) of pCT are 

sufficient to guarantee the correction performance. In this work, we develop a framework to 

generate a sparse template image directly on the uncorrected CBCT to replace the prior pCT, 

using a technique that we refer to as partitioned tissue classification. In this section, we lay 

emphasis on the derivation of this algorithm. Note that, in all the presented studies, we focus 

on CBCT imaging of the pelvis.

Figure 1 provides an overview of the proposed shading correction. By utilizing the low-

frequency characteristic of shading artifacts in uncorrected CBCT, we first generate a 

template image I0 via the method of partitioned tissue classification. Only sparse samples of 

shading errors obtained from I0, referred to as S0, are used to determine the entire shading 

distribution. The final shading map St is removed from uncorrected CBCT to obtain the 

corrected image. In the following sections, we elaborate the implementation for each step of 

the method.

2.1. Partitioned tissue classification

Our previous studies show that image-domain shading correction on CBCT requires only 

sparse sample of shading artifacts (Shi et al 2017a). When CBCT images contain low-

frequency shading artifacts and the scanned structure is mainly composed of a limited 

number of different tissue types, we find it possible to determine the tissue compositions of 

the uncorrected CBCT images at sparse locations. In this paper, we perform tissue 

classification using an unsupervised FCM algorithm, a learning-based technique that has 

been widely used in image analysis and pattern recognition (Wang 1983, Pham and Prince 

1999, Chen et al 2006). Distinct from an exclusive segmentation method where one data 

point is assigned to a definite group, FCM allows each data point to be assigned to two or 

more groups, i.e. a fuzzy classification.

The uncorrected CBCT images are first preprocessed using a 3D median filter with a width 

of five voxels along all three axes to suppress noise. The bone structures are then mostly 

removed by thresholding on HU values (we use 200 HU as the threshold value in all 

studies). FCM is then used to classify the remaining voxels into air, muscle, and fat, where 

muscle and fat are the two major soft tissues in pelvis.

Denoteu uki as the probability that the ith voxel belongs to tissue typek FCM computes uu 
via the following optimization framework:

minimize ∑
k = 1

c
∑
i = 1

N
uki

2 xi − vk
2

subject to: ∑
k = 1

c
uki = 1, ∀i; 0 ⩽ uki ⩽ 1, ∀k, i .

(1)

Shi et al. Page 4

Phys Med Biol. Author manuscript; available in PMC 2019 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In equation (1), N is the total number of voxels and c is the total number of tissue types, a 

user-defined parameter. The parameter t ∈ [1, ∞) is another user-defined parameter to 

control the degree of separation. In all presented cases, we find that setting c value as 3 (i.e. 

fat, muscle, and air) and t value as 1.5 produces reliable classification results in this study. xi 

is the value of the ith voxel, and vk is the centroid value of the kth tissue type, calculated as:

vk = ∑i = 1
N ukixi ∑i = 1

N uki
. (2)

The performance of FCM is heavily dependent on the separability of clusters for different 

tissues in the histogram of one image. The shading artifacts smear these clusters and 

therefore degrade the quality of tissue classification. Given the fact that the shading artifacts 

vary slowly across image, one effective method to limit the range of shading artifacts is to 

perform FCM on small blocks of the input image. However, if one block has a small size, it 

may not contain sufficient voxels for each tissue type present in the overall image, which 

leads to significant errors in FCM. We propose to perform FCM independently on small 

blocks of the input image, with the block size and number automatically determined using 

an iterative scheme as shown in figure 2. The technique is referred to as partitioned tissue 

classification.

In partitioned tissue classification, the input CBCT is first evenly divided into 2 × b blocks 

in the axial plane (i.e. no division in the longitudinal direction). The iteration starts with b = 
1 and FCM classifies each block into air, fat and muscle tissue. We use uF,n and uM,n to 

denote the probability maps for fat and muscle, respectively, in the nth block. To ensure one 

block contains sufficient voxels for both fat and muscle, we calculate the fraction of fat or 

muscle in each block, i.e. 
∑uF /M, n

∑uF, n + ∑uM, n
. If both fractions are larger than 20% for all 

blocks, the algorithm combines uF,n and uM,n to update the fat and muscle probability maps, 

uF and uM, for the entire images. Otherwise, the algorithm terminates and outputs uF and uM 

obtained in the previous iteration. After each iteration, we estimate the shading artifacts in 

each block by calculating the standard deviation of CT number for fat or muscle. If the 

standard deviation of both tissues in all blocks (i.e. STDF,n and STDM,n) are less than a 

threshold, the block number and size used in current iteration are selected as the optimal 

ones. We set the termination threshold at 40 HU, which corresponds to the typical noise 

level in CBCT dataset. Otherwise, the iteration continues with b increased by 1 along the 

lateral direction in the axial plane. Due to the independent process of FCM in each block, we 

use parallel computation to accelerate the processing speed. Note that, to reduce the 

complexity of the proposed algorithm, the block number is fixed at 2 along the AP direction 

of axial plane where the body size is small compared to that in the lateral direction. As 

shown later in the result section, we find that this scheme guarantees sufficient voxels for 

each tissue type in the FCM algorithm and works well on all patient datasets in our study.

From partitioned tissue classification, we generate a template image I0, calculated as:
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I0 = HUF ⋅ uF + HUM ⋅ uM (3)

where HUF and HUM are the reference HU values pre-determined from high-quality 

calibration scans or pCT images.

2.2. Image-domain shading correction on CBCT without prior images

I0 obtained from equation (3) serves as a first-pass ‘prior image’ free of shading artifacts in 

the subsequent shading correction. To improve the accuracy and robustness, only a small 

subset of I0 is used in the proposed correction, by enforcing the following two constraints:

High-probability constraint: only voxels with high confidence levels in the partitioned 

tissue classification are used in CBCT correction, i.e. uF > 0.99, uM > 0.99.

Low-frequency constraint: voxels in the tissue transition areas are discarded, i.e. |∇uF (i, 
j, k)| < 0.01 and |∇uM (i, j, k)| < 0.01.

The difference between the uncorrected CBCT and I0 is considered as a raw shading map 

but only the signals within the selected region obtained from the above two constraints are 

used for shading correction, which are referred to as S0. A local filtration algorithm (Zhu 

2016, Shi et al 2017a) is used to efficiently process S0 to obtain the final shading distribution 

St. Briefly, the local filtration can be implemented via fast Fourier Transform:

St(i, j, k) =
S0 ⋅ f ∗ ∗ ∗ w

f * * * w (4)

where f is the binary mask of the sampled region and w is a 3D Gaussian smoothing kernel 

with a standard deviation (σ) of 7 mm.

The workflow of the proposed algorithm shown in figure 1 can be summarized using the 

following Steps: Step 1: Perform partitioned tissue classification on uncorrected CBCT to 

generate a template image I0 via equation (3).

Step 2: Apply high-probability and low-frequency constraints on I0 to acquire a sparse I0.

Step 3: Obtain a raw shading map, S0, by taking the difference between uncorrected CBCT 

and sparse I0 obtained in Step 2.

Step 4: Obtain a final shading map St from S0 using local filtration via equation (4).

Step 5: Remove St from uncorrected CBCT for effective shading correction.

2.3. Evaluation

We evaluate the proposed method on an anthropomorphic pelvis phantom and 6 pelvis 

patients. All the CBCT scans are acquired from a kV on-board imager (OBI) on the 
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TrueBeam system (Varian Medical Systems, Palo Alto, CA) with a typical clinical setting of 

125 kVp and 80 mA. The OBI system operates in an offset-detector (half-fan) mode to avoid 

field of view truncation in the axial plane. The CBCT images are reconstructed using the 

system embedded software with a volume size of 512 × 512 × 81 voxels and a voxel size of 

0.91 × 0.91 × 1.99 mm3. The reconstruction software on TrueBeam includes scatter 

correction using fASKS (Sun and Star-Lack 2010). However, the reconstructed image still 

suffers from severe residual shading artifacts. In this paper, we refer to the output CBCT 

images from TrueBeam as uncorrected CBCT images.

The proposed algorithm is implemented in Matlab 2014b on a standard laptop (2.5 GHz 

Intel Core i7 MacBook). Partitioned tissue classification typically takes about 40 s for one 

CBCT dataset with a block size of 2 × 2, with an almost linear relationship on the block size. 

The remaining signal processing takes about 2.5 s for shading correction on the entire CBCT 

volume.

The signal non-uniformity (SNU) of one tissue type (i.e. fat or muscle in our studies) is used 

as the evaluation metric and computed on five manually selected regions of interest (ROI), 

each of which has a size of 15 × 15 pixels:

SNU = μmax − μmin /μmean (5)

where the μmax and μmin are the maximum and minimum mean HU value of the selected 

ROIs and μmean is the mean HU value over all pixels in the five ROIs.

To evaluate the improvement in HU accuracy by suppressing shading artifacts, we compute 

the maximum CT number error of the selected ROIs on CBCT with and without correction, 

using pCTas a reference. In all studies, we compare the image qualities of uncorrected 

CBCT, CBCT corrected by the proposed method, the pCT-based image domain method 

previously developed in our group (Shi et al 2017a), and the pCT.

The FCM algorithm used in our method implicitly assumes that the histogram of the 

processed image consists of a small number of narrow clusters. This assumption, however, 

might not be valid on clinical CBCT images when they contain structures of spatially-

varying CT numbers. A typical example could be a tumor with necrosis in the middle but 

cancer-active around boundary. A study is specially designed to evaluate the proposed 

method on these challenging scenarios.

3. Results

3.1. Phantom results

We first use an anthropomorphic pelvis phantom to demonstrate the feasibility of the 

proposed shading correction method. Figure 3 shows that, without prior information of pCT, 

the proposed method has a similar efficacy on the removal of shading artifacts compared 

with the pCT-based method (Shi et al 2017a), and the corrected image uniformity reaches a 

level similar to that of pCT. Figure 4 shows the line profiles extracted along the white dashed 
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line in figure 3 on different images. Selected ROIs as indicated on the axial image of figure 3 

are used to calculate SNU and the maximum CT number errors on fat and muscle. The 

results are reported in table 1. It is seen that our algorithm achieves a performance 

comparable to that of the pCT based method. SNU is reduced from 12.11% to 3.11% on fat 

and 8.40% to 2.21% on muscle and the maximum CT number error is reduced from 70 HU 

to 10 HU on fat and 73 HU to 11 HU on muscle.

3.2. Patient results

The same performance as seen in the phantom study is observed on patient images. One 

patient result is shown in figure 5 with large image sizes, and other patient results are shown 

in figure 6. The proposed method improves the CBCT image quality to a level matching that 

of pCT and the pCT-based correction. The quantitative comparison of SNU and maximum 

CT number error are listed in table 1: the average SNU for six patients is reduced from 

9.22% to 1.06% on fat and 11.41% to 1.67% on muscle. This results even outperform the 

pCT based correction, which reduces the SNU to 2.22% on fat and 3.88% on muscle. The 

average maximum CT number error is reduced from 95 HU to 9 HU on fat, and 88 HU to 8 

HU on muscle

The block size selection in the partitioned tissue classification algorithm is essential in 

generating a reliable template image I0 for shading correction. Figure 7 shows the effect of 

different block sizes on the performance of the proposed shading correction method. We 

manually set the blocker number in the partitioned tissue classification algorithm as 1 × 1,2 

× 4 and 2 × 6. It is seen that the correction errors (indicated by white arrows in figure 7) 

appear for block number of 1 × 1 and 2 × 6. A large block size fails to suppress the shading 

artifacts, while a small block size fails to include sufficient representative tissues, therefore 

both scenarios of 1 × 1 and 2 × 6 blocks cause unreliable tissue classification. In this case, 

the proposed algorithm automatically finds 2 × 4 as the optimal block number, which obtains 

a superior image quality as seen in the comparison of figure 7. In all the studies present in 

this paper, we find that the optimal block number is typically between 2 × 2 and 2 × 4.

The high-probability and low-frequency constraints described in section 2.2 aim to remove 

most voxels of shading estimation with high potential of being errors, and therefore greatly 

improves the method accuracy. Figure 8 illustrates the effects of sparse signal selection in 

the shading correction, by comparing the corrected CBCT with and without applying the 

two constraints. As indicated by white arrows, shading correction with the proposed 

constraints obtains a better image quality especially around structure boundaries and in the 

regions initially with high shading artifacts.

3.3. Study with a manually-inserted tumor

To evaluate the method performance on structures with spatially-varying CT numbers, we 

manually insert a 3 cm tumor into the prostate region of one patient image, of which the 

contrast to background linearly changes from 0 HU at the center to 100 HU around the 

periphery. The results are shown in figure 9. The location of the inserted tumor is indicated 

by the white arrow. It is seen that the proposed correction faithfully retains the tumor 

structure as the shading map only contains low-frequency signals at the tumor region.
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4. Discussion and conclusions

In this paper, we develop a new image-domain method to remove the low-frequency shading 

artifacts on CBCT images. Compared to our previously developed algorithms, the method 

does not require prior information of pCT images or access to projection data. A template 

image is first generated by enforcing uniformity in the area consisting of one tissue via the 

technique of partitioned tissue classification. Only sparse samples of the classified tissues 

are then used in the correction process, which substantially improves the method accuracy 

and robustness. Shading corrected images are efficiently generated using local filtration, a 

Fourier transform based method. We evaluate the method performance on an 

anthropomorphic pelvis phantom and 6 pelvis patients. The SNU is reduced from 12.11% to 

3.11% on fat and 8.40% to 2.21% on muscle in the phantom study. The average SNU is 

reduced from 9.22% to 1.06% on fat and 11.41% to 1.67% on muscle for six patients.

Image-domain shading correction for CBCT is attractive in a clinical environment in that it 

does not require access to projection data and has low computational cost. Existing image-

domain correction methods include an intermediate procedure of registration of pCT to 

CBCT or segmentation on CBCT. Such a procedure not only complicates the clinical 

workflow, but also reduces the method robustness since high accuracy of registration and 

segmentation is not guaranteed due to CBCT artifacts. The proposed method adopts a 

different framework. The fuzzy behavior of FCM allows indefinite classification of different 

tissues. Using the local filtration technique, we are able to discard signals of shading 

estimation with high potential of being errors. As such, our algorithm improves over the 

existing image-domain approaches with enhanced resistance to CBCT shading artifacts. 

Note that, we adopt a strategy of evenly distributed blocks in the proposed partitioned tissue 

classification algorithm, which might not be optimal as it limits the block number along the 

lateral direction. In future studies, we will design a more adaptive block division scheme and 

investigate the possible improvements on CBCT image qualities.

A limitation of our method is that it assumes the shading artifacts are only composed of low-

frequency signals. As a result, our method is not able to recover the image contrast loss 

caused by high-frequency artifacts. Furthermore, in this study, we evaluate the proposed 

algorithm only on pelvis CBCT images. In our future research, we will continue the method 

evaluation on other anatomical sites.

5. Conclusion

We have developed a new image-domain method to remove the low-frequency shading 

artifacts on CBCT without access to pCT. The method is clinically attractive in that it is 

highly efficient and requires no modifications of existing clinical protocols.
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Figure 1. 
Workflow of the proposed shading correction.
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Figure 2. 
Diagram of the block division scheme for the proposed partitioned tissue classification.
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Figure 3. 
Shading correction results for the pelvis phantom. Images on the top, middle and bottom row 

show an axial, coronal and sagittal view, respectively. From left to right column: uncorrected 

CBCT, pCT, corrected CBCT obtained using the proposed method, the pCT-based method 

(Shi et al 2017a), and the template image after sparse sampling of the proposed method 

respectively. The white and red squares placed on the axial view of uncorrected CBCT are 

the selected ROIs for SNU calculation, where the bold square contains the maximum 

shading artifacts.
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Figure 4. 
Line profiles on axial images (i.e. uncorrected CBCT, pCT, corrected CBCT using the 

proposed and the pCT-based method), taken along the dashed line shown in figure 3.
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Figure 5. 
Shading correction results on one pelvis patient. The images in the top, middle and bottom 

row are axial, coronal and sagittal views, respectively. From left to right column: 

uncorrected CBCT, pCT, corrected CBCT using the proposed method, the pCT based 

method (Shi et al 2017a) and the template image after sparse sampling of the proposed 

method respectively. The white and red squares placed on the axial view of left column are 

the selected ROIs for SNU calculation, where the bold square contains the maximum 

shading artifacts. Display window: (−200 200) HU.
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Figure 6. 
Shading correction results on five additional pelvis patients. For each patient, the image is 

displayed the same way as figure 5. Display window: (−200 200) HU.
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Figure 7. 
Effect of block number on the performance of CBCT shading correction. (a) Uncorrected 

CBCT, and corrected CBCT (b) without using the block number selection, (c) with 2 × 4 

blocks and (d) with 2 × 6 blocks. Display window: (−200 200) HU.
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Figure 8. 
CBCT shading correction without (upper row) and with (bottom row) the high-probability 

and low-frequency constraints. The uncorrected CBCT image is shown in figure 7(a). From 

left to right are the template image I0, first-pass shading map S0 before local filtration, final 

shading map St after local filtration and corrected CBCT. Display window for I0 and CBCT 

images: (−200 200) HU; for the shading images: (−100 100) HU.
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Figure 9. 
Shading correction results for the case of a manually inserted tumor with spatially-varying 

CT numbers. (a) uncorrected CBCT, (b) corrected CBCT, and (c) shading map obtained 

using the proposed algorithm.
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