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Abstract: As a promising alternative to traditional prepreg, carbon fiber/poly(ether ether ketone)
(CF/PEEK) hybrid composites have attracted wide public interest for their flexibility and conformability.
However, modification methods focused on the hybrid premix have not been previously studied.
In the present work, the interfacial strength of the hybrid composite was improved by treating the
carbon and PEEK fibers together in a radiofrequency (RF) plasma containing one of the following
gases to achieve surface activation: air, Ar, or Ar–air. After plasma treatment, the increased roughness
of CF and the grafted chemical groups of CFs and PEEK fibers were propitious to the mechanical
interlocking and interfacial strength. Significant interfacial shear strength (IFSS) enhancement was
achieved after Ar 1 min, air 1 min plasma treatment. This study offers an alternative method for
improving the interfacial properties of CF/PEEK composites by focusing on the boundary layer and
modifying and controlling the fiber–matrix interface.

Keywords: polymer (textile) fibers; hybrid; interface; mechanical properties

1. Introduction

With the increasing demand for high-performance composites for aerospace, automobile, and other
structural applications in engineering, great efforts have been devoted to the study and development
of fiber-reinforced thermoplastic composites [1–3]. Among these, carbon fiber/poly(ether ether
ketone) (CF/PEEK) composites have attracted wide attention for the superior properties of their
semicrystalline PEEK matrix, including their high service temperature, outstanding mechanical
properties, and dimensional stability [4–6]. However, the high melting viscosity and the difficulty of
infiltrating carbon fibers during CF/PEEK composite fabrication must be addressed. Many studies have
investigated the 2-D and 3-D hybrid CF/PEEK premixes, a subject that has attracted wide attention [4,7].
The resulting mechanical properties of CF/PEEK depend mainly on the interfacial property, which plays
an important role in stress transfer between the reinforcement and the matrix [8–10]. The physical
state and chemical structure of CFs and PEEK fiber determine the interfacial strength [11]. Hence,
the low interfacial bonding strength between CF and PEEK fiber matrices due to the intrinsically
smooth, hydrophobic, and chemically inert CF surface is a problem that must be addressed. Recently,
significant scientific efforts have focused on the surface modification of CF to improve the interfacial
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properties of composites by electrochemical [12] and chemical treatments [13], plasma etching [6],
and the sizing technique [14]. However, some of these methods enhance the interfacial adhesion
strength of the composites at the expense of damaging the inherent structure of CFs, leading to a
decrease in the strength of the CF.

In recent years, an increasing number of researchers have focused on the plasma modification
technology, mainly for its advantages compared with other methods, such as high efficiency and surface
limitation [15,16]. Plasma modification has high efficiency and can achieve satisfactory results in a
few seconds to a few minutes [17]. The effect of plasma treatment is limited to a thin layer on the
material’s surface, thereby only changing the physical and chemical properties of the surface within tens
to hundreds of nanometers without affecting the mechanical properties of the fiber’s inherent structure.
The etching depth can also be adjusted depending on the time of treatment [18]. Plasma treatment is a
dry and physiological process, which does not use or produce chemical substances and therefore does not
cause environmental pollution. In this treatment, the reaction atmosphere comprises different types of
gases [19]. The use of different gas combinations in different proportions can diversify the modification
reaction so as to address the actual demand [20,21]. It is necessary to introduce specific reaction groups
and elements on the surface of materials according to different matrices. These findings indicate that the
plasma modification technology has broad application prospects for fiber modification [22,23].

Plasma treatment has been widely applied for CF modifications using high-energy particles,
such as electrons and ions, to cause oxidation and candles on the surface of fibers. Hence, this method
can achieve the following: remove the weak interfacial layer on CF surfaces; increase the polarity
and roughness of the surface; enhance the chemical bonding and physical chimerism between fibers
and resin matrices; and improve the interfacial strength of composites [22]. However, thermoplastic
composites are usually processed from polymers in the form of film, pellet, and powder. These polymers
are extraordinarily large in size compared with the modified scale of CFs, resulting in limitations
of appraisal for the modification effects. Therefore, composites molded from CFs and PEEK fibers
can potentially improve the interfacial properties. Furthermore, modification methods focusing on
woven fabrics, including the reinforcement and matrix simultaneously, will be meaningful for research
and application.

In our study, plasma treatment by air, Ar, or Ar–air was applied. The physicochemical properties
of CFs and PEEK fibers before and after plasma treatment were investigated. Surface morphology
changes were characterized by scanning electron microscopy (SEM). The chemical structures and
specific properties of CFs were studied by Raman spectra and single-fiber tensile tests. Fourier
transform infrared spectroscopy (FTIR) and differential scanning calorimetry/thermogravimetric
analysis (DSC/TGA) were carried out to study PEEK fibers and compare their structure and properties
before and after plasma treatment. Element content and surface group composition were studied by
X-ray photoelectron spectroscopy (XPS). The microdroplet test was used to assess the interfacial shear
strength (IFSS). The results were then analyzed.

2. Materials and Methods

2.1. Materials

The commercial polyacrylonitrile (PAN)-based carbon fiber tows (T300B-1000-50B, 1.76 g/cm2)
with a mean diameter of 7.5 µm were supplied by Toray Industries Inc. (Tokyo, Japan). PEEK fibers
(850D/144F), with an average diameter of 27 µm, was purchased from Changzhou Co–Win Novel
Materials Co, Ltd. (Changzhou, China). The fibers were all cleaned using ethyl alcohol and acetone.
They were then dried in a vacuum oven at 80 ◦C for 1 h, and the dust, grease, and chemical residues
were removed without altering the sizing on fibers.
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2.2. Plasma Treatments

The plasma treatment process was performed using a PDC36G plasma cleaner with adjustable
radiofrequency (RF) power supply (purchased from Hefei Kejing Materials Technology Co., Ltd,
Hefei, China), which is usually used to clean nanoscale organic pollutants on substrates or crystals.
This equipment is composed of a vacuum chamber, a needle valve, a resistance vacuum gauge,
a vacuum pump, and a radio source (Figure 1a). The plasma treatment was conducted in an inductively
coupled radio frequency (13.56 MHz) plasma reactor with a high-power mode (18 W). Gas was fed
into the vacuum chamber at a flow rate of about 6–8 standard cubic centimeters per minute (SCCM).
The operational pressure was set at 1 Torr. Dozens of carbon and PEEK fiber tows were carefully fixed
across a glass frame and treated using air plasma (2 min), Ar plasma (2 min), and Ar–air plasma (Ar
15 s, air 15 s; Ar 1 min, air 1 min; Ar 5 min, air 5 min) for different times. Samples treated by Ar–air were
labeled as AA15, AA1, and AA5. After the samples were subjected to different treatments, they were
stored in a desiccator at room temperature until they were analyzed by SEM, Raman spectroscopy,
DSC/TGA, and XPS.

By definition, plasma is a neutrally ionized gas on a spatial scale, containing an equal number of
negative and positive ions, a small percentage of free radicals, a few parts of atoms, excited molecules
and free electrons, and a large amount of extremely energetic vacuum ultraviolet light (Figure 1b).
The basic theoretical foundation in plasma treatment of materials is free-radical chemistry. Gases are
activated and dissociated using a radio source, which acts via electron bombardment and photochemical
processes to create a high density of gas-phase free radicals. Among them, free radicals in electronically
excited states carry a great deal of energy that is sufficient to break any organic bond. This results in
the abstraction of atoms or molecular fragments that can react further in the plasma to form volatile
species. In addition, abstraction causes a progressive ablation of organic surfaces and the formation
of residual free radicals on that surface. These can either react with themselves, resulting in surface
cross-linking, or react with the plasma gas, even ground state molecules, to form new chemical species
on the surface. If the gas used to produce plasma is inert (like argon), after treatment, the surface
would contain a large number of stable radicals that can further react until exposed to reactive gases.
Thus, plasma treatments are effective for breaking and creating bonds on the surface of polymers or
organically contaminated substrates [23].
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Figure 1. Diagram of the plasma treatment equipment: (a) plasma treatment equipment; (b) mechanism
of surface plasma treatment.

2.3. Characterizations

2.3.1. Surface Morphology

Scanning electron microscope (Merlin Compact, ZEISS, Dresden, Germany) measurements were
used to observe surface topography and provide a general analysis for the material before and
after modification.
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2.3.2. Raman Spectroscopy

Raman spectroscopy is an effective experimental technique used to determine information on
carbon fiber microstructure. Raman spectroscopy data were collected using a INVIA010410 Laser
micro confocal Raman spectrometer (Renishaw, London, UK) with a wavelength and laser beam
size of 514.5 nm of argon laser (green) and ~2 µm diameter. A 500×magnification microscope was
used to select a point of focus for the laser beam spot on the fiber’s surface. The scanning range was
set at 500–4000 cm−1 to obtain the first- and second-order Raman bands for CF. The band intensity,
band width, and band position were obtained from the first-order Raman spectra using a Gauss
curve-fitting procedure.

2.3.3. Single-Fiber Tensile Test

Single-fiber tensile tests were performed on CFs treated with different plasma conditions using a
Sintech universal testing machine following the ASTM D3379 standard test method. The test sample
was obtained by cutting a section of 12 cm fiber, pulling out to get the monofilament, and then fixing it
on the paper frame using glue and tensile force to keep it straight, as shown in Figure 2. During the
test, the paper frame was fixed vertically in the upper and lower clamps of the electronic universal
testing machine. The paper frame was cut off before loading. After debugging the instrument, the load
was applied, and the peak load was recorded automatically by the testing machine. In this experiment,
paper frame gauge was selected as 2 cm.

Polymers 2019, 11, 753 4 

 

to select a point of focus for the laser beam spot on the fiber’s surface. The scanning range was set at 
500–4000 cm−1 to obtain the first- and second-order Raman bands for CF. The band intensity, band 
width, and band position were obtained from the first-order Raman spectra using a Gauss curve-
fitting procedure. 

2.3.3. Single-Fiber Tensile Test 

Single-fiber tensile tests were performed on CFs treated with different plasma conditions using 
a Sintech universal testing machine following the ASTM D3379 standard test method. The test sample 
was obtained by cutting a section of 12 cm fiber, pulling out to get the monofilament, and then fixing 
it on the paper frame using glue and tensile force to keep it straight, as shown in Figure 2. During the 
test, the paper frame was fixed vertically in the upper and lower clamps of the electronic universal 
testing machine. The paper frame was cut off before loading. After debugging the instrument, the 
load was applied, and the peak load was recorded automatically by the testing machine. In this 
experiment, paper frame gauge was selected as 2 cm. 

 

Figure 2. Schematic diagram of monofilament tensile specimen. 

2.3.4. Fourier Transform Infrared Spectra (FTIR) 

The chemical structure of PEEK before and after plasma treatment was examined based on the 
Nicolet iS50 Fourier transform infrared spectra (Thermo Fisher, Waltham, MA, USA), using the KBr 
pellet method at 500–4000 cm−1 wavelength. 

2.3.5. Thermal Analyses 

Differential scanning calorimetry measurements were performed in order to study the effect of 
plasma treatment on the melting point of PEEK fibers using STA449F3 synchronous thermal analyzer 
(NETZSCH, Selb, Germany). The fibrous PEEK, cut into small length sizes with ~10 mg weight, were 
thermally cycled between 25 °C and 400 °C twice at a constant heating/cooling rate of 10 °C min−1 in 
a nitrogen atmosphere. The thermogravimetric analysis tests for PEEK fibers (~10–15 mg) were 
conducted in a nitrogen atmosphere from 25 °C to 800 °C at a heating rate of 10 °C min−1 to study 
changes in the PEEK fiber’s thermal stability induced by plasma treatment. 

2.3.6. X-ray Photoelectron Spectroscopy (XPS) 

XPS analyses were conducted using the ESCALAB 250Xi (Thermo Fisher, Waltham, MA, USA) 
to study the surface elements and groups of CFs and PEEK fibers after plasma treatment. XPS spectra 
were obtained using an Al Ka (hv = 1486.6 eV) monochromated X-ray source at 15 kV and 150 W. The 
pass energy and energy step were 20.0 eV and 0.05 eV, respectively. A nonlinear least-square curve-
fitting program (XPSPEAK software 4.1, Raymund W.M.Kwork) was used to deconvolve the XPS 
data. To compensate for the charging effects, all spectra were calibrated with graphitic carbon as the 
reference at a binding energy (BE) of 284.6 eV. The spectra were deconvolved by subtracting a Shirley 
+ linear background, and a Lorentzian–Gaussian (GL = 20%) mixed function. The surface chemical 
composition was calculated from the peak areas of relevant spectra. 

2.4. Interfacial Shear Strength 

The microdroplet test was conducted on HM410 evaluation equipment, which determines the 
interfacial property of composite material (Tohei Sangyo Co., Ltd, Tokyo, Japan)—to directly test the 
interfacial sheer strength (IFSS) between CF and PEEK. The process is illustrated in Figure 3a. In this 
experiment, each microdroplet was clamped by two steel blades and pulled to separate with the fiber 

Figure 2. Schematic diagram of monofilament tensile specimen.

2.3.4. Fourier Transform Infrared Spectra (FTIR)

The chemical structure of PEEK before and after plasma treatment was examined based on the
Nicolet iS50 Fourier transform infrared spectra (Thermo Fisher, Waltham, MA, USA), using the KBr
pellet method at 500–4000 cm−1 wavelength.

2.3.5. Thermal Analyses

Differential scanning calorimetry measurements were performed in order to study the effect of
plasma treatment on the melting point of PEEK fibers using STA449F3 synchronous thermal analyzer
(NETZSCH, Selb, Germany). The fibrous PEEK, cut into small length sizes with ~10 mg weight,
were thermally cycled between 25 ◦C and 400 ◦C twice at a constant heating/cooling rate of 10 ◦C min−1

in a nitrogen atmosphere. The thermogravimetric analysis tests for PEEK fibers (~10–15 mg) were
conducted in a nitrogen atmosphere from 25 ◦C to 800 ◦C at a heating rate of 10 ◦C min−1 to study
changes in the PEEK fiber’s thermal stability induced by plasma treatment.

2.3.6. X-Ray PhRotoelectron Spectroscopy (XPS)

XPS analyses were conducted using the ESCALAB 250Xi (Thermo Fisher, Waltham, MA, USA) to
study the surface elements and groups of CFs and PEEK fibers after plasma treatment. XPS spectra
were obtained using an Al Ka (hv = 1486.6 eV) monochromated X-ray source at 15 kV and 150 W.
The pass energy and energy step were 20.0 eV and 0.05 eV, respectively. A nonlinear least-square
curve-fitting program (XPSPEAK software 4.1, Raymund W.M.Kwork) was used to deconvolve the
XPS data. To compensate for the charging effects, all spectra were calibrated with graphitic carbon
as the reference at a binding energy (BE) of 284.6 eV. The spectra were deconvolved by subtracting
a Shirley + linear background, and a Lorentzian–Gaussian (GL = 20%) mixed function. The surface
chemical composition was calculated from the peak areas of relevant spectra.



Polymers 2019, 11, 753 5 of 15

2.4. Interfacial Shear Strength

The microdroplet test was conducted on HM410 evaluation equipment, which determines the
interfacial property of composite material (Tohei Sangyo Co., Ltd, Tokyo, Japan)—to directly test the
interfacial sheer strength (IFSS) between CF and PEEK. The process is illustrated in Figure 3a. In this
experiment, each microdroplet was clamped by two steel blades and pulled to separate with the fiber
at a constant speed of 0.1 mm/min. The microdroplet test specimens were prepared on alloy frames
(30 mm × 70 mm) with the free fiber length ~30 mm between the frames. Both sides of the CF single
fiber were firmly fixed on the alloy frame, and some oval PEEK droplets obtained by melting the
PEEK fibers were formed on a CF monofilament, as shown in Figure 3b. To obtain perfectly shaped
PEEK droplets, we started by laying an alloy frame fixed with filament on a closed heating platform at
375 ◦C for 10 min and sequentially melted one side of the PEEK tows while holding the other side to
form fine PEEK fiber to cross the monofilament. This process was repeated for a sufficient number
of times. The single fiber composite specimens were then transferred to a vacuum oven at 375 ◦C
for 5 min to reheat the composite specimens in order to obtain perfectly shaped microdroplets and
wetted interfaces.
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3. Results and Discussion

3.1. Morphology of CF and PEEK Fiber

The surface morphology of CFs at different plasma treatment times are shown in Figure 4a–f.
The data demonstrate the presence of clear ridges and striations on the surface of CF parallel to the
fiber’s axial direction. These formations are a result of the carbon fiber manufacturing process, such as
stretching and sizing, and the gullies provide an excellent condition for infiltration and adhesion of
polymers. Within a short plasma treatment time like 30 s (the total plasma treatment time), the patches
on the surface of untreated carbon fibers almost disappeared due to the etching action and cleaning
effect of the plasma treatment. Patch removal from the surface ameliorated the potential weak boundary
condition in fiber-reinforced polymer composites, thus improving the connection between the fiber
and the matrix. However, the modification effects within the same time varied depending on the type
of gas (shown in Figure 4c,d), owing to the different energy density of the plasma. Plasma energy
density is related to treatment time, plasma power, and area of the electrodes [24]. In this condition,
the number and size of samples treated by air plasma with the largest plasma power was the most
complicated among CF–air, CF–Ar, and CF–AA1, whereas CF–Ar was the simplest [24]. Increasing
plasma treatment time was associated with increased complexity and generation of embossments
on the surface. The number and size of bulges increased gradually with prolonged treatment time.
This phenomenon can be attributed to the bombardment of high-energy particles or free radicals in the
plasma on the carbon fiber surface. Plasma sputtering can destroy the intrinsic chains and surface
groups of fiber, and some atoms would be knocked off at the same time [25–27]. Prolonged plasma
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Typical SEM images of the PEEK fibers before and after plasma treatment are shown in Figure 5a–f.
The images clearly demonstrate that the surface of untreated PEEK fibers was relatively smooth and
uniform without major irregularities. However, several patches existed on the surface of untreated
PEEK fibers, which were not very obvious based on the fact that we could only find little traces in a
comprehensive SEM analysis. These could be eliminated under the etching action and the cleaning
effect after 30 s of plasma treatment. After a short plasma treatment time, e.g., 2 min, the surface of
PEEK remained smooth with several obvious patches resulting from the high-energy particles or free
radical bombardment on the surface, while the morphology of PEEK fibers changed according to
the energy density of different plasma gases. As with CF, PEEK fibers treated with air plasma were
rougher and displayed more patches than PEEK–Ar and PEEK–AA1. Increasing plasma treatment
time resulted in an increase in the quantity and size of patches [28].

These data show that plasma treatment etches the surface of CFs and PEEK fibers and significantly
changes the surface morphology. Although the etching depth is determined by time and instrument,
the etching effect closely corresponds with the type of plasma gas. Prolonging plasma treatment time
causes outstanding etching, resulting in a more complex surface morphology with increased surface
roughness for both CFs and PEEK fibers [29]. Certainly, long treatment times influence the intrinsic
properties of fibers, such as the mechanical properties of CFs and thermal properties of PEEK fibers,
which are important during the molding process and application of CF/PEEK composites. Hence,
further tests were performed, and discussions focusing on these particular questions are explained
in the next section of this article. The complex surface morphology and increased roughness of CFs
provide a large specific area for CF and PEEK bonding and thus enhance the mechanical intercalation
between CF and PEEK fiber resins, which is an important factor for improving the interfacial adhesion
between fibers and resins.
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3.2. Structure and Mechanical Property Analysis of CFs

3.2.1. Structure Analysis

Graphitic carbon and other sp2-bonded amorphous carbons possess strong Raman scatter despite
their intense optical absorption. A Raman peak at ~1585 cm−1 is typical of bulk crystalline graphite,
called the G band (ordered or graphitic). This peak represents the basic vibration mode of graphite
crystal, and its intensity is closely related to the crystal size. The Raman peak at 1360 cm−1 originates
from vibrations of the edge of graphite carbon and is called the D band, which represents disordered
carbon. Thus, R-the ratio of D and G bands (ID/IG) is usually calculated and regarded as a measure
of the size of graphite crystallites and the amount of amorphous carbon phase [30–32]. In our study,
R values were obtained from the ratio of curve areas at ~1360 cm−1 and 1585 cm−1, and the crystalline
size La was calculated using the following relationship:

La = C/R = C/(ID/IG) (1)

where C = 44 Å.
The Raman spectra and its cumulative fit peak for CF before and after different plasma treatments

are shown in Figure 6. The corresponding R and La of untreated and treated carbon fibers obtained
from Figure 6 are listed in Table 1. The data show that the value of R and La did not significantly
change with different plasma treatments and times. Thus, it can be concluded that plasma treatment
might not change the crystalline or graphitic structure of carbon fibers because plasma treatments can
only influence surfaces on a nanometer range.
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treatments: (a) untreated CF, (b) CF–air, (c) CF–Ar, (d) CF–AA15, (e) CF–AA1, and (f) CF–AA5.

Table 1. Raman analysis: R and surface crystalline size (La) of untreated and treated carbon fibers.

Sample Peak Position R (ID/IG) La (Å)
D-Band G-Band

Untreated CF 1364.19 1572.40 2.64 ± 0.04 16.67
CF–air 1383.35 1592.91 2.65 ± 0.06 16.60
CF–Ar 1385.62 1592.01 2.66 ± 0.05 16.54

CF–AA15 1368.41 1577.59 2.66 ± 0.04 16.54
CF–AA1 1382.37 1590.71 2.70 ± 0.05 16.30
CF–AA5 1377.20 1588.05 2.70 ± 0.04 16.30

3.2.2. Tensile Strength of Carbon Fibers

As the etching effect depends on the plasma treatment time and equipment, we focused on
the tensile strength of CFs treated for different times. The Weibull plots and fitted straight lines
for single-fiber tensile tests are presented in Figure 7. The parameters required to obtain a fitted
straight line, including scale parameter of unit fiber length ratio (σ0), Gamma function (Γ(σ0)), slope B,
and intercept A of the straight line, are listed in Table 2. Based on the test results, the single-fiber tensile
strength of untreated CFs was 3.25 GPa, and the value changed slightly during the tested plasma
treatment times. This result indicates that a 10 min plasma treatment time merely affects the CF surface
and causes little damage to their essential structures. However, as time extends, the etching depth
increases, and damage to the intrinsic quality of CFs is inevitable [32]. Therefore, when treating CFs
using plasma, its effect on the strength of bulk fibers should be considered and studied.
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Figure 7. Weibull distribution curves of tensile strength for CF monofilaments under different plasma
treatments: (a) untreated CF, (b) CF–AA15, (c) CF–AA1, and (d) CF–AA5.

Table 2. Tensile strength of CFs after different plasma treatments.

Sample A B σ0 (GPa) Γ(σ0) σf(GPa)

Untreated CF −12.59 10.24 2.33 0.9514 3.25
CF–AA15 −8.68 6.84 2.00 0.9330 3.31
CF–AA1 −6.25 4.85 1.62 0.9156 3.32
CF–AA5 −7.34 5.83 1.80 0.9267 3.26

3.3. Chemical Structure and Thermal Property Analysis of PEEK Fibers

3.3.1. Chemical Structure of PEEK Fiber

We used FTIR spectroscopy to investigate PEEK fibers before and after plasma treatment. The wide
spectra from 4000 to 500 cm−1 for PEEK and different plasma-treated PEEK are shown in Figure 8a.
In addition, PEEK and PEEK–AA5 with peak positions [32–34] are separately compared for detailed
analyses in Figure 8b, with peak assignments provided in Table 3. Wavenumber values are shown
for both spectra, and they were identified by reference to the absorbance bands shown in Table 3.
FTIR measurements showed subtle distinctions between PEEK fibers under specific plasma conditions,
even though significant peak data were presented. This could possibly be attributed to the technique’s
1–2 µm testing depth. Furthermore, the low sensitivity of FTIR impedes its application for determining
trace components. As reported by the producer, the rate of surface etching is 20 nm/min at “Hi” for
this plasma treatment equipment. In our test, the maximum treatment time was 10 min, and thus the
etching depth was ~200 nm, which is far from the testing depth of 1–2 µm. This was still regarded as
an effective result as it suggests that plasma treatment is aimed at surface modification, and the effects
are therefore exclusively surface effects.
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Figure 8. Selected FTIR spectra of PEEK fibers and PEEK–AA5: (a) untreated PEEK and (b) PEEK–AA5.

Table 3. Assignments of the FTIR peaks of PEEK materials.

Wavenumber (cm−1) Assignment

3051 C=C–H stretch vibration
2912, 2866 –CH2 stretch vibration

1652 C=O stretch in ketone
1580 Skeletal in-plane vibration of aromatic ring

1474, 1407 Aromatic rotations
1300–1050 Diphenyl ether group, C–O–C rotation and stretch

923 Aromatic out-of-plane bending
825, 757 C–H out-of-plane bending substitution patterns

3.3.2. Thermal Property Analysis

To study the effect of plasma treatments on the thermal properties of PEEK fibers, DSC/TGA was
applied to test the samples’ glass transition temperature (Tg) and thermal stability. DSC and TG curves
of PEEK fibers treated with plasma for different lengths of time are shown in Figure 9. The data show
that the glass transition temperature Tg of PEEK at 343 ◦C did not change after different durations of
plasma treatment. Figure 9b shows that PEEK fibers and modified PEEK fibers began to lose weight at
525 ◦C, and the mass loss rate reached the maximum at 600 ◦C. Meanwhile, the thermogravimetric
curves of PEEK fibers changed slightly, indicating that PEEK fiber modification using plasma treatments
do not affect the thermal properties of PEEK. In this study, we introduced the etching and surface
modification effects, which are both devoted to nanoscale depths of the surface material, making it
difficult to influence the permanent thermal properties of PEEK fibers [35].Polymers 2019, 11, 753 11 
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3.4. Surface Chemical Analyses

Wide-scan spectra with binding energy ranging from 0 to 1300 eV was obtained to identify
surface elements, and the detailed narrow-scan spectra C1s and O1s were quantitatively analyzed
to identify the chemical groups. C, O, and N contents on CFs and PEEK fibers before and after
plasma modifications are shown in Table 4. The major constituents on CF and PEEK were carbon and
oxygen. The appearance of nitrogen was due to the plasma modifications including air, Ar, and Ar–air.
The proportion of oxygen increased after plasma treatment, both in CFs and PEEK fibers. In addition,
the ratio of oxygen increased with prolonged plasma treatment time of 10 min. Plasma treatments by
Ar–air increased the oxygen content compared with air and Ar treatments performed for the same
amount of time (2 min). This can be explained by the reaction between the grafted active sites provided
by Ar and air plasma [36].

Table 4. Surface chemical composition of CFs and PEEK fibers.

Samples Relative Concentration of Elements (%)
O:C N:C

C O N

Untreated CF 85.15 14.85 - 0.17 -
CF–air 61.51 34.65 3.84 0.56 0.06
CF–Ar 75.44 21.85 2.71 0.29 0.04

CF–AA1 59.86 35.77 4.38 0.60 0.07
CF–AA5 53.24 41.82 4.94 0.79 0.09

PEEK 86.13 13.87 - 0.16 -
PEEK–AA1 67.48 31.21 1.31 0.46 0.02

The bonding energies corresponding to the groups that deconvolve from C1s of CFs and PEEK
fibers and their concentrations are listed in Table 5. The C1s peak was fitted to four line shapes with
binding energies at 284.0–284.3, 284.6–286.8, 285.6–286.1, 287.7–288.0, and 289.9–290.5 eV, corresponding
to sp2-hybridized graphite carbon atoms (C=C), sp3-hybridized carbon atoms (C–C), C–O, –C=O,
and O–C=O, respectively [36,37]. The proportion of C1 and C2 peaks for CF decreased after plasma
treatment. For most samples, the proportion of C3, C4, and C5 increased by plasma modification to
different extents depending on the types and times, except the C3 peak of CF–AA5, which showed an
opposite trend. These changes indicated that the sp2 and sp3 carbon atoms were activated, damaged,
and replaced with new oxygen on the surface during plasma treatment. Therefore, various oxidative
reactions induced by plasma were predicted to occur. As reported, oxygen and argon plasma were able
to create free radicals that coupled with active species in the plasma environment [38]. Due to the active
C=C bond, it was more susceptible to plasma attack, and radicals were generated on the dissociated
C=C bond for further reaction with active oxygen atoms. This was the reason for the decrease in
the proportion of C=C bond after plasma treatment. Through this process, C–O bond was created,
as illustrated in Figure 10a, while the new C=O bond was formed from oxygen radicals on the C–C
bond, as shown in Figure 10b. The formation of O–C=O bonds was generated by C=O bond through
combining radicals on the C=O bond with active oxygen atoms, as displayed in Figure 10c. However,
the three presented reactions occurred throughout the plasma treatment process, and different bonds
were activated or generated at the same time along with the changes in the element ratio. Hence,
it is hard to describe the effect by the change of one group. Thus, the polar ratio combined with
elemental proportion were introduced to study the effects caused by type and time of plasma treatment.
Compared with air and Ar plasma treatments, CFs treated sequentially by Ar and air gained the
largest number of polar groups. Proportions of polar peaks for CF–air, CF–Ar and CF–AA1 were
close to each other, but the oxygen content of AA1 was larger than the other two for the fast graft
effect after activation by Ar, indicating the better activation capacity of Ar–air. Prolonged treatment
times increased oxygen content but not polar group content. Ratios in Table 5 were defined as the
product of polar/nonpolar and effective element contents, including oxygen and nitrogen. Hence,
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we can conclude that samples treated with Ar–air gain the most effective group sites, which provide
the most favorable conditions for interfacial adhesion. In addition, these methods are designed for
hybrid CF/PEEK pre-prepreg; thus, CFs and PEEK fibers should be modified simultaneously. The CF
results highlight the optimization conditions. The XPS study for PEEK fibers focused on the samples
treated by Ar–air. For PEEK fibers, group concentration changes were more obvious. C3, C4, and C5
increased, while C1 and C2 decreased. However, the CFs and PEEK fiber group contents showed
different degrees of increase or decrease. It can still be concluded that the polar oxygen groups were
grafted onto CF and PEEK fiber surfaces by plasma treatment, but they varied with gas type and time.
Furthermore, increasing polar contents on CFs and PEEK fibers probably supplied reactive sites for
interfacial interaction between CFs and PEEK fibers.
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Figure 10. Possible mechanism of surface group oxidation by plasma treatment: (a) generation of C–O
bonds, (b) generation of C=O bonds, (c) generation of O–C=O bonds.

Table 5. Deconvolution of C1s and the concentration of relevant functional groups from XPS.

Samples C1 C2 C3 C4 C5 Polar/Nonpolar Ratio
C=C C–C C–O –C=O O–C=O

Untreated CF 26.85 45.25 21.02 3.43 3.45 0.39 0.07
CF–air 25.24 31.64 27.92 11.30 3.89 0.76 0.48
CF–Ar 23.00 33.60 22.77 12.96 7.66 0.77 0.25

CF–AA1 22.70 33.20 21.30 7.16 15.65 0.79 0.53
CF–AA5 23.20 42.90 16.44 10.33 7.13 0.51 0.45

PEEK 36.32 13.81 40.73 1.99 7.15 0.99 0.16
PEEK–AA1 29.35 9.41 41.65 9.32 10.28 1.58 0.76

3.5. Interface Shear Strength

IFSS before and after plasma treatment was determined using the microdroplet test, and the
destruction are shown in Figure 11. For untreated CF/PEEK system, there was not much retained
matrix, but after plasma treatments, the retained matrix increased. The IFSS results are listed in Table 6.
The IFSS of untreated CF/PEEK composites was 42.36 ± 4.23 MPa and increased to a maximum of
59.73 ± 3.88 MPa after plasma treatment with an increment of 41.01%. Compared with untreated
CF/PEEK (Figure 11a) with AA1 plasma treatment samples (Figure 11i), the retained matrix of AA1 was
greater, and there was PEEK resin on the surface of the CF. The increase in IFSS can be attributed to the
increased mechanical interlocking and chemical bonding. Overall, the trend of IFSS was consistent with
the polar/element ratio for strong chemical interaction. However, the increment was not proportional to
the polar group contents for the effect of roughness and wettability between CFs and PEEK fibers after
plasma treatment. It can be concluded that plasma treatment by Ar–air can significantly increase the
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interfacial strength between CFs and PEEK fibers and can be applied for the modification of CF/PEEK
woven fabrics.
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Figure 11. SEM images of samples after microdroplet test. (a) The beginning of CF/PEEK, (b) the ending
of CF/PEEK, (c) the beginning of CF/PEEK–Air, (d) the ending of CF/PEEK–Air, (e) the beginning of
CF/PEEK–Ar, (f) the ending of CF/PEEK–Ar, (g) the beginning of CF/PEEK–AA15, (h) the ending of
CF/PEEK–AA15, (i) the beginning of CF/PEEK–AA1, (j) the ending of CF/PEEK–AA1, (k) the beginning
of CF/PEEK–AA5, (l) the ending of CF/PEEK–AA5.

Table 6. IFSS of untreated and plasma treated CF/PEEK system.

Sample IFSS (MPa) Increment (%)

Untreated 42.36 ± 4.23 -
Air 48.37 ± 2.87 14.19
Ar 47.62 ± 3.25 12.42

AA15 50.87 ± 1.79 20.09
AA1 59.73 ± 3.88 41.01
AA5 47.85 ± 4.51 12.96

4. Conclusions

In this work, the physical and chemical structures of CFs and PEEK fibers before and after plasma
treatments were investigated by both surface morphology and surface chemical structure analyses using
SEM, AFM, Raman spectra, FTIR, and XPS. In addition, IFSS was tested using the microdroplet test.

SEM results demonstrated the surface morphology of fibers, thus providing a brief explanation
of the physical combination and interlock between CFs and PEEK fibers. Improving CF roughness is
propitious to the enhancement of its IFSS. The significant properties of CFs and PEEK fibers were studied
to examine the effect of plasma over different testing times. In conclusion, plasma treatments were
unable to affect the tensile strength of carbon fibers and the thermal properties of PEEK fibers within 10
min in our study. XPS analyses indicated the chemical state of the surface. Plasma treatment was shown
to be an effective method for increasing oxygen content and active groups on CFs and PEEK fibers.

Active groups partly revealed the interfacial interaction and adhesion between CF and PEEK
during the molding process. To make the work more satisfactory, IFSS values after different plasma
treatments were tested, and composites treated with Ar for 1 min and air for 1 min in sequence had
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the highest IFSS of 59.73 ± 3.88 MPa, with an increment of 41.01%, indicating the effectiveness of
plasma modification.

This study offers an in-depth understanding of the intrinsic properties of CFs and PEEK fibers after
plasma modification and demonstrates the interfacial strength between them. Further investigations will
focus on performing experimental studies on the fabrication of CF/PEEK composites using CF/PEEK
hybrid fabrics and comparing properties of CF/PEEK hybrid composites before and after plasma treatment.
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