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Abstract

The goal of this work was to develop a label free, comprehensive and reproducible high resolution 

LC-MS-based untargeted lipidomic workflow using a single instrument, which could be applied to 

biomarker discovery in both basic and clinical studies. For this, we have i) optimized lipid 

extraction and elution to enhance coverage of polar and non-polar lipids as well as resolution of 

their isomers, ii) ensure MS signal reproducibility and linearity, and iii) developed a bioinformatic 

pipeline to correct remaining biases. Workflow validation is reported for 48 replicates of a single 

human plasma sample: 1,124 reproducible LC-MS signals were extracted (median signal intensity 

RSD=10%), 50% of which are redundant due to adducts, dimers, in-source fragmentation, 
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contaminations, or positive and negative ion duplicates. From the resulting 578 unique 

compounds, 428 lipids were identified by MS/MS, including acyl chain composition, of which 394 

had RSD < 30% inside their linear intensity range, thereby enabling robust semi-quantitation. MS 

signal intensity spanned 4 orders of magnitude, covering 16 lipid subclasses. Finally, the power of 

our workflow is illustrated by a proof-of-concept study in which 100 samples from healthy human 

subjects were analyzed and the dataset investigated using three different statistical testing 

strategies in order to compare their capacity in identifying the impact of sex and age on circulating 

lipids.
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INTRODUCTION

Lipidomics is a subset of metabolomics and an emerging discipline that aims at profiling and 

characterizing all lipids in a biological system. Lipids play crucial biological roles, as part of 

cell membrane structure, acting as signaling molecules, nerve conduction, etc. Hence, 

lipidomics offers great promise to extend our potential for the discovery of early disease 

biomarkers or new mechanisms that could be targets for therapy, as evidenced by studies in 

diabetes, cardiovascular and neurological diseases.1,2 Mass spectrometry-(MS)-based 

methods are most commonly used for lipidomics since they offer several advantages such as 

greater sensitivity and coverage, particularly when coupled to liquid chromatography (LC).
3–6 However, the application of lipidomics remains challenging particularly due to the 

diversity of lipid classes in term of structures and polarity as well as the wide dynamic range 

of lipid concentrations in biological matrices, from pM to mM7 and the limited availability 

of commercial standards. Currently, the LIPID MAPS classification system8 subdivides 

lipids in 8 categories: fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, 

prenols, saccharolipids and polyketides. Adding to this diversity in structure and chemical 

properties, the nature and position (sn-1 vs. sn-2) of the acyl side chains on the head group 

as well as the localization of the double bond on these acyl side chains generate a multitude 

of isomers, which could have important different biological properties,9 while increasing the 

complexity of the analysis.

To tackle the challenges of lipidomics, both targeted and untargeted approaches are used. 

The targeted approach monitors selected known lipid species or classes of interest usually by 

multiple reaction monitoring (MRM).10,11 Its advantages are selectivity, specificity, as well 

as absolute and precise quantification using standards. Using this approach, 588 lipid species 

in human plasma have been quantitated using several methods and LC-MS platforms by the 

LIPID MAPS Consortium.12 The targeted approach is, however, limited on, a priori, selected 

lipids resulting in a low potential for new biomarker discovery. In contrast, an untargeted 

approach, which measures by survey scan all chemical compounds that are detectable in a 

single sample offers a greater potential as an unbiased discovery platform.
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Most untargeted lipidomic workflows (reviewed in3,5,13,13) use Folch,14 Bligh-Dyer15 and, 

more recently, methyl tert-butyl ether (MTBE)16 for lipid extraction, followed by elution on 

a reverse phase C18 column and running time often >30 min for LC, plus electrospray 

ionization in positive and negative modes using high resolution for MS analysis. Some 

limitations and challenges exist, however, irrespective of workflows. These include: (i) the 

dynamic range of available MS instruments (~5-fold), which is less than the ~8-fold range12 

for lipid concentrations in biological samples, (ii) limited lipid coverage, (iii) ion 

suppression resulting from co-elution of lipid species of high vs. low abundance, and (iv) 

variability in data processing.17 Furthermore, it is often difficult to discriminate the actual 

number of unique lipid species vs. the huge number of extracted MS signals that can be 

found in a given biological matrix using some untargeted lipidomic workflows. Lipids 

identification can also be problematic; annotation based solely on using accurate mass only 

with existing database can lead to numerous potential hits that cannot be distinguished even 

with the highest resolution MS instruments and is not equivalent to identification with 

MS/MS analysis. Recent studies have provided valuable insights into workflow 

harmonization through the comparison of results between (i) different laboratory-based 

methods (31 in total)18 and (ii) LC-MS instruments (9 in total)19 for the analysis of human 

plasma samples. Using MTBE-based extraction, the latter study reported between 200 and 

300 unique lipids detected with relative standard deviation (RSD) < 30% for a 15-min 

gradient on a single instrument. Nevertheless, enhancing coverage of lipids measured on a 

single instrument, while meeting criteria for linearity, precision and reproducibility remains 

an important objective.

We herein present a comprehensive and reproducible label-free untargeted lipidomic 

workflow using a single high resolution LC-QTOF, which was developed to further optimize 

recovery, coverage and chromatographic resolution of both polar and non-polar lipids, lipid 

isomers, while minimizing false discoveries. Taking advantage of lipid isomers resolution 

under our optimized conditions, we emphasize the identification of acyl side chains though 

manual interpretation of MS/MS spectra.

MATERIALS AND METHODS

Materials

LC-MS reagent methanol, acetonitrile, isopropanol, ethyl acetate and HPLC grade MTBE 

were purchased from J.T. Baker (USA), HPLC grade hexane from Laboratoire Mat (Quebec, 

QC, Canada), HPLC grade chloroform and formic acid Fisher Scientific (Ottawa, ON, 

Canada) and ammonium formate from Sigma-Aldrich (St. Louis, MO, USA). Ultra-pure 

water was produced using a Milli-Q system (Millipore, Billerica, MA, USA). Synthetic lipid 

standards were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA) and are listed 

in Supplemental Table 1. Lipids were dissolved in either hexane/isopropanol (3:4, v/v) or 

chloroform/methanol (2:1, v/v) at concentrations ranging from 5 mM to 5μM and stored at 

−80°C.
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Human plasma and serum samples

Method optimisation and validation: Protocol was approved by the Montreal Heart 

Institute Research Ethics Committee and written informed consent was obtained. Non-

fasting blood samples were collected in EDTA tubes, and immediately put on ice for 30 min, 

prior to centrifugation at 2,000 g for 15 min. Plasma was immediately put on ice, divided in 

125 μL aliquots prior to storage at −80°C until further analysis. To assess linearity and 

determine the amount of sample to be injected onto the LC-QTOF, loading experiments 

were conducted using 5 different volumes of the same plasma sample (n=3), corresponding 

to (in plasma equivalent): 0.13, 0.20, 0.26, 0.33, 0.40 μL in positive mode and 0.33, 0.46, 

0.56, 0.66 and 0.76 μL in negative mode. To assess robustness and reproducibility, we have 

tested 48 replicates of a single human plasma sample (30 year-old healthy female), which 

were processed through the entire workflow, from extraction (which was split on two 

consecutive days), to data processing. Finally, paired plasma and serum samples from three 

individuals were also processed simultaneously for comparison of signals between these two 

matrices.

Proof-of-concept study: The usefulness of our lipidomic workflow is illustrated using 

samples from a human cohort. Serum samples (100 μL) from 100 non-fasted healthy 

individuals North American or European background (53 females: median age: 43 years, 

interquartile range: 28–53; and 47 males: median age: 38 years, interquartile range: 26.5–

48.5) were obtained from the NIDDK IBD Genetics Consortium Biobank (http://

ibdgc.uchicago.edu/data/repository.html) and that were collected to match inflammatory 

bowel disease (IBD) cases (not studied herein). All subjects provided informed consent. 

Recruitment protocols and consent forms were approved by local Institutional Review 

Boards at all participating institutions. All serum samples and data in this study were 

denominalized.

Lipidomic workflow using LC-QTOF

This section reports the final validated protocols that were selected for our untargeted label-

free lipidomic workflow using high resolution LC-QTOF and which were used for its 

validation and application. For the lipid extraction and chromatographic elution steps, the 

optimized protocols were also compared to selected published ones. For the MS data 

processing, the bioinformatic pipeline was optimized through manual curation. Details about 

the experimental procedures used for method comparisons as well as about the various steps 

of the bioinformatic pipeline are in the Supplementary file.

Sample preparation: Extraction of lipids from plasma or serum samples spiked with 6 

lipid standards (2.5 nmol of monoacylglycerosphosphocholine (LPC) 13:0, 

diacylglycerophosphocholine (PC) 14:0/14:0 and 19:0/19:0, phosphatidylserine (PS) 

12:0/12:0, diacylglycerophosphopethanolamine (PE) 17:0/17:0, and 

diacylglycerophosphoglycerol (PG) 15:0/15:0)) was achieved using a modification of the 

MTBE-based protocol of Matyash et al.,16 as follows: Step 1: Plasma samples (100 μL) 

were added to 15 mL glass tubes containing lipid standards that had first been dried under 

nitrogen and resolubilized in 750 μL methanol followed by 20 μL 1M formic acid. Tubes 

were vortexed 10 sec prior to addition of (i) 2.5 mL MTBE and (ii) deionized water (625 
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μL), followed each time by mixing with a multi-pulse vortexer (Glas-Col, Terre-Haute, IN, 

USA) for 5 and 3 min, respectively. Samples were centrifuged at 1000 g for 5 min and the 

upper phase was collected. Step 2: The lower phase was subjected to three additional 

extractions each including 3-min vortex and 5-min centrifugation steps with: (i) 2 mL of the 

upper phase of a prepared solution of MTBE/methanol/water (10:3:2.5, v/v/v), (ii) 2 mL 

ethyl acetate containing saturated NaCl and 10 μL HCl 10 M and (iii) 2 mL ethyl acetate. 

Step 3: The four upper organic phases were combined and dried overnight in a vacuum 

centrifuge (Christ RVC 2–25, Osterode, Germany). Lipids were resolubilized by sequential 

addition of 200 and 100 μL methanol/chloroform (2:1, v/v); following each addition, the 

sample was subjected to vortex (8 sec), sonication (5 min), vortex (15 sec) and 

centrifugation (30 sec) prior to transfer to a glass vial (Agilent Technologies Inc., Santa 

Clara, CA, USA). Then, the combined volume for each sample was centrifuged 3 minutes 

before being aliquoted in 6 glass vials and stored at −80°C until analysis.

LC-MS analyses: Frozen samples were thawed on ice, sonicated 1 min and vortexed 30 

sec before injection onto the LC-MS. Samples were injected on a 1290 Infinity HPLC 

coupled with a 6530 (for workflow validation and lipidome characterization) or 6550 

(workflow application) QTOF equipped with a dual ESI source (Agilent Technologies Inc) 

and analyzed in positive and negative mode. Injected sample volumes, which were 

optimized in loading experiments to minimize MS signal saturation while maximizing lipid 

coverage, were: 1 and 0.7 μL in the positive mode for workflow validation and application 

respectively, and 2 μL in the negative mode in both cases (corresponding to 0.33, 0.23, and 

0.66 μL of plasma-equivalent, respectively). Lipids were eluted on a Zorbax Eclipse plus 

C18, 2.1 × 100 mm, 1.8μm (Agilent Technologies Inc., Santa Clara, USA), heated at 40°C 

with a constant flow rate at 0.45 mL/min, using a gradient of mobile phase A (0.2% formic 

acid and 10 mM ammonium formate in water), and B (0.2% formic acid and 5 mM 

ammonium formate in methanol/acetonitrile/MTBE, 55:35:10 (v/v/v)). The solvent program 

was: 0–2 min, 50% B; 2–11 min, 50–85% B; 11–33 min, 85–94% B; 33–35 min, 94–98% B, 

35–38 min; 98–99.5% B; 38–82 min, 98–99.5% B; 82–83 min, 99.5–50% B, plus an 

equilibration of 8 min. MS conditions were: gas source temperature: 325°C; drying gas rate: 

8 L/min; nebulizer: 35 psi; spray voltage: +/− 3500 V; cone voltage: 150V. Mass correction 

was applied during data acquisition using 2 reference compounds (Agilent Technologies 

Inc.): C5H4N4 and C18H18O6N3P3F24. Mass spectra were acquired from mass-to-charge 

ratio (m/z) 50 to 1700 and MS scans were collected during 1 sec. Samples were analyzed in 

randomized order and MS data were acquired sequentially in the positive and negative 

mode. Quality control (QC) was assessed by: (1) Injecting 3 control samples (mix of 6 

internals standards) before starting the project to assess RSD; (2) Injecting “in–house” 

plasma pool QC sample at the beginning, the end and at every 20 runs; (3) Injecting blanks 

every 20 runs; (4) Monitoring the 6 internals standards spiked in samples for signal intensity, 

mass accuracy and retention time (RT).

MS data processing: All LC-MS results pertaining to a given experiment were analyzed 

using the software package of Mass Hunter Qualitative Analysis (version B.06 for 6530-

QTOF, and version B.07 for 6550-QTOF, Agilent, Santa Clara, USA) for peak picking. In 

addition, we have developed a bioinformatic script, which is encoded in Perl language and 
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includes several steps in R language such as an algorithm to optimize MS peak alignment 

between chromatographic runs. The data processing steps can be summarized as follows (cf. 

Supplemental file for more details): Step 1: MS features, defined by mass-to-charge ratio 

(m/z), signal intensity and RT, were extracted from the raw MS signals for each data run 

using the peak picking Mass Hunter Molecular Feature Extractor (MFE); Step 2: MS 

features between chromatographic runs were aligned by selecting features that were present 

in all samples with no isobars (defined by mass ± 20 ppm) in a RT window of ± 2 min, 

spread over the gradient as references for RT correction prior to MS features alignment; Step 

3: Recursive peak extraction on MS features was performed using Mass Hunter Find by 
Formula in order to minimize missing data; Step 4: The refined set of features from all runs 

was re-aligned using endogenous reference compounds as described in step 2; Step 5: 

Duplicate features filtering; Step 6: Features coming from multiples adducts ([M+Na]+, [M

+K]+, [M+NH4]+, [M+NaCOOH]+ in positive mode and [M+FA]− and [M+NaCOOH]− in 

negative mode) were filtered by retaining in the final dataset only the highest MS intensity 

signal from each cluster, since errors can be created by pooling intensities, which are not in 

the linear range20; Step 7: Abundance values for all MS features from both negative and 

positive ionization were merged; Step 8: Filter of presence; Step 9: Normalization using 

cyclic loess21 algorithm (R library Limma22 from bioconductor); Step 10: Imputation of 

missing values using k-nearest neighbour on scaled data (R library impute23 from 

bioconductor, k=5); Step 11: Batch effect correction using Combat.24 The resulting dataset, 

which lists features detected in a given experiment, with their mass, corrected signal 

intensity and RT, is ready for further data analysis.

Lipid identification with acyl side chains for plasma lipidome 
characterization: Data-dependent MS/MS scans were collected during 500 ms on each 

m/z selected with a RT window of 4 minutes. The resulting MS/MS files were aligned with 

the previously acquired MS files from the same study. Then, the MS/MS scans 

corresponding to selected features were interpreted manually in silico similar to Godzien et 

al.25 Briefly, identification of lipid structure, including fatty acyl side chains, was performed 

as follows. First, the m/z of selected features listed in the dataset resulting from data 

processing was searched in METLIN or LIPID MAP databases, considering that the highest 

intensity ion observed for the following lipid (sub)class lipids are: (i) in positive ionization, 

PC, PE, sphingomyelin (SM): as [M+H]+; fatty Acids (FA), phosphatidylinositol (PI): [M

+NH4]+; steryl esters (CE), glycerolipids: [M+NH4]+ or [M+Na]+; and (ii) in negative 

ionization: FA, PE, PI: [M-H]−; PC, SM, Ceramide (Cer): [M+HCOO]−. Second, from the 

MS/MS spectra, the polar head group was identified by their signature fragment ion: (i) in 

positive ionization: PC, LPC, SM: m/z 184.073; PE, LPE: from the loss of 141.019; PS: 

from the loss of 185.009; CE: m/z 369.352; (ii) in negative ionization: PI: m/z 241.011. 

Finally, the acyl chains were identified by their representative fragment ion: (i) in positive 

ionization: sphingolipids: RCN+ (e.g. 264.269 for d18:1) and for glycerolipids: from the loss 

of RCOO; and (ii) in negative ionization: glycerophospholipids: RCOO− (e.g. 281.247 for 

18:1 acyl chain). If only one acyl chain fragment ion was observed, the identity of the other 

acyl chain was deduced by accurate mass search in METLIN or LIPID MAP databases. A 

putative identification of the sn-1 and sn-2 position of fatty acyl side chains of all lipid 

classes, except lysophospholipids, was also attempted by considering the relative intensity of 
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fragments from the acyl chains reported using lipid standards. For glycerophospholipids, the 

peak intensity for the sn-2 fragment is stronger in negative ionization mode,26,27 except for 

those containing as side chains a saturated plus a highly polyunsaturated fatty acids28 and 

for PS.29 Similarly, for triacylglycerols, the sn-2 fragment gives the lowest signal intensity.30 

In some cases, lipid structure identification could be ascertained using the retention time 

behavior,31,32 which predicts that there is a linear relationship between the RT (x axis) and 

mass (y axis) of all lipids within a given class and which depends on the carbon chain length 

and degree of unsaturation of the two acyl side chains. Since acyl side chain positions were 

not validated with synthetic standards, glycerophospholipids and glycerolipids were 

annotated along with the identified structure for the acyl side chains using the underscore 

convention, and reported with their highest intensity MS/MS fragment.

Lipid annotation and identification for the proof-of-concept study: For 

annotation of lipids in the workflow application step, the MS dataset obtained from the 

analysis of samples from the 100 healthy subjects from the NIDDK IBD Genetics 

Consortium was aligned manually with the one obtained for the 48 replicate samples for 

which we had characterized the lipidome in the previously described method validation step. 

From the generated list of lipids annotated though manual peak alignment; we selected 25 of 

them as being representative of lipid subclasses distribution in the whole workflow 

application dataset for further validation of their identity by MS/MS.

Statistical analysis

Workflow validation: The output text file containing the processed dataset, was imported 

into Mass Professional Pro (MPP: version 12.6.1; Agilent Technologies Inc.) software to 

calculate individual RSD and average intensity values for each feature.

Proof-of-concept study: The dataset was investigated using the following three different 

statistical testing strategies to compare their capacity in identifying the impact of sex and age 

on the circulating lipidome. Strategies 1 and 2 are commonly used, while strategy 3 has only 

been recently applied to metabolomics data. (a) Strategy 1: Independent testing of each 

feature using regression analysis. (b) Strategy 2: Biologically informed grouping of MS 

features based on subclass of lipids and their fatty acyl groups, followed by within-group 

principal component analysis. Each class was then represented by its first two principal 

components, and then tested for association with the sex and age variables. (c) Strategy 3: 

Unsupervised and completely data-driven grouping of correlated MS features into modules, 

using weighted correlation network analysis (WGCNA) R tool. Each module is then 

represented as its first two principal components and tested for association with the variables 

sex and age. WGCNA33,34 has been created for and mostly applied to the analysis of gene 

expression data but, more recently, also to metabolomics data.33,35–38 Significance 

thresholds and multiple testing: A suggestive significance threshold of P-value < 0.05 was 

chosen instead of a very stringent one, given the correlated nature of MS features and in 

order to optimize power and maximize the potential of discovery for this limited-scale study 

(n=100). Multiple testing was accounted for independently for each strategy and each 

phenotype, by evaluating false discovery rate (FDR), which is relevant in a context of 

discovery and exploratory analyses. For strategy I, we report q-values as an estimate of the 
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FDR. For strategy II and III, computing q-values could have been misleading, because there 

are fewer tests, non-trivial correlation structure and high enrichment of lower P-values. 

Marginal P-value threshold of 0.05 and R2 > 0.2 for one of the principal component were 

used to declare association between a group or module and a phenotype. A clear enrichment 

is observed using these criteria, which indicates low FDR. As an example, if we consider 

association to age, for strategy II there are 20 groups (each with 2 tests) one would expect 

about 2 groups to be false positives in average if all these tests were independent and under 

the null. We observe 10 groups to be significant, which is much more than expected under 

the null.

RESULTS AND DISCUSSION

Overview

We have developed a label free untargeted LC-MS-based lipidomic workflow that combines 

the following characteristics: (i) untargeted MS data acquisition to enable its use in 

biomarker discovery, (ii) optimized extraction recovery across multiple classes of polar and 

non-polar lipids (for e.g. glycerophospholipids vs. glycerolipids), (iii) chromatographic 

resolution within lipid isomers characterized by fatty acyl side chains of different chain 

length (for e.g. PC(18:2_20:4) and PC(16:0_22:6)), or position of double bonds (for e.g. 

PC(18:0_20:4n-3) and PC(18:0_20:4n-6)), (iv) data processing method that incorporated 

scripts to optimize MS data alignment, filtering and correction, and (v) lipid identification, 

including acyl side chains, through MS/MS. The performance characteristics of this 

workflow as well as characterization and reproducibility of all extracted LC-MS signal and 

referred thereafter as features are presented. Thereafter, the usefulness and power of the 

workflow in identifying changes in circulating lipid isomers are illustrated through the 

comparison of sex and age in a cohort of 100 healthy human subjects.

Workflow optimisation

A two-dimensional map (m/z vs. retention time (RT)), presented in Figure 1, depicts the 

1089 features detected throughout the LC-MS analysis performed in positive mode (blue) 

and negative mode (red) with our optimized workflow. In brief, the developed LC-MS 

method enables detection of a wide range of both polar and non-polar lipid subclasses, 16 in 

total (cf. Section on “Characterization of the Human Lipidome” and Table 1 for more 

details). While the elution pattern of these lipids resembles those reported by others under 

similar conditions,31,39 we have optimized conditions for the lipid extraction and 

chromatographic elution steps to enhance recovery, coverage and chromatographic 

resolution of MS features as described in details in the Supplementary file. In addition, to 

enable robust MS data processing and thereby minimize false discovery, we have developed 

a bioinformatic pipeline, which complements the Agilent softwares, and includes several 

scripts that covers MS data extraction, alignment, filtration and correction. Despite using an 

83-min LC-MS gradient, we also found that one challenging and crucial step was MS peak 

alignment; this is often confounded by the presence of multiple isomers with similar elution 

time (Supplemental Figure S-4). Hence, a RT correction algorithm was developed, which 

enables alignment using multiple endogenous compounds as reference (cf. Supplementary 

file for details). Finally, following data normalization, we included an algorithm to account 
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for batch effect, since we observed some inter-day variations in sample preparation 

(Supplemental Figure S-5).

Finally, for acyl side chain identification, although we initially used SIMLipid440 and 

LipidBlast41 with some success to identify some unknown lipids through matching of peaks 

resulting from MS/MS fragmentation with a database entry, we have chosen to manually 

interpret each MS/MS spectrum. This was important to ensure optimal identification of 

lipids, especially their acyl chains given the presence of (i) multiple lipid isomers which 

produced multiple matches, and (ii) non-specific ion fragments (for e.g. m/z 184,073 for PC 

and SM). Furthermore, we were able to take advantage of the property of some lipids to 

provide information in both ionization modes. For example, while PCs have better signal 

intensity in positive mode, their MS/MS fragmentation provides information on their acyl 

chain composition only in the negative mode. Finally, we were also able to putatively assign 

acyl chain position, although this was found to be more difficult in complex matrices such as 

plasma or serum than with standards due to the low intensity of some lipids and the presence 

of numerous co-eluting lipids.

Workflow validation

Based on results from loading experiments (cf. Supplemental file and Supplemental Table 

S-3), a volume of 1 and 2 μL was selected for validation in the positive and negative 

ionization mode (corresponding to 0.33 and 0.66 μL of plasma-equivalent). Injection of 

volume > 2 μL did not result in any signal saturation in the negative ionization mode, albeit 

we noticed some carry over with time. Approximately 70% of the lipid features measured 

have a linear correlation (vs. injected volume) R2 > 0.98, and 98.5% have R2 > 0.96; those 

with lower R2 (0.98–0.96) are predominantly of low MS signal intensity. A linear dynamic 

range of almost 4 orders of magnitude was obtained. Using the 48 human plasma sample 

replicates, a total of 1,624 MS signals or features, defined by a mass-to-charge ratio (m/z) 

and RT, were detected over the 48 samples, of which 1,124 features (895 positive ions and 

229 negative ions) remained after data filtering for presence in 80% in all samples and 

elimination of features coming from selected adducts (cf. Materials and Methods) retaining 

only the feature with the highest intensity signal from each adduct’s cluster. The median 

intra- and inter-assay coefficients of variations (RSD) of raw data for each of the 1,124 

features detected over the 48 samples were, respectively, 14.4 % and 15.7%. Following data 

processing, these RSDs decreased to 9.5% and 9.7%, respectively. Median RSD for RT 

values assessed for 497 reference features (cf. Supplemental Files for details on reference 

features), representative of the dataset, was 0.2%. Overall, these results demonstrate the 

robustness and excellent reproducibility of our untargeted lipidomic workflow, thereby 

providing good confidence for the application of this label-free approach for semi-

quantitative analysis of lipid signals in plasma under various conditions.

Characterization of the human circulating lipidome

Prior to the application of our untargeted lipidomic workflow to a specific discovery-based 

study, we have ascertained the quality of the final dataset obtained from the analysis of the 

48 human plasma sample replicates by characterizing the lipidome. Specifically, from the 

1,124 MS features that remained after robust data processing, we aimed to (i) determine the 
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proportion of unique MS compounds, and (ii) identify these compounds, which include 

characterization of the acyl side chains of the various lipids.

Number of features vs. unique lipids detected: Given that all MS features detected 

do not correspond to unique lipid species, we aimed to identify and eliminate redundant 

ones. From the 1,124 MS features aligned and filtered through data processing, >50% were 

from the following sources or processes as illustrated in Figure 2: (A) Contamination: We 

found 46 contaminating ions from polymers (PEG: repeating mass unit of 44.026); (B) 
Duplicate ions: Through manual inspection of the extracted ion chromatogram, we found 

duplicates of the same feature based on several criteria such as similar peak shape and 

identical RT values. These duplicates ions were attributed to the following processes: (i) 

Dimerization (102 features): this occurs during the ionization process with ESI;42 it is 

concentration-42,43 and instrument-42,44 dependant and can be reduced by tuning the cone 

voltage.42,43 Dimers can be homodimers (for e.g. 2 PC) or heterodimers (for e.g. steryl ester 

plus cholesterol). (ii) In-source fragmentation (95 features): this is concentration- and lipid-

dependant and can also be reduced by adjusting the cone voltage45. (iii) Adduct formation 
(151 features): while 287 adducts were filtered during data processing, there were 151 

features that remained and were attributed mostly to unknown adducts or their combination 

resulting by an added mass of 37.065 (39 features) and 59.047 (36 features) in positive mode 

and mass 203.962 in negative mode (43 features). (iv) Redundancy between positive and 
negative ionization signals (150 features): some lipid species such as fatty acids, 

glycerophospholipids and sphingolipids, are detected in both ionization modes. Theses 

replicates have a mass difference of 2.02 (H2) for PE, 17.026 (NH3) for FA and PI and 

43.989 (COO) for PC, SM and Cer and present similar chromatographic profiles. Removing 

all duplicates and contaminant MS signals from the initial 1,124 MS features resulted in 580 

unique compounds. It is noteworthy that dimer formation and in-source fragmentation are 

processes that are concentration-dependant and, hence, injecting a larger sample volume will 

increase the number of features detected but will also result in a greater proportion of 

redundant features vs. unique compounds.

Identification of human plasma lipids including their acyl side chains: The 

aforementioned 580 unique compounds were processed for annotation using METLIN and 

LIPID MAPS databases and subsequent identification by MS/MS. Among them, 134 

features were classified as unknown since they had no valid correspondence at +/− 5ppm in 

databases when taking into consideration the proposed adduct for the lipid class, for 

example a [NH4]+ adduct for PC is unlikely. Targeted MS/MS was achieved for all 

remaining 446 features. When a given feature was annotated to a lipid, which ionizes in 

positive and negative mode, MS/MS was achieved in both modes to complement the 

interpretation process. Finally, 428 different lipids were identified, namely 9 fatty acyls, 227 

glycerophospholipids, 54 sphingolipids, 15 sterols, 122 glycerolipids and 1 prenol lipid 

(Table 1). A complete list of identified lipids is provided in the Supplementary Excel file. It 

is noteworthy that we report only one PS. This subclass of glycerophospholipids is less 

abundant than PC, PE and PI12 and probably resulted in too low signal intensity for their 

robust detection using our injection volume, which was selected to limit MS signal 

saturation of abundant lipids (cf. section “Worfklow Validation”).
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The structure of acyl side chains for all lipids was identified from MS/MS spectra.26,27 This 

structural information is very important since classes of fatty acids have different biological 

roles, for example n-3 and n-6 polyunsaturated fatty acids, such as docosahexaenoic and 

arachidonic acid, respectively, have anti- and pro-inflammatory properties.46 The 

identification of acyl side chains was facilitated by our long chromatographic gradient, 

which separated many lipid isomers that differed in their acyl side chain composition. We 

were also able to assign n-6 vs. n-3 C20:4 or C22:5 fatty acyl side chains on 12 PC. This is 

illustrated for PC38:4 in Figure 3, which depicts the extraction chromatogram (EIC) of m/z 
810.597 and highlight the elution and peak shape of the 4 identified isomers. MS/MS 

analysis on features 810.597 at RT 25.11 (peak #3) and RT 25.58 (peak #4) identified two 

PC(18:0_20:4) with a similar MS/MS signal intensity pattern for the two fragments 

corresponding to their fatty acyl side chain: higher at m/z 303.23 for C20:4, most likely on 

sn-2 position, and lower at m/z 283.26 for C18:0. This suggests that these two PC are not 

positional isomers. Therefore, based on the following considerations, we reasoned that the 

peak #3 and 4 contains a 20:4 fatty acyl side chain of the n-3 and n-6 series, respectively: (i) 

total plasma levels of C20:4n-3 (eicosatetraenoic acid) are ~120-fold less abundant than 

C20:4n-6 (arachidonic acid) in healthy human plasma47 and (ii) under our chromatographic 

conditions (RP), lipids containing fatty acyl side chain of n-3 series elute prior to their n-6 
isomer counterparts. Even if we were not able to identify all the isomers defined by their 

double bond location characteristics due to the limitation of our MS/MS technology vs. MS3 

for example, one clear advantage of our long chromatographic run is that it enabled 

separation of some of these isomers. It is noteworthy, however, that definitive identification 

of all these lipid isomers require synthetic standards, which to the best of our knowledge are 

not currently commercially available.

To further ascertain identification of some lipids, we used the RT behavior approach,31,32 

which was particularly useful for low abundance MS/MS fragments. In practice, this 

approach involves positioning RT (x axis) and mass (y axis) of lipids from the same class on 

a graph: lipids elute according to the carbon chain length and the degree of unsaturation of 

the two acyls in sn-1 and sn-2 position. This is illustrated in Figure 4 for some PC. This 

approach enabled the identification of 3 SM and 1 PC plasmalogen (PCO-) (data not shown).

Robust semi-quantitative analysis of lipids in human plasma: The Supplemental 

Excel file lists all 432 lipids identified, 428 by MS/MS and 4 using RT behavior, along with 

their respective RSD, signal intensity as well as correlation factor value calculated as 

described in the workflow validation section above. Among the 432 identified lipids, 360 

lipids have an intensity signal with a RSD < 20%, which is the upper limit tolerated by the 

FDA48 and 403 lipids have RSD < 30%, which is accepted by many laboratories19,49 for 

untargeted analysis. Among these lipids, 7 CE and 2 TG showed signal saturation, but the 

remaining 394 are meeting criteria for robust semi-quantitative analysis: namely, 8 fatty 

acyls, 212 glycerophospholipids, 53 sphingolipids, 8 sterols, 112 glycerolipids and 1 prenol 

lipid (Table 1). The use of replicates of a single vs. a pool of human plasma samples may 

have limited the number and diversity of lipids measured. Nevertheless, compared to 

Quehenberger et al.,12 who quantified 588 lipids with multiple platforms using a targeted 

approach, we cover (i) more lipid (sub)classes with numerous isomeric forms such as 
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glycerophospholipids (212 vs. 160) and glycerolipids (112 vs. 73), but (ii) less low abundant 

ones such as fatty acyls, which include acylcarnitines and eicosanoids (8 vs. 107), or prenols 

(1 vs. 8), since we are limited by the signal intensity dynamic range of our single instrument. 

Using a similar instrument, Cajka et al.19 reported only 118 glycerophospholipids with RSD 

< 30%, but this could be explained by the short 15 min–gradient as their focus was more on 

reproducibility than coverage.

Proof of concept: Impact of sex and age on the circulating lipidome

This section reports data from our proof-of-concept study conducted in a cohort of healthy 

males (n=47, median age: 38 years, interquantile range: 26.5–48.5) and females (n=53, 

median age: 43 years, interquantile range: 28–53) from the NIDDK IBD Genetics 

Consortium Biobank in order to illustrate the robustness and power of the developed 

untargeted lipidomic workflow in identifying the impact of sex and age on circulating lipid 

subclasses, but more specifically on their fatty acyl side chains.

MS lipid feature annotation: Following data processing, the final data set had 854 

features. Because of the similarity in plasma and serum lipid profiles (Supplemental Figure 

S-6), we took advantage of our prior identification of 428 lipids by MS/MS in plasma (cf. 

section “Identification of plasma lipidome” above) and manually aligned the datasets 

generated from the workflow validation and those of the workflow application and this 

enabled the annotation of 295 unique lipids in the latter. Using MS/MS analysis, we have 

ascertained the identity of 25 of these lipids, selected for representing subclasses in the 

whole dataset (8 PC, 6 SM, 4 TG, 3 PE, 2 Cer, 1 diacylglycerol (DG), 1 glucose/galactose 

(Glc/Gal)-Cer), except for a misidentification of the fatty acyl side chain composition for 1 

SM. Because statistical testing is achieved on the entire dataset and not only on identified 

lipids, we also manually looked for signal redundancy for those 295 lipids in the entire data 

set consisting of 854 features (cf. section above) and identified 485 MS features. 

Collectively, these results demonstrate the potential of building an in-house database for 

rapid lipid identification in an untargeted lipidomic discovery study instead of conducting 

MS/MS analysis multiple times on different datasets from the same or similar matrix, which 

is more time consuming.

Impact of sex and age on the circulating lipidome: This section compares results 

obtained using three different statistical testing strategies on our lipidomic dataset.

The first two strategies are commonly used in metabolomics, namely individual testing of 

features (here using regression analysis) followed by evaluation of FDR (Strategy 1) as well 

as biologically informed grouping (Strategy 2). The third strategy, namely data-driven 

grouping of MS features using WGCNA (Strategy 3), was created for and mostly applied to 

the analysis of gene expression data but, only more recently, applied to metabolomics.
33,35–38 It is noteworthy that since 55 of the 854 MS features were not attributed to any 

module during WGCNA analysis, the 3 different strategies were compared using the same 

dataset consisting of 799 features.
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Individual testing of features (Strategy 1): Figure 5 shows all 799 MS features of the 

dataset as a Volcano plot, in which the impact of sex or age is reported on lipid feature 

subclasses (Figure 5A & C) or fatty acyl side chains (Figure 5B & D), both indicated by 

differently colored symbols. Figure 5A & B compare male vs. female data adjusted for age. 

Using a threshold of P-value < 0.05 (corresponding to an estimated FDR of 8.5%), 219 of 

the 799 MS features were significantly different between males and females. Among these, 

higher values were found for 40 glycerolipids, 10 ceramides, 7 PC and 4 PC plasmalogens 

(PCO-) in males vs. 18 SM, 18 PC, 5 PE, 2 PI, 15 LPC and 3 FFA in females. As for the 

fatty acyl side chains, among the 219 lipid features discriminating males from females, 

higher levels were found for lipids containing (number of entities in brackets): C18:2 (15), 

C20:4 (12) and C22:4 (4) in males vs. C20:4 (3), C20:5 (6) and C22:6 (26) higher in 

females. Figure 5C and D depict the impact of a person’s age on the abundance of all lipid 

features, expressed as a 1-year difference and adjusted for sex. Using a threshold of P-value 

< 0.05 (indicated by the dotted line; corresponding to a FDR of 17%) 160 of the 799 features 

were significantly affected by age. Among these, abundance with age was higher for 4 Cer, 5 

SM, 8 FFA, 6 CE and free cholesterol, but lower for 14 PCO-, 3 PE, 2 PI and 6 LPE. For 

fatty acyl side chains, abundances were higher with age for C22:5 (2), C20:5 (2) and C22:4, 

but lower for C18:2 (44) and C20:4 (4).

Biologically informed grouping of features (Strategy 2): Table 2 reports results 

from supervised correlation analyses between identified subclasses and fatty acyl groups 

with sex and age. Significant associations were found for the following lipid subclasses for 

(i) sex: di- and triacylglycerols, ceramides, PE, PI and Glc/Gal-Cer, and for their fatty acyl 

side chains: C18:2, C20:5, C22:4 and C22:6 (Table 2), and (ii) age: diacylglycerols, SM, 

PCO-, PE, PI, LPE and for their fatty acyl side chains C18:2 and C22:5 (Table 2).

Data-driven grouping of MS features using WGCNA (Strategy 3): Table 3 reports 

the 18 most significant modules (P-value < 0.05) for one of the principal components from 

the 22 modules created by WGCNA analysis (Strategy 3). These modules contained between 

12 and 124 MS features. Using WGCNA, we identified 10 modules that were strongly 

correlated with sex containing predominantly the same lipid subclasses as those found with 

strategy 1 and 2, namely di- and triacylglycerols (modules 3 and 11); SM (modules 5, 14 and 

22), PCO- (module 17), PE (module 18), Cer (module 6), FFA (module 21) and the C22:6 

fatty acyl side chain (module 15). Modules that correlated the most with age contained also 

di- and triacylglycerols (module 11), SM (module 5), PCO- (module 17), PE (module 18), 

PC and PI (modules 8 & 12) (Table 3).

Taken altogether, results from all 3 testing strategies converge to a similar conclusion 

regarding classes of lipids or their fatty acyl side chains that were most affected by sex and 

age, although there are some subtle differences. It should, however, be kept in mind that in 

this proof-of concept study, data analyses did not take into account factors such as body 

mass index and medications, which could influence the sex and age comparison50. 

Nevertheless, our results corroborate the fact that lipids of various classes containing a fatty 

acyl side chain of the n-3 series such as C22:6 and C20:5 are significantly more abundant in 

females vs. those of the n-6 series such as C18:2, C20:4 and C22:4 that are more abundant in 
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males. To the best of our knowledge, such a detailed analysis of the impact of sex on the 

fatty acyl side chain composition of lipids has not been previously reported. Second, they 

also identify changes in lipid subclasses with sex, which are consistent with those previously 

reported by Weir et al.51 (cohort of 1076 Mexican Americans) and Sales et al.50 (cohort of 

71 healthy Caucasians), except for diacylglycerols, for which higher levels were not reported 

in males. Interestingly, although 18 individual SM were more abundant in females using 

strategy 1, when all grouped as a class, it was not correlated to sex (R2=−0.18, P-value=0.1; 

strategy 2). There was, however, a better correlation, both negative and positive, for sex with 

modules containing SM (modules 5 & 14: R2= −0.27 & −0.32; P-value=0.009 & 0.0016, 

module 22: R2=0.23, P-value=0.026). Hence, these results suggest that some, but not all, SM 

are associated with sex. In this regard, Mielke et al.52 have emphasized the importance of 

measuring SM individually, along with their carbon-chain length instead of measuring total 

SM as a class, to distinguish their cellular functions since SM metabolism is highly 

compartmentalized.53

Based on the aforementioned results obtained with the 3 different testing strategies, we 

conclude that all of them provide relevant and complementary information about the impact 

of sex and age on lipidomic data acquired using an untargeted-discovery based workflow. 

However, compared to strategy 2, strategy 1 (testing of individual features with a cut-off that 

is not too stringent) and strategy 3 (WGCNA) appear to yield results that are more 

representative of the dataset, more data-driven and more suitable for untargeted-based 

lipidomic approach since they do not require prior annotation of MS lipid features. The 

constraint behind strategy 1 is, however, the burden of multiple testing due to the high 

number of features, thus reducing power and/or increasing the risk of false positive. Strategy 

2 (testing associations between pre-defined lipid subgroups and a selected variable) is 

attractive for its biological relevance, but needs accurate annotation of features and is likely 

to miss important information on the differential impact of a given condition (i.e. sex or age 

in this study) within a given lipid subgroup, as it was illustrated in this study for the impact 

of sex on SM.

One of the unique advantages of using WGCNA for untargeted lipidomic data analysis is 

that lipid features are grouped in modules based on correlation prior to testing of their 

association with the selected variable(s), thereby decreasing the burden of dimensionality 

(multiple testings) and allowing easier control over type-one error rates. It is noteworthy that 

similarly to DiLeo et al.,35 who applied WGCNA to the analysis of tomato fruit 

metabolome, we found that for a given unique lipid, duplicate features such as precursors 

and product ions tend to be in the same module. In this study, we found that most modules 

of correlated lipid features are not necessarily part of the same subclass. For example, in this 

study, module 15 contained lipids from various subclasses with a C22:6 fatty acyl side chain; 

this module was strongly associated with sex. For a data-driven study, the identified modules 

provide a framework for prioritizing the identification of lipid features that are most 

associated with the selected variables.

The ultimate challenge remains, however, the biological interpretation of these data. In this 

regard, modules can be hypothesis-generating. For example, in this study we found that 

some modules containing SM correlated more strongly with sex than others. While the 
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biological basis for this result remains to be investigated, this could suggest that sex impacts 

only a subgroup of SM. Data interpretation could become, however, more difficult when 

different classes/types of lipids are present within the same module. One way to approach 

this would be to do a pathway enrichment analysis on the module of interest as it was done 

by Sue et al.37 and Heiland et al.38 for metabolomic data, or by Keck et al.54 for proteomic 

data. For this approach, the database that is mostly used is the Kyoto Encyclopedia of Genes 

and Genomics (KEGG55). The current coverage of KEGG database for lipid metabolites and 

metabolism is, however, limited and not sufficient for the analysis of comprehensive 

lipidomic data. In this regard, we tried to find some pathways associated with specific lipid-

containing modules using MetaboAnalyst 3.0,56 but without success. Furthermore, while the 

LIPID MAPS website offers extensive information on lipid metabolites, it contains only a 

few metabolic pathways and it is not currently designed for pathway mining of lipidomic 

dataset. Some of these issues may, however, be solved using the latest version of 

RECON3D57, which includes lipid pathways. Clearly, much remains to be developed in 

terms of bioinformatics for mining of comprehensive lipidomic datasets as well as their 

biological interpretation.

Future perspectives

Through the application of our lipidomic workflow to the plasma and serum samples, we 

encountered some constraints and limitations, which represent perspectives for future 

development of this workflow. For example, while our long chromatographic run (~83 min) 

was found to be essential for optimal resolution of lipid isomers, addition of other more 

recent technologies such as ion mobility58 or SFC59,60 would be expected to decrease the 

runtime while keeping optimal resolution of separation of lipids isomers. Similarly, in this 

study, the position of double bonds of the lipid fatty acyl side chains was only suggested 

using MS/MS on lipids with saturated fatty acyl side chain on the sn-1 position. Future 

development of our lipidomic workflow could take advantage of other technologies such as 

ozone-induced dissociation61 or MS3 scanning for this identification. In addition, to enhance 

throughput, future perspective will include the development of a bioinformatic script for 

automatizing the manual peak alignment of identified lipids between projects. Finally, the 

lipid coverage of our developed workflow (lipids from ~100 pg/mL to μg/mL12), is limited 

by instrument dynamic range as well as the presence of high concentration lipids. Hence, 

additional LC-MS analyses would be required to include lipid (sub)categories present at 

lower concentration such as isoprostanes and prostaglandins using separate samples that 

have been processed through pre-fractionation steps.62,63

CONCLUSIONS

We herein present a comprehensive and reproducible label-free untargeted workflow for 

unbiased LC-MS-based lipidomic analysis in hundreds of samples on a single instrument. 

This workflow includes modifications of commonly used lipid extraction and elution 

protocols as well as a newly developed data processing subroutine and thereby extends the 

current coverage of polar and non-polar lipids as well as lipid isomer separation that can be 

reproducibly measured inside a linear intensity range. We herein provide a list of 432 

different circulating lipids identified, including acyl side chain, of which 394 had RSD < 
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30% with no signal intensity saturation, which enable their robust semi-quantitative analysis 

required for the application of an untargeted workflow. The usefulness, power and 

robustness of the developed workflow were demonstrated through the analysis of 100 serum 

samples from healthy individuals and the comparison of three different testing strategies in 

their capacity to identify the impact of sex and age on the circulating lipidome. While all 

strategies provided relevant information, the use of unsupervised and data-driven approaches 

(i.e. strategy 1 and 3) was found to be most suitable for untargeted lipidomics since it does 

not require prior annotation of MS features, of which strategy 3 (i.e. WGCNA) identifies 

also correlated lipids, which may be biologically informative. Nevertheless, irrespective of 

the testing approach, this analysis revealed sex and age differences in lipids of various 

classes, particularly those containing polyunsaturated fatty acids of the n-3 (C22:6 and 

C20:5) and n-6 (C18:2, C20:4 and C22:4) series as acyl side chains. While additional work 

is needed to identify the remaining 134 unidentified features, one would expect that the 

advent of new technologies such as ion mobility, SFC and MSn will further extent the 

number of lipid features detected on a single instrument in a shorter time frame and facilitate 

the lipid identification process over time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

AC acylcarnitine

ACN acetonitrile

CE steryl ester

Cer ceramide

DG diacylglycerol

ESI electrospray source ionization

EIC extracted ion chromatogram
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FDR false discovery rate

Glc-Cer glucosyl ceramide

IPA isopropyl alcohol

LPC monoacylglycerosphosphocholine

LPE monoacylglycerosphosphoethanolamine

MRM multiple reaction monitoring

MTBE methyl-tert-butyl ether

m/z mass-to-charge ratio

PA diacylglycerophosphatidic acid

PC diacylglycerophosphocholine

PE diacylglycerophosphopethanolamine

PG diacylglycerophosphoglycerol

PI diacylglycerophosphoinositol

PL phospholipid

QC quality control

RP reverse phase

RSD relative standard deviation

RT retention time

TIC Total ion chromatogram
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Figure 1. Representative two-dimensional map (m/z vs. retention time (RT)) of extracted MS 
signals or features obtained in a human plasma sample processed through our workflow.
This figure shows the 1089 features (defined by mass-to-charge ratio (m/z), signal intensity 

and RT; depicted as circles) acquired under our LC-MS conditions in positive (blue) and 

negative (red) ionization mode. The main (sub)classes of lipids detected as well as their 

elution time period are highlighted. Details about the identified lipids are provided in Table 1 

and in the Supplemental Excel file. AC: Acylcarnitine, CE: steryl esters, Cer: ceramides, 

DG: diacylglycerols, FA: fatty acyls, LysoPL: lysophospholipids, PL: glycerophospholipids, 

SM: sphingomyelins and TG: triacylglycerols.
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Figure 2. Two-dimensional maps depicting the different sources of MS signals.
This figure shows the 1,124 features (shown as filled circles of different colours) detected in 

80% of 48 replicates of human samples using our LC-MS conditions. The figure highlights 

in blue 580 features identified as unique lipids and 544 other features classified as follows: 

contaminants (46 features, purple), dimers (102 features, red), in-source fragmentation (95 

features, green), adducts not filtered out by selecting known adducts with our data 

processing pipeline, (151 features, yellow) and duplicates in positive and negative mode 

(150 features, turquoise).
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Figure 3. Extracted ion chromatogram of m/z 810.597 (PC38:4 + H+) depicting the resolution 
and peak shape of four PC38:4 isomers.
The structure of the fatty acyl side chains was identified by MS/MS: Peak#1: 

PC(20:2_18:2), Peak#2: PC(18:1_20:3), Peak#3 & 4: PC(18:0_20:4) (See text for more 

details).
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Figure 4. RT behavior for some glycerophosphatidylcholines with different fatty acyl side chains.
The linear relationship between retention time (RT: x axis) and mass (m/z: y axis) is shown 

for different PC containing C18:1 and C18:2.
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Figure 5. Volcano plots depicting the impact of sex (A & B) and age (C & D) on circulating lipids 
(A & C) and their fatty acyl side chains (B & D) from 100 healthy individuals using independent 
testing (strategy 1).
All panels depict the 799 features obtained following MS data processing from which 295 

lipids were annotated using manual peak alignment with previously acquired dataset for 

which we had characterized the lipidome using MS/MS, including their fatty acyl side 

chains, as shown by the different colours. The dotted line indicates the P-value <0.05 

threshold, which corresponds to FDR values of 8.5% (impact of sex) and 17% (impact of 

age, expressed on a one-year difference).
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Table 1.

Number of lipids identified for robust semi-quantitation in human plasma sample according to the various 

(sub)classes.

Category (Sub)class identified lipids # semi-quantifiable lipids #

Fatty acyls (FA) Fatty acids and conjugates
Fatty acylcarnitines

7
2

6
2

Glycerophospholipids (GP)

Monoacylglycerophosphocholines (LPC) 
Monoacylglycerophosphoethanolamines (LPE)
Diacylglycerophosphocholines (PC)
Diacylglycerophosphoethanolamines (PE)
Diacylglycerophosphoinositols (PI)
Diacylglycerophosphoserines (PS)

41
8
150 (+1)*
12
15
1

32
8
145
12
14
1

Sphingolipids (SP)
Sphingomyelins (SM)
Ceramides (Cer)
Neutral glycosphingolipids

38 (+3)*
9
7

40
6
7

Sterols Lipids (ST) Steryls esters (CE)
Cholesterol & derivatives

13
2

6
2

Glycerolipids (GP) Diacylglycerols (DG)
Triacylglycerols (TG)

6
116

5
107

Prenol Lipids (PR) Ubiquinones 1 1

TOTAL 432 394

Data processing of the 1,624 MS features acquired over the 48 LC-MS analysis of replicates of human plasma samples resulted in 1,124 MS 
features following filtering and removal of adducts, of which 428 were identified by MS/MS and 4 (indicated by *) with RT behavior. This table 
reports the number of lipids identified by category and (sub)classes. The complete list of identified lipids is provided in the Supplemental Excel 
file.
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