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Abstract

Dyes with environment-sensitive fluorescence have proven useful to study the spatio-temporal 

dynamics of protein activity in living cells. When attached to proteins, their fluorescence can 

reflect protein conformational changes, posttranslational modifications or protein interactions. 

However, the utility of such dye-protein conjugates has been limited because it is difficult to load 

them into cells. They usually must be introduced using techniques that perturb cell physiology, 

limit throughput, or generate fluorescent vesicles (e.g. electroporation, microinjection, or 

membrane transduction peptides). Here we circumvent these problems by modifying a proven, 

environment-sensitive biosensor fluorophore so that it can pass through cell membranes without 

staining intracellular compartments, and can be attached to proteins within living cells using 

unnatural amino acid (UAA) mutagenesis. Reactive groups were incorporated for attachment to 

UAAs or small molecules (mero166, azide; mero167, alkyne; mero76, carboxylic acid). These 

dyes are bright and fluoresce at long wavelengths (reaching ε = 100,000 M−1cm−1, φ = 0.24, with 

excitation 565 nm and emission 594 nm). The utility of mero166 was demonstrated by in-cell 

labeling of an UAA to generate a biosensor for the small GTPase Cdc42. In addition, conjugation 

of mero166 to a small molecule produced a membrane-permeable probe that reported the 

localization of the DNA methyltransferase G9a in cells. This approach provides a strategy to 

access biosensors for many targets, and to more practically harness the varied environmental 

sensitivities of synthetic dyes.
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Graphical Abstract

INTRODUCTION

The same protein can be activated at different subcellular locations or with different kinetics 

to produce very different cell behaviors. To understand how signaling networks are 

regulated, it is often essential to quantify the spatio-temporal dynamics of protein 

conformational changes in living cells. This is frequently accomplished using biosensors 

based on fluorescence resonance energy transfer (FRET) between fluorescent proteins; many 

such biosensors are fully genetically encoded so can be readily expressed in cells.1-8 

Another class of biosensor is based on covalently attaching environment-sensitive 

fluorescent dyes to proteins at positions where their fluorescence responds to conformational 

changes or protein-protein interactions. This approach can be more sensitive than FRET 

because the fluorophore is excited directly (rather than indirectly by the FRET donor) and 

because one can use dyes that are brighter than fluorescent proteins. The dye is either 

attached directly to the protein of interest,9-10 or to a protein fragment that binds selectively 

to one conformation of the targeted protein. In the latter case, the protein-dye “affinity 

reagent” produces a unique fluorescence signature when it binds to the activated target.11-16 

The ability to interrogate endogenous, unmodified proteins is an important advantage of dye-

based biosensors. Despite their advantages, dye-based biosensors are used much less 

frequently than genetically encoded biosensors because they are difficult to load into living 

cells. Delivery has been accomplished using import-transducing peptides that rely on 

endocytic uptake followed by rupture of internal vesicles,17-19 but this can produce 

fluorescent vesicles that interfere with imaging. Techniques that pass labeled proteins 

through holes in the cell membrane (e.g. microinjection, electroporation, scrape loading, 

bead loading, syringe loading)20-22 are difficult for many cell types to tolerate.

Here we develop a membrane-permeant variant of an environment sensitive fluorophore that 

has proven utility for biosensor imaging. Attachment of appropriate side chains enabled it to 

pass effectively through the membrane, and importantly, not stain intracellular 

compartments. Using unnatural amino acid (UAA) mutagenesis, the dye was site-

specifically attached to an expressed protein, effectively assembling a biosensor within cells. 

Alternately, the dye was attached not to a protein, but to a small molecule with specific 
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binding affinity for the targeted protein. This generated a biosensor that in its entirety could 

pass through the cell membrane.

Intracellular labeling of proteins using unnatural amino acids has been accomplished with 

bright dyes suitable for intracellular imaging, but they are not environment-sensitive, so 

report protein localization but not conformation.23-29 To function as part of a biosensor that 

reports protein conformation, the dye must undergo fluorescence changes that can be 

detected even at low intracellular concentrations where the biosensor does not perturb cell 

behavior. The ability to detect fluorescence changes is a function of both the dye’s 

brightness and the magnitude of the changes. Some small environment-sensitive dyes pass 

through membranes and have strong environment-sensitivity, but they are too dim for most 

biosensor applications.30 We based our dye development on extensively characterized 

merocyanine fluorophores that have a useful combination of brightness and environment 

sensitivity and with extended conjugation for excitation above 550 nm (to avoid cellular 

autofluorescence).6, 1131-37 We sought to confer membrane permeability on these proven 

dyes, to enable biosensor production within cells, and for generating membrane-permeable 

“small molecule biosensors.”

RESULTS AND DISCUSSION

We began with our merocyanine fluorophores that have been optimized for use in biosensors 

and have a proven track record of reporting protein function in live cells.11-12, 15, 31-33 

Merocyanine dyes contain electron donor and acceptor components that are linked through a 

system of conjugation, usually double bonds. This configuration results in a ground state 

that may be represented as a resonance hybrid of charged and uncharged forms, depending 

on the relative strength of donor and acceptor groups.38-39 The potential for charge 

redistribution across the polyene system renders these dyes especially sensitive to polarity 

and hydrogen bonding interactions from the solvent environment, as shown in previous 

studies from our lab and others.31, 34, 36-40 Thus, changes in the local environment produced 

by protein interactions can result in significant changes in fluorescence intensity as well as 

shifts in excitation and/or emission maxima.41

Because they bear charged groups for water solubility and have extended conjugation to emit 

brightly at > 500 nm, merocyanine dyes are poorly membrane permeant. When side chains 

are manipulated to reduce water solubility and thereby enhance membrane permeability, the 

dyes stain intracellular membranes including the Golgi apparatus, mitochondria, and 

endoplasmic reticulum. We attempted to reduce these interactions and achieve uniform 

intracellular distribution of the dyes by attaching acetoxymethyl (AM) esters to several of 

the previously developed merocyanine fluorophores (data not shown). These studies 

revealed that both staining of intracellular membranes and membrane permeability were 

strongly impacted by the number and position of the AM ester side chains. Further, the 

effects of the AM ester depended on the specific merocyanine fluorophore tested, likely 

because of the differences in overall charge distribution among the dyes.34-35, 37, 41-45 Based 

on these preliminary observations, the indolenine-barbituric acid fluorophore (I-BA, an 

indolenine ring I linked to a barbituric acid BA by four carbons) was chosen for further 

optimization (compound 1, Figure 1a). This fluorophore showed both reduced membrane 
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staining and a suitable trade-off between brightness, photostability, and solvent sensitivity. 

We examined the membrane permeability and subcellular distribution of the underivatized 

parent merocyanine 1, two versions of the dye with single AM esters (2 and 3), and two 

versions of the dye containing two AM esters (4 and 5).

To screen the dyes for potential cellular uptake, mouse embryonic fibroblast cells (MEFs) 

were incubated in medium containing a test compound (10 μM) for 30 minutes, followed by 

aspiration of the dye solution and washing of the cells with compound-free medium. The 

cells were suspended and fluorescence intensity (FI) was determined for each dye, with 

values normalized for cell number based on the relative intensity of the nuclear stain 

Hoechst 33342, which was included with the dye in each test solution. As expected, the 

unmodified merocyanine dye 1 showed negligible import into cells (Figure 1b). 

Merocyanines containing a single AM ester showed only small improvements in fluorescent 

dye uptake relative to 1, but the addition of two AM esters produced a substantial increase in 

dye retention. Compound 5, which bore two AM esters on the indolenine ring, produced 

significantly more fluorescence than did compound 4, which had one AM ester on the 

indolenine ring (I) and the other on the barbituric acid ring (BA). Direct visualization of 

adherent cells showed that dyes 2 and 3 had entered cells to some extent, but were primarily 

located in intracellular membranes and vesicles (Figure 1c). This may have been due to 

selective membrane staining or enhanced vesicular uptake. Dye 5 showed the same uniform 

intracellular distribution as homogenously localized “volume indicators” loaded in the same 

cell, with no accumulation in subcellular membranes or organelles (YFP or 

carboxyfluorescein diacetate acetoxymethyl ester, Figure S1). Cells loaded with dye 5 
showed no signs of toxicity during 90 minutes of imaging. Uniform distribution of dye 5 
was maintained until the extracellular dye concentration was reduced to 2.5 μM, presumably 

when dye fluorescence became comparable to cellular autofluorescence. The intensity of 

dye 5 in cells decreased rapidly following initial treatment (Figure S2), an advantage for 

biosensors, as unattached dye would not contribute to background fluorescence. We were 

concerned that this indicated lack of AM ester cleavage, but Cdc42 biosensor made with the 

dye behaved normally (see below). Based on these results, merocyanine 5 was chosen as the 

lead structure for further development into conjugatable versions.

Synthesis of mero76, a conjugatable version of compound 5 bearing a carboxylic acid side 

chain, began from the barbituric acid derivative 6 (Scheme 1), obtained in 3 steps from β-

alanine methyl ester hydrochloride. Compound 6 was first converted to the activated diene 7 
and the free carboxylic acid was then coupled with the dimethoxy nitrobenzyl (DMNB)46-47 

photolabile protecting group to give compound 8. The di-carboxy indolenine salt 9 was 

reacted with 8 under mildly basic conditions to give a merocyanine product that after 

installation of the two acetoxymethyl esters and photodeprotection of DMNB provided 

mero76. Azide- and alkyne-containing merocyanines, mero166 and mero167 respectively, 

were prepared through an analogous route involving reaction of compound 9 with an azide 

or alkyne containing barbituric acid, but without the need to utilize protecting group 

chemistry (see Supporting Information). All dyes maintained good brightness and solvent 

sensitivity relative to the non-derivatized parent structure (Table 1, Figure 2, Figure S3).33 

Merol66 was sensitive to viscosity (Figure S4), indicating that rigidification upon protein 
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interaction could contribute to fluorescence changes. The dye was not toxic to HeLa cells 

when incubated for up to 60 minutes at 10 μM concentration (Figure S5).

We next examined whether the dye mero166 could be used to build a fluorescent small 

molecule that served as a reporter/sensor for a specific protein in living cells. For this we 

targeted the DNA methyltransferase G9a. A selective ligand for G9a was functionalized with 

an alkynyl side chain and conjugated to mero166 via click chemistry to give compound 10 
(Scheme 2).48 MEF cells were incubated with either the dye alone (mero166) or the reporter 

compound 10 for 20 minutes, washed, and imaged. Cells treated with mero166 showed 

uniform fluorescence intensity throughout the cell, indicating that the reactive side chain did 

not appreciably affect cellular uptake or uniform distribution (Figure 3). In contrast, the 

inhibitor conjugate 10 (G9a sensor) was localized primarily in the nucleus, consistent with 

the function of G9a, a well-characterized histone methyltransferase.49 Some localization in 

cytoplasmic vesicles was also observed. In the future, this approach can be applied to small 

molecules with specific affinity for the target but without target inhibition. Application of 

this G9a probe in biological studies would require titration to levels where cell physiology 

was not perturbed.

We also used mero166 to generate a biosensor by covalently labeling a protein within living 

cells. Previous dye-based biosensors required protein expression and isolation, followed by 

dye labeling, re-purification, and mechanical introduction into cells. Use of such biosensors 

could be greatly enhanced if this cumbersome process were replaced by transfection 

followed by in-cell labeling. This was made possible by recent methods to label proteins 

bearing unnatural amino acids (UAA) in mammalian cells.28, 50 We tested feasibility by 

using a mammalian expression vector containing a nuclear localization signal (NLS), 

followed by a short sequence containing the amber stop codon (TAG) and EGFP. For cells 

transfected with this construct, EGFP fluorescence depended on successful incorporation of 

the UAA into the expressed protein. EGFP expression should also only be present in cells 

co-transfected with the pyrrolysyl-tRNA synthetase (PylRS)/tRNACUA pair. We chose to use 

a variant of the M. barkeri (Mb) synthetase with mutations Y271M, L274G, and C321A that 

confer specificity for the unnatural amino acid bicyclononyne lysine (BCN-lysine).51-52 The 

click reaction between BCN and azides has been shown to proceed under copper-free 

conditions with highly favorable reaction kinetics.53-54 HeLa cells were transfected with 

NLS-TAG-EGFP either with or without co-transfection with the PylRS/tRNACUA pair, and 

with or without addition of BCN-lysine (0.5 mM) to the cell culture media. Only among 

cells treated with all components was EGFP fluorescence observable (Figure 4). Due to the 

NLS, the fluorescence was concentrated in the nucleus, brighter in puncta morphologically 

consistent with nucleoli. Although cells in all conditions were treated with mero166 for 20 

minutes, washed, and allowed to recover for 2 h, clear co-localization of mero166 and 

EGFP fluorescence was seen only in cells co-transfected with the PylRS/tRNACUA pair and 

in the presence of the BCN-lysine UAA (Figure S6). Cells that had not been treated with 

UAA showed virtually no background fluorescence from mero166. However, some 

background mero166 fluorescence was observed in cells that had been UAA treated, 

regardless of whether or not co-transfection with the PylRS/tRNACUA pair had taken place. 

This background mero166 fluorescence may have resulted from in-cell reaction between 
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residual BCN-lysine and mero166, which could create a conjugate fluorescent product that 

is exported from the cell less efficiently than mero166 itself. The amount of time between 

UAA wash-out and subsequent dye labeling could be optimized for each protein target to 

reduce this background, depending on the stability of the expressed protein. Inhibition of 

organic anion transport caused retention of the dye in the cell, indicating that the AM esters 

are cleaved during the incubation times used, and that the anionic form of the dye must be 

actively exported (Figure S7).

Having established a method for in-cell labeling using mero166, we sought to generate a 

functional protein-based biosensor by reconstructing our meroCBD biosensor that reports 

the conformation of the small GTPase Cdc42.11 Cdc42 is a member of the Rho family of 

GTPases, proteins that act as molecular signaling switches as they cycle between inactive, 

GDP-bound and active, GTP-bound conformations.55 The Cdc42 binding domain (CBD) 

derived from the Wiskott-Aldrich syndrome protein (WASP) binds only to the activated, 

GTP-bound conformation of Cdc42.11, 56 In our published biosensor, this domain was 

mutated to include a single cysteine at position 271, a residue known to be near a 

hydrophobic pocket generated when CBD binds to activated Cdc42.57 Labeling with an 

environment-sensing fluorophore at this position resulted in a biosensor whose fluorescence 

intensity increased when it bound to activated Cdc42 in cells.11 We sought to generate this 

biosensor by introducing BCN-lysine at residue 271 of CBD, followed by reaction in the cell 

with mero166.

Mammalian expression vectors for both wild type CBD and a mutant with reduced Cdc42 

binding (mCBD; H246D, H249D)11, 59 were created, each with the amber stop codon (TAG) 

introduced at F271 and fused to the amino terminus of EGFP. As with the NLS-TAG-EGFP 

constructs, due to the placement of the TAG codon, EGFP fluorescence depended on UAA 

incorporation into the expressed protein. Expression of both CBD-TAG-EGFP and mCBD-

TAG-EGFP was carried out in HeLa cells via co-transfection with an optimized mammalian 

expression vector containing the PylRS/tRNACUA pair (see Supporting Information)50 and 

in the presence of the BCN-lysine UAA. Subsequent labeling of CBD-EGFP with mero166 
showed clear colocalization of dye and EGFP fluorescence; no such co-localization was seen 

when cells were treated with dye 5, which does not contain a reactive functional group but is 

otherwise structurally analogous to mero166 (Figure S8). Flow cytometry analysis showed a 

clear correlation between the level of EGFP expression and the extent of dye labeling 

(Figure S9). Transfecting constitutively active Cdc42 (Cdc42Q61L) affected the dye/GFP 

fluorescence ratio of cells expressing CBD much more than cells expressing mCBD (Figure 

5a). The Cdc42 inhibitor ML 141 significantly reduced the dye/GFP ratio of the wt 

biosensor. Finally, CBD-TAG-EGFP expressed in HeLa cells was labeled with mero166 and 

imaged over time to observe Cdc42 activation during cell migration. Consistent with earlier 

studies, this Cdc42 biosensor showed Cdc42 activity localized at active regions of the cell 

edges and in protrusions (Figure 5b).6, 11, 15 Uniform background fluorescence from 

unattached dye could be greatly reduced by washing the cells in fresh media. Use of the 

mCBD-TAG-EGFP control construct reduced the level of observed Cdc42 activation and 

failed to show the localization observed with CBD. Background fluorescence was present to 

some degree in these studies, in the nucleus and juxtanuclear area. Perhaps mutation of the 
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WASP fragment enhanced affinity for non-Cdc42 cell components and/or off target 

localizations were more predominant when the biosensor could not bind Cdc42. Although 

this background was not particularly confounding for studies of protrusion and retraction, 

which occur away from the nucleus, it merits further study to enable other applications.

CONCLUSIONS

In summary, we have developed environment-sensing dyes that are optimized to both report 

protein activity and to pass through membranes and label proteins in living cells. They have 

a suitable combination of brightness and solvent dependent fluorescence changes, long 

excitation and emission wavelengths, and are water soluble. They show efficient cell loading 

and uniform distribution within the cell and are derivatized for conjugation to proteins or 

small molecules. One such dye entered the cell when conjugated to a small molecule and 

showed the localization of this molecule’s protein target. Another variant was used for in-

cell generation of a functional biosensor via reaction between the dye and an unnatural 

amino acid side chain on a protein affinity reagent. Through precise positioning of dyes on 

proteins, this strategy can produce biosensors for new protein targets, and provides a 

practical route to harness the many capabilities of environment-sensing dyes in living cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Design and screening of merocyanine derivatives for cell entry. (a) Overview of structures. 

(b) Fluorescence intensity of each dye in the initial screening set. Fluorescence intensity (FI) 

values were recorded at the peak of the emission curve for each dye when excited at the 

excitation maximum (p < 0.5, n = 7 samples). (c) Distribution of dyes in MEF cells. These 

images were scaled individually to show subcellular distribution, so do not indicate the 

relative brightness of each dye. The intensity difference between the nucleus and the cell 

edge is due to variation in cell thickness, as shown by normalization with volume indicators. 

(Scale bar 20 μm, excitation filter 545/50, emission filter 630/45).
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Figure 2. 
Emission fluorescence spectra of conjugatable merocyanine dyes.
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Figure 3. 
MEF treated with either mero166 alone, or mero166 conjugated to an inhibitor of histone 

methyl transferase G9a. Only the latter shows nuclear localization, consistent with the 

function of G9a. (Scale bar 20 μm, excitation filter 545/50, emission filter 630/45).
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Figure 4. 
HeLa cells transfected with test construct NLS-TAG-EGFP with or without cotransfection of 

the plasmid containing the tRNA synthetase/tRNA pair. Only in cells containing both 

plasmids and in the presence of UAA was co-localization of nuclear EGFP fluorescence and 

mero166 fluorescence observed. NLS, nuclear localization signal. (Scale bar 20 μm, dye 

excitation filter 545/50, dye emission filter 630/45, EGFP excitation filter 470/40, EGFP 

emission filter 630/45).
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Figure 5. 
Generating and using the Cdc42 biosensor in living cells. (a) HeLa cells transfected with 

either CBD or mutant CBD (mCBD) constructs and co-transfected with Cdc42Q61L or 

Cdc42T17N (n ≥ 7 cells per condition). The Cdc42 inhibitor ML 14158 was added to cells for 

1 hour (10 μM) prior to fluorescence measurements. (b) Migrating HeLa cells expressing 

CBD-TAG-EGFP and labeled in-cell with mero166 show Cdc42 activity at motile portions 

of the cell edge and in cell protrusions, consistent with previous observations (left panel). 

Cells containing the mutant biosensor with reduced affinity for Cdc42 (mCBD-TAG-EGFP, 

right panel) showed no such localized activity. White arrows indicate protrusions that led to 

cell translocation. (Scale bar 20 μm, dye excitation filter 545/50, dye emission filter 630/45, 

EGFP excitation filter 470/40, EGFP emission filter 630/45).
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Scheme 1. 
Synthesis of the conjugatable dye mero76.
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Scheme 2. 
Compound mero166 with azide side chain and conjugation to G9a ligand.
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Table 1.

Photophysical properties of conjugatable merocyanines bearing acetoxymethyl ester groups.

mero # R Solvent
a ex λmax

(nm)
em λmax

(nm) ε (M−1cm−1) Φ brightness
(ε × φ)

76 CO2H

DMSO 564 594 70000 0.12 8400

MeOH 555 588 56000 0.08 4480

H2O 569 590 28000 0.02 560

166 N3

DMSO 565 594 100000 0.24 24000

MeOH 559 588 91000 0.11 10010

H2O 570 591 30000 0.02 600

167 CCH

DMSO 566 594 116000 0.21 24360

MeOH 558 588 85000 0.09 7650

H2O 569 591 22000 0.06 1320

a
H2O contained 0.1% DMSO.
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