Skip to main content
. 2019 Jun 14;9:8633. doi: 10.1038/s41598-019-44585-6

Figure 6.

Figure 6

Schematic summary of nitrogen transformation and nitrifying community changes in oligotrophic sediments with a hydrologically active basement. Oxygenated seawater in the bottom ocean and in the crustal aquifer cause an influx of oxygen into the sediment column from above and below. Rapid mineralization of organic carbon in surface sediments releases ammonia, which is instantly consumed by nitrifiers, supporting their high initial abundance and diversity. Below the high-activity surface layers, nitrifier abundance and diversity decline due to restricted organic carbon mineralization and thereby limited ammonia availability. In the oxic-anoxic transition zone (OATZ), ammonia is made available again through diffusion from the deeper anoxic layers that support anaerobic mineralization and release of ammonia, causing an increase in nitrifier cell abundance and diversity in the OATZ. In the anoxic zone nitrification is inhibited and both the diversity and abundance of nitrifiers decreases. When entering the anoxic-oxic transition zone (AOTZ), nitrifiers are no longer oxygen limited, and we detect an increase in abundance but not in diversity. As the nitrifiers leave the AOTZ, their abundance declines and their diversity remains low. Although denitrification occurs throughout the sediment column, limited organic carbon availability is likely responsible for maintaining the rates of denitrification lower than the production of nitrate, which results in an efflux of nitrate into the overlying bottom ocean and into the underlying crust.