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Quantal Neurotransmitter Secretion Rate Exhibits Fractal Behavior
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The rate of exocytic events from both neurons and non-
neuronal cells exhibits fluctuations consistent with fractal (self-
similar) behavior in time, as evidenced by a number of statistical
measures. We explicitly demonstrate this for neurotransmitter
secretion at Xenopus neuromuscular junctions and for rat hip-
pocampal synapses in culture; the exocytosis of exogenously
supplied neurotransmitter from cultured Xenopus myocytes
and from rat fibroblasts behaves similarly. The magnitude of the
fluctuations of the rate of exocytic events about the mean
decreases slowly as the rate is computed over longer and
longer time periods, the periodogram decreases in power-law
manner with frequency, and the Allan factor (relative variance of
the number of exocytic events) increases as a power-law func-

tion of the counting time. These features are hallmarks of
self-similar behavior. Their description requires models that
exhibit long-range correlation (memory) in event occurrences.
We have developed a physiologically plausible model that ac-
cords with all of the statistical measures that we have exam-
ined. The appearance of fractal behavior at synapses, as well
as in systems comprising collections of synapses, indicates
that such behavior is ubiquitous in neural signaling.
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Communication in the nervous system is mediated by action-
potential-initiated exocytosis of multiple vesicular packets (quan-
ta) of neurotransmitter (Katz, 1966). Even in the absence of such
action potentials, however, many neurons spontaneously release
individual packets of neurotransmitter (Fatt and Katz, 1952). A
packet may contain from 7000 to 10,000 molecules of acetylcho-
line (ACh), if we use the neuromuscular junction as an example
(Kuffler and Yoshikami, 1975). On arrival at the postsynaptic
membrane, the ACh molecules induce elementary endplate cur-
rents (EECs), which take the form of nonstationary two- (or
multi-) state on—off sequences (Sakmann, 1992). Current flows
when the ACh channel is open (i.e., when its two binding sites are
occupied by agonist) and ceases when the channel is closed. A
postsynaptic miniature endplate current (MEPC) comprises
some 1000 EECs (Sakmann, 1992). It was shown by Del Castillo
and Katz (1954) that superpositions of MEPC-like events com-
prise the postsynaptic endplate currents elicited by nerve
impulses.

It generally has been assumed that the sequence of MEPCs
forms a memoryless stochastic process (Fatt and Katz, 1952).
However, Rotshenker and Rahamimoff (1970) discovered that
exocytosis in the frog neuromuscular junction can exhibit corre-
lation (memory) over a period of seconds, provided that extra-
cellular Ca®" levels are elevated above their normal values.

Received June 20, 1996; revised April 8, 1997; accepted May 13, 1997.

This work was supported by Grants from the Whitaker Foundation to S.B.L., from
the National Institutes of Health (NS-31923) to M-m.P., and from the Office of Naval
Research (N00014-92-J-1251) to M.C.T. We thank Conor Heneghan and Eric
Schwartz for helpful suggestions.

Correspondence should be addressed to Professor Malvin C. Teich, Department of
Electrical and Computer Engineering, Boston University, Boston, MA 02215.

Copyright © 1997 Society for Neuroscience 0270-6474/97/175666-12$05.00/0

Cohen et al. (1974b) subsequently found such correlation (event
clustering) even in the absence of elevated Ca*" levels.

In this paper we study the statistical properties of exocytic
events over a far larger range of time scales than previously
examined. MEPCs were recorded from innervated myocytes in
Xenopus nerve—muscle cocultures and from rat hippocampal neu-
rons in cell culture. MEPCs from non-neuronal preparations also
were examined: the quantal secretion of ACh from isolated myo-
cytes (autoreception) and from rat fibroblasts, both exogenously
loaded with ACh (Dan and Poo, 1992; Girod et al., 1995).

We direct particular attention toward those statistical measures
that reveal the presence of memory. Our analysis reveals that the
time sequences of the MEPCs, and therefore of the underlying
exocytic events, exhibit memory that appears to decay away slowly
in both neuronal and non-neuronal cells. This long-duration
correlation is present over the entire range of time scales inves-
tigated, which stretches to thousands of seconds. The occurrence
of an MEPC, therefore, makes it more likely that another MEPC
will occur at some time thereafter. The analysis of long MEPC
data sets reveals that the rate of exocytic events behaves in a
manner consistent with a fractal process, exhibiting fluctuations
over multiple time scales. Fractals are objects that possess a form
of self-similarity: parts of the whole can be made to fit to the
whole by shifting and stretching. The hallmark of fractal behavior
is power-law dependence in one or more statistical measures over
a substantial range of the time (or frequency) scales at which the
measurement is conducted (Lowen and Teich, 1995; Thurner et
al., 1997). Because multiscale fluctuations are at the heart of this
behavior, selecting short data segments that exhibit minimal
fluctuations will dilute whatever fractal characteristics might be
present in a given data set, as we illustrate. The classic work of
Fatt and Katz (1952) is revisited in light of these findings.



Lowen et al. « Fractal Quantal Neurotransmitter Secretion

MATERIALS AND METHODS

Xenopus nerve—muscle cocultures. Cultures were prepared by following
previously reported methods (Spitzer and Lamborghini, 1976; Anderson
et al., 1977; Tabti and Poo, 1991). In brief, the neural tube from 1-d-old
embryos (stage 20-24; Nieuwkoop and Faber, 1967) was dissociated in
Ca?*/Mg?*-free Ringer’s solution supplemented with EDTA, plated on
clean glass coverslips, and incubated at 20—22°C for 1 d before recording.
Recording and culture medium consisted of 50% (v/v) Leibovitz’s me-
dium (Life Technologies, Gaithersburg, MD), 1% (v/v) fetal calf serum
(Life Technologies), and 49% (v/v) Ringer’s solution (115 mm NaCl, 2
mM CaCl,, 2.5 mm KC], and 10 mm HEPES, pH 7.3).

Hippocampal cultures. Hippocampal cultures were prepared by follow-
ing protocols previously described (Goslin and Banker, 1991), but with
the following modifications. Hippocampi from newborn Sprague Dawley
rats (postnatal day 0) were dissociated and plated at low density, without
glial support cells. Cells from 7- to 14-d-old cultures were used for
experiments. The recording solution consisted of (in mm) 140 NaCl, 5
KCl, 1 CaCl,, 1 MgCl,, 10 HEPES, 24 p-glucose, and 0.01 TTX (Sigma,
St. Louis, Mo), pH 7.4.

Fibroblast cultures. Parenteral 3Y1 cells, a line of rat skin fibroblasts
(Sternberg et al., 1993) were kindly provided by Paul Greengard (Rock-
efeller University, New York, NY). The cells were cultured in DMEM
and 10% fetal calf serum at 37°C with 5% CO, and were used 2-3 d after
subculture. For detection of ACh secretion from fibroblasts, the latter
were treated with trypsin-EDTA solution (Life Technologies); the sus-
pension of the fibroblasts was added to the recording chamber that
contained cultured Xenopus myocytes.

Electrophysiology. Recordings of miniature endplate currents at Xeno-
pus neuromuscular junctions were made with the gigaohm seal, nystatin
perforated-patch technique (Horn and Marty, 1988). Conventional heat-
polished patch pipettes were filled with pipette saline containing (in mm)
150 KCI, 1 NaCl, 1 MgCl,, 10 HEPES, pH 7.4, and nystatin (Sigma).
Nystatin was added at a final concentration of 460 uM (final concentra-
tion of DMSO, 1%). Nystatin stock (46 mM; 1 mg/ml in DMSO) was
prepared before each experiment, stored at room temperature in a
lightproof container, and used for up to 6 hr after preparation. A
conventional gigaohm seal was formed by pressing the pipette gently
against the myocyte and providing light suction. Spherically shaped
myocytes were selected.

For all other experiments, including hippocampal cells and non-
neuronal cells, the conventional gigaohm seal whole-cell recording
method was used (Hamill et al., 1981). For experiments in which MEPC-
like events were recorded from an isolated myocyte loaded intracellularly
with ACh (autoreception), the intrapipette solution containing (in mm)
150 KCl, 1 NaCl, 1 MgCl,, and 10 HEPES, pH 7.4, was supplemented
with 20 mm AChCI (Dan and Poo, 1992). The intrapipette solution used
for recording from hippocampal neurons consisted of (in mm) 155
K-gluconate, 1 MgCl,, 10 HEPES, 1 sodium gluconate, 5 MgATP, 0.5
NaGTP, and 0.1 leupeptin, pH 7.4. The internal solution in the patch
pipette for fibroblasts contained (in mMm) 105 K-gluconate, 1 Na-
gluconate, 10 HEPES, 5 MgATP, and 0.5 NaGTP, pH 7.4, supplemented
with 50 mm AChCI. The detached fibroblast was patched before being
manipulated into contact with an isolated Xenopus myocyte. The record-
ing pipette for the myocyte contained (in mm) 150 KCI, 1 NaCl, 1
MgCl,, and 10 HEPES, pH 7.4.

In all experiments, currents were recorded at room temperature under
voltage-clamped conditions (holding voltage V}, = —70 mV for myocytes,
—80 mV for fibroblasts, and —65 mV for hippocampal neurons), with an
Axopatch 1D amplifier (Axon Instruments, Foster City, CA). The cur-
rents were filtered at 1 kHz, digitized, and stored on videotape for later
playback. Computer analysis was performed with the SCAN program
kindly provided by Dr. J. Dempster (Strathclyde University, UK). This
analysis resulted in a series of exocytosis event times, which were quan-
tized to 55 msec: multiple events falling within a single 55 msec window
were registered as a single event. To guarantee sufficient statistical
accuracy for estimating parameters of the fractal behavior, we retained
only data sets with N = 400 events for analysis.

RESULTS

Spontaneous vesicular exocytosis from neuromuscular
junctions, hippocampal synapses, and

non-neuronal cells

Within 1 d of plating, Xenopus embryonic spinal neurons establish
functional synaptic transmission with cocultured myocytes, exhib-
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Figure 1. Spontaneous ACh neurotransmitter secretion obtained from a
typical developing Xenopus neuromuscular junction. The mean miniature
endplate current (MEPC) rate for this particular neuron is 0.55 events/
sec. A, Inward MEPCs, shown as downward deflections, recorded from a
myocyte by using a nystatin perforated-patch whole-cell voltage clamp.
The MEPCs result from quantal ACh secretion from the spinal neuron.
B, A section of the recording in 4 shown on a magnified time scale. C, A
section of the recording in B, which has been magnified further. D, A
differential interference contrast photomicrograph of a typical neuron
(N) innervating a myocyte (M).
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iting stable spontaneous and evoked release characteristics
(Chow and Poo, 1985; Xie and Poo, 1986). Spontaneous pulsatile
membrane currents resembling MEPCs (Fig. 1) developed in a
whole-cell voltage-clamped myocyte within several minutes of
forming a tight seal with a pipette containing normal intracellular
solution supplemented with nystatin. The configuration was per-
mitted to stabilize for 10 min before experiments were begun.
The observed current pulses were virtually identical in their rate
and amplitude distributions to events recorded by the conven-
tional whole-cell recording configuration.

These pulsatile current events represent spontaneous exocyto-
sis of ACh-containing synaptic vesicles at the developing neuro-
muscular junction, because their rate and amplitude distribution
are not affected by the addition of TTX (data not shown; but see
Xie and Poo, 1986). The large amplitude variability presumably
results from immature filling of the synaptic vesicles (Evers et al.,
1989). (Vesicles containing an unusually small amount of ACh
could result in a current event with a magnitude that lies below
the threshold of detectability of the recording system, thereby
escaping detection.) In the low-density cultures we use, each
myocyte is innervated by a single neuron. Thus, the neurotrans-
mitter release that is detected arises from a single synapse, which,
in general, comprises a number of individual release sites.

Similar spontaneous pulsatile inward currents were observed
from isolated myocytes exogenously loaded with ACh (Dan and
Poo, 1992). MEPC-like events appeared within several minutes
after establishing the whole-cell configuration. The average am-
plitude and rate of these events increased with time thereafter,
ceasing to exhibit systematic changes after ~10 min. Analysis of
spontaneous release from the cells was begun after a 15 min
loading period to ensure that stability had been established. In
this preparation the inward currents result from the spontaneous,
quantal release of ACh packets from the myocyte and the subse-
quent detection of this release by activation of its own surface
ACh receptors (autoreception).
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Spontaneous quantal ACh secretion from exogenously loaded
fibroblasts also was observed (Girod et al., 1995) with the help of
the ACh detection system inherent in Xenopus myocytes. Whole-
cell voltage-clamped recordings from a myocyte in contact with
the fibroblast displayed transient inward currents resembling
MEPCs. The frequency and amplitude of these events also in-
creased gradually with time during a period of ~30 min. The
events were recorded after this period to permit stability to be
achieved. It appears that the secretion events result from the
sequestration of ACh into vesicles and the subsequent exocytosis
of those vesicles. It is likely that the vesicles are components of
the constitutive endocytosis or membrane recycling pathways.

The analysis and comparison of the secretion in the three forms
of vesicular release discussed above support the view that the
basic machinery for secretion, both in neuronal and non-neuronal
cells, is relatively similar (Girod et al., 1995).

Inward currents also were observed in 7- to 14-d-old hippocam-
pal neurons cultured at low density. These currents are also the
result of spontaneous neurotransmitter release, because they are
apparent even in the presence of TTX. In this case, however, the
neurotransmitter was most likely glutamate, because the addition
of the AMPA receptor blocker CNQX and the NMDA receptor
blocker AP-5 abolished the currents. Unlike the spontaneous
currents observed at neuromuscular junctions in Xenopus cell
culture, it is likely that these MEPCs arise from excitation by
several presynaptic neurons. Even at low densities it is not pos-
sible to trace exact pre- and postsynaptic neuronal cell pairs.
Moreover, by 7 d in culture, an extensive network of neurites
forms, making it likely that each neuron receives input from a
multitude of neurons.

We have analyzed the statistical patterns of the spontaneous
secretion events generated in all of these preparations and have
formulated a suitable model for the exocytic behavior: the fractal
lognormal-noise-driven doubly stochastic Poisson process
(FLNDP). We begin by examining various statistical measures of
the sequence of MEPCs observed in the Xenopus neuromuscular
junction.

Interevent-interval histogram (lIH)

The solid curve in Figure 2 is a semilogarithmic plot of the MEPC
IIH, arising from spontaneous vesicular release activity observed
in a typical Xenopus neuromuscular junction. The ITH is a measure
of the relative frequency of the times between successive events.
The sequence of events from which this histogram was constructed
has a duration L = 8164 sec and contains N = 2644 interevent
intervals, thereby exhibiting a mean interevent interval E[¢] = 3.09
sec and a mean rate A = 1/E[¢] = 0.324 events/sec.

Traditional mathematical descriptions of vesicular exocytosis
generally assume that the MEPC sequence forms a renewal
process. Renewal processes are memoryless; successive intervals
are all independent and are drawn from a single distribution.
They are, therefore, characterized completely by the ITH, which is
an estimate of the interevent-interval probability density p().

The simplest renewal model is the homogeneous Poisson point
process (HPP; Cox and Lewis, 1966). The HPP is characterized
by a single constant quantity, its rate A, which is the number of
vesicular release events expected to occur in a unit time interval.
The HPP interevent-interval probability density function p(z)
behaves as a decreasing exponential function p(f) = Aexp(—Az),
t = 0, where ¢ is the interevent interval and E[¢f] = 1/A is the mean
interevent time. Incorporating the effects of dead time (absolute
refractoriness) or sick time (relative refractoriness) in the process
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Figure 2. Semilogarithmic plot of the interevent-interval histogram (ITH)
versus interevent-interval # for spontaneous vesicular release obtained from
a Xenopus neuromuscular junction (solid curve). The sequence of events
from which this histogram has been constructed has a duration L = 8164
sec and contains N = 2644 interevent intervals, thereby exhibiting a mean
interevent interval E[¢f] = 3.09 sec and a mean rate A = 1/E[f] = 0.324
events/sec. The bin width is 0.275 sec or five times the clock period used to
acquire the data. The best-fitting theoretical gamma density function
(dashed curve, corresponding to the GRP) has parameters 7= 12.4 anda =
0.249 (and therefore a mean interevent time E[f] = ar = 3.09 sec). The
simulated ITH using the FLNDP model, which also has a mean interevent
time E[¢] = 3.09 sec, is shown as the dotted curve. Both models provide good
fits to the experimental ITH, but only the FLNDP leads to results that
accord with the statistical measures provided in Figures 3-5.

preserves the exponential tail of the interevent-interval distribu-
tion while suppressing p(¢) for shorter times. Because the expo-
nential function plotted on semilogarithmic coordinates is a
straight line, the HPP model clearly does not provide a good fit to
the experimental ITH presented in Figure 2. Cohen et al. (1974a)
reached this same conclusion from their studies of the frog
neuromuscular junction.

A reasonable fit can be obtained if a slightly more complex
renewal process, the gamma renewal process (GRP; Cox and
Lewis, 1966), is used. This is the approach taken by Hubbard and
Jones (1973). The theoretical IIH is then the two-parameter
gamma density function p(f) = t*~* exp(—t/7)/T'(a) 7°, where 7is a
characteristic time, a is a parameter known as the order of the
gamma process, and I'(+) is the gamma function. The mean inter-
event interval for this distribution is E[¢] = ar; its variance is Var][t]
= a7?. (The particular case @ = 1 corresponds to the exponential
distribution, illustrating that the HPP is a special case of the GRP.)
The gamma ITH, with its mean and variance set equal to those of
the data, is shown as the dashed curve in Figure 2. The fit is very
good. Thus, were the MEPC sequence renewal in nature, it would
be describable by a GRP, and nothing more need be said about it.

However, we demonstrate that the MEPC sequence is not re-
newal using three statistical measures that are sensitive to the
presence of memory in a point process: vesicular release-rate
measurements over different time scales, the Allan factor (AF),
and the periodogram (PG). The dependencies among the inter-
event intervals evidenced by these measures reveal that a fractal-
rate stochastic point process (FRSPP) (Teich et al., 1996a; Thurner
et al., 1997) represents the sequence of MEPCs. A fractal-rate
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Figure 3. Semilogarithmic plot of the rate estimates for original and
shuffled data. a, Rate of spontaneous vesicular exocytosis for the same data
set illustrated in Figure 2. Two different counting times were used to
compute the rate: T = 25 sec (solid curve) and T = 250 sec (dashed curve).
The fluctuations in the estimate do not diminish appreciably as the aver-
aging time increases, although some reduction must occur. b, The same
plots computed after shuffling (randomly reordering the intervals of) the
data shown in a. The fluctuations diminish much more rapidly with increas-
ing averaging time. In all cases the mean rate A = 1/E[¢] ~0.3, as expected.

process is required because the IIH does not follow a power-law
form and hence does not exhibit scaling. This indicates that the
sequence of exocytic events itself does not form a fractal in time.
However, the rate of event occurrences is consistent with scaling
behavior, leading to the FRSPP model for the MEPC sequence.

Indeed a particular FRSPP, the FLNDP, provides an excellent
representation for all of the statistical measures of the exocytic
events that we have investigated, as discussed at the very end of
this section. The associated three-parameter simulated
interevent-interval density function is displayed as the dotted
curve in Figure 2; it clearly provides an excellent fit to the I1TH,
even a bit superior to that of the GRP. Because the MEPCs do
not form a renewal process, however, it is clear that the ITH alone
is inadequate for choosing among alternative models.

Self-similarity of vesicular release rates

Perhaps the simplest measure of neuronal activity is the estimate
of the rate: the number of events registered per unit time (Teich,
1992). For vesicular release, even this straightforward measure is
consistent with the presence of fractal properties; the magnitude
of the fluctuations of the rate (e.g., its standard deviation) de-
creases more slowly, as the counting time used to compute it
increases, than would be expected for independent-event counts.

In Figure 3a we illustrate the vesicular release rate for the same
Xenopus neuromuscular data as those analyzed in Figure 2. Two
different counting times were used to compute the rate: T = 25
sec (solid curve) and T = 250 sec (dashed curve). The total
duration of the solid curve is 775 sec (31 consecutive samples,
each of 25 sec), whereas that of the dashed curve is 7750 sec (31
consecutive samples, each of 250 sec). Evidently, increasing the
averaging time by a factor of 10 reduces the magnitude of the
fluctuations only slightly. This indicates that long-duration fluc-
tuations are present in the train of vesicular release events,
consistent with a fractal rate.
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This behavior derives from dependencies among the interevent
intervals, as confirmed by using a surrogate data set; the fractal
properties of the rate estimate are destroyed by shuffling (randomly
reordering) the intervals. This operation removes the dependen-
cies among the intervals while exactly preserving the interevent-
interval histogram. With all dependencies among the intervals
eliminated by shuffling (aside from those inherent in retaining the
same ITH), the resulting surrogate essentially behaves as a renewal
point process. The vesicular release rate for these same data, after
such shuffling, is illustrated in Figure 3b. The T = 250 sec shuffled
data (dashed curve) now exhibits noticeably smaller fluctuations
than does the T = 25 sec shuffled data (solid curve). This more
rapid reduction in the magnitude of the fluctuations with larger
averaging time is typical for nonfractal rates.

The quantitative behavior of the magnitude of the rate fluctu-
ations with counting time is considered more conveniently in
terms of the AF, which is discussed next.

Power-law behavior of the AF

A highly useful measure that is sensitive to correlations in a point
process is the AF, a relative variance based on a particular
wavelet transform (Teich et al., 1996a). Its definition and prop-
erties are presented in Appendix A. The AF calculated at a
particular counting time 7 provides a quantitative measure of the
variability exhibited by the rate estimates displayed in Figure 3a.
For general well behaved processes, the AF A(T) is a function of
the counting time 7; the unique exception is the HPP, for which
A(T) = 1 for all counting times 7. Useful values of the counting
time T range from one-half of the minimum interevent interval to
approximately one-tenth of the duration of the recording.

The solid curve in Figure 4 is the AF for the same sequence of
Xenopus neuromuscular junction MEPCs, the ITH of which is
shown in Figure 2 and the rate functions of which are shown in
Figure 3. The AF is seen to increase steadily for counting times
greater than ~10 sec, exceeding a value of 100 at a counting time
T = 400 sec. For sufficiently large counting times, the AF is well
approximated by a straight line on this doubly logarithmic plot, so
that it is well fit by an increasing power-law function of the
counting time, A(T) « T, with o, ~1.5 for this particular
junction. A monotonic, power-law increase indicates the presence
of fluctuations on many time scales. The quantity o, is identified
as an estimate of the fractal exponent of the point process
(Lowen and Teich, 1995; Thurner et al., 1997).

A plot of the AF alone does not reveal whether its substantial
magnitude arises from the distribution of the interevent intervals
(the IIH) or from their ordering. This issue is addressed by
plotting the AF for the shuffled intervals. AFs constructed from
shuffled data retain information about the relative sizes of the
intervals, but all correlations and dependencies among the inter-
vals are destroyed by the shuffling process, as discussed earlier.
The curves designated “shuffled data” in Figure 4 illustrate the
AFs obtained by this method; the long dashes indicate the mean
value obtained from 100 shufflings, and the short dashes delineate
a range of = 1 SD about this mean value. The lack of observed
fractal behavior in the AFs of the shuffled data indicates that it is
the ordering of the intervals that gives rise to the power-law
growth of the AF for those records. This confirms that the
original data cannot be modeled as a renewal process.

The long-dashed curve behaves very much like the AF for a
GRP, approaching a maximum value close to 1/a = 4.01 for large
counting times, as expected from theory (Teich et al., 1997).
Indeed, AF simulations for the GRP that best fits the IIH (long-
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Figure 4. Doubly logarithmic plot of the Allan factor (AF) versus count-
ing time 7 for the same vesicular exocytosis data (solid curve) that were
examined in Figures 2 and 3. For counting times larger than ~10 sec, this
curve approximately follows a straight line, which represents a fractional
power-law increase of the AF with T on these doubly logarithmic coor-
dinates. The fractal exponent a, ~1.5 was estimated by using a least-
squares fit of the functional form A(T) = C + (T/T,)*4, in which C is a
parameter related to the refractoriness, and T, is a fractal onset time
(Lowen and Teich, 1997). The range of counting times used to obtain the
fit was L/10* =< T < L/10, in which L is the duration of the recording. The
long-dashed curve represents the AF after the data were shuffled 100 times
and the AFs computed for each shuffling were averaged; also displayed
are the = 1 SD limits about the AF for the shuffled data (medium-dashed
curves). The simulated FLNDP AF (dotted curve), using parameters
identical to those used in Figure 2, agrees well with the experimental data
(solid curve); the shuffled version of the FLNDP agrees well with the
shuffled data (shuffled simulation not shown).

dashed curve in Fig. 2) closely resemble the long-dashed curve in
Figure 4. It is clear, therefore, that the GRP provides a good fit to
the AF only for the shuffled data and therefore cannot possibly
describe the original (unshuffled) data. In contrast, the simulated
FLNDP AF shown in Figure 4 (dotted curve) follows the original
AF much more closely; moreover, a shuffled version of the
FLNDP also provides a good fit to the shuffled-data AF (shuffled
simulation not shown).

Power-law behavior of the PG

Fractal variability of the exocytic events also manifests itself in
other statistical measures, perhaps the most familiar of which is
the PG, which is an estimator of the power spectral density. Much
as for continuous-time processes, the power spectral density com-
puted for the exocytic events reveals how power is concentrated
in various frequency bands. In Figure 5 we present a doubly
logarithmic PG plot for the same Xenopus data sequence (solid
curve) examined in Figures 2-4. For low frequencies f (corre-
sponding to long time scales T'), the PG is well fit by a decreasing
power-law function of the frequency, S(f) o« f~ . Thus, MEPC
activity exhibits 1/f-type noise. The quantity «g provides an
alternative means of estimating the fractal exponent of the vesic-
ular exocytosis process. For this particular neuron, the PG yields
ag ~1.6, which is in close accord with the value o, ~1.5 obtained
from the AF, as expected (Teich et al., 1996a; Thurner et al.,
1997).

The PG computed from a shuffled version of the data (dashed
curve), in contrast, is quite flat at low frequencies, providing
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Figure 5. Doubly logarithmic plots of the periodogram (PG) for the
same vesicular exocytosis data (solid curve) examined in Figures 2-4. The
PG is an estimate of the power spectral density of the vesicular release
activity. For sufficiently low frequencies, the PG approximately follows a
straight line on these coordinates, representing a fractional power-law
decreasing function of f. The data were divided into Nggr = 4096 equally
spaced adjacent bins, and the number of MEPC events registered in each
bin was recorded. A PG was computed for this sequence of counts.
Smoothing was achieved by averaging PG values corresponding to fre-
quencies within a factor of 1.02. For this particular junction the PG yields
ag ~1.6, which is in close accord with the value «, ~1.5 obtained from the
AF. The fractal exponent ag was estimated over the frequency range
1/L = f = 10%/L, using a procedure similar to that used to estimate o,
from the AF, as described in the caption of Figure 4. The long-dashed
curve represents the PG of the shuffled data; it shows no such power-law
behavior. The FLNDP PG simulation results (dotted curve), using param-
eters identical to those used in Figure 2, agree well with the data, and
shuffled versions agree with the shuffled data (shuffled simulations not
shown).

further evidence that it is the ordering of the intervals, rather
than their relative magnitudes, that is responsible for the fractal
aspects of the rate of vesicular activity. Again, the simulated
FLNDP PG shown in Figure 5 (dotted curve) provides a good fit
to the experimental PG, and shuffled versions of the FLNDP also
lead to results that accord with the shuffled-data PG (shuffled
simulations not shown).

Because the PG is the Fourier transform of the joint coinci-
dence rate (a measure of correlation used for a process of events),
the results presented here are not inconsistent with those ob-
tained by Rotshenker and Rahamimoff (1970; their Fig. 1), who
showed excess correlation to 5 sec in preparations subjected to
extracellular Ca®* levels above their normal values. Evidence for
excess power at low frequencies in the absence of elevated Ca*"
also was provided by Cohen et al. (1974b). In our case, however,
the power-law form for the PG shown in Figure 5 reaches down
to ~1.24 X 10 ~* Hz, indicating that excess correlation extends to
at least 8164 sec (the reciprocal of 1.24 X 10 %), which is the full
length of the data set. We see evidence of power-law behavior in
the PG of data from all of the preparations we have examined,
including the Xenopus neuromuscular junction (with and without
added KCl).

Alteration of the exocytosis pattern induced by
depolarization with KCI

The addition of KCI to the bath solution depolarizes the nerve
terminal, thereby resulting in an elevation of the cytosolic Ca®*
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Figure 6. Effects of KCl-induced depolarization on Xenopus neuromus-
cular junction activity. a, Normalized interevent-interval histograms
(ITHs) with various levels of KCI in the bath solution. To facilitate
comparison among the IIH plots, we normalized the interevent intervals
for each data set to unity mean before we computed the histograms. The
IIH obtained with no added KCI, shown in Figure 2, is replotted in
normalized form (solid curve) for the purposes of comparison. The mean
interevent intervals were E[¢] = 3.09, 0.624, and 0.272 sec, respectively, for
0, 10, and 20 mm added KCI. Although the shapes of the IIH plots are
similar for all three levels of KCI, the probability density in the vicinity of
t = 0 is reduced in the presence of this agent; there is a concomitant
decreased coefficient of variation for the intervals. b, AF plots for the
same three data sets used in a. The curve in the absence of KCI is
replotted from Figure 4 for the purposes of comparison (solid curve). The
AF plots for all three KCl levels show an increase at larger counting times,
albeit starting at different values of the abscissa.

concentration and a consequent increase in the rate of spontane-
ous vesicular exocytosis (Katz, 1962). Normalized IIHs for the
Xenopus neuromuscular junction in the presence of added KC1
are shown in Figure 6a (dashed curve corresponds to 10 mm KCI;
dotted curve corresponds to 20 mm). The IIH in the absence of
added KCI, which is a normalized version of the solid curve in
Figure 2, is presented for purposes of comparison (solid curve).
Normalized ITHs were used to facilitate direct comparison of the
curves. Each recording was obtained from a different neuromus-
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cular junction because long data sets are required to obtain
accurate statistics, and individual preparations typically do not
remain viable long enough to permit more than a single recording
to be obtained from a given preparation. The IIH curves all
follow an exponential decay for long interevent intervals; how-
ever, the value near ¢t = 0 is suppressed in the presence of KCl,
and the coefficient of variation for the intervals is decreased.

The same data used to construct the IIHs in Figure 6a were
used to generate the AF curves in Figure 6b. The three AFs show
evidence of power-law behavior at long counting times, although
the minimum value of the AF is reduced under stimulation. The
increased rate of vesicular release serves to regularize the process
and thereby leads to a reduction of the Allan variance over time
scales where refractoriness is operative (Lowen and Teich, 1997).
The presence of KCI also seems to reduce the strength of the
long-term correlation present in the data (see also Cohen et al.,
1974b), thus increasing the counting time at which power-law
behavior becomes apparent.

Data selection: dilution of fractal-rate behavior

Fatt and Katz (1952) were the first to investigate the statistical
behavior of sequences of MEPCs, finding that the IIH was
exponentially distributed. For a renewal process, this implies that
the sequence can be described by a memoryless HPP. The IIHs
measured in subsequent studies often have been variants of the
exponential, which sometimes has fostered the (erroneous) no-
tion that the event sequences are describable by processes akin to
the Poisson, such as the gamma-renewal (Hubbard and Jones,
1973) or dead-time-modified Poisson (Vere-Jones, 1966)
processes.

Fatt and Katz (1952) were very careful to note that the segment
of data they selected for analysis (their Figs. 11-13) was suffi-
ciently short (duration L = 176.8 sec comprising N = 800
MEPCs; E[f] ~0.221 sec) so as to exclude, as they put it, the
“occasional occurrences of short high-rate bursts” of events, and
to avoid “progressive changes of the mean,” present in their data.
The observation of fractal-rate behavior requires long data sets,
and burstiness and apparent trends are at its very core, existing as
natural components of exocytic behavior. We therefore would
like to believe that the MEPCs observed by Fatt and Katz indeed
did exhibit fractal-rate fluctuations but that these researchers
removed most traces of it by selecting relatively short segments of
data for analysis and moreover by choosing precisely those seg-
ments that exhibited minimal fluctuations.

Indeed, an analysis by Cox and Lewis (1966, page 220) of even
the special segment selected by Fatt and Katz reveals a departure
from Poisson behavior that takes the form of a “relatively long-
term effect.” Similar conclusions were reached by Cohen et al.
(1973, 1974a,b) and by Van der Kloot et al. (1975).

We proceed to explicitly demonstrate the consequences of
selecting such segments of data with our own measurements. We
choose the 20 mm KCI data set (16358 events; duration 4451 sec;
E[f] ~0.272 sec) because it has a large number of events and its
rate is comparable with that of Fatt and Katz’s classic data set.

The PG for our full data set is displayed as the solid curve in
Figure 7. We now select a segment from the center of the full data
set (N = 800 events, excising both the 7779 events preceding it
and the 7779 events after it; L = 162 sec; E[t] ~0.203 sec) that is
comparable with the segment analyzed by Fatt and Katz in
number of events, data duration, and mean interevent interval.
The PG for this truncated M EPC segment is shown as the dashed
curve in Figure 7. Because of its limited length, it is clear that the
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Figure 7. Doubly logarithmic plot of the PG for the entire 20 mm KC1
data set (solid curve). The IIH for this data set is shown in Figure 6a
(dotted curve), and the AF is shown in Figure 6b (dotted curve). The data
were divided into Ngpr = 4096 equally spaced adjacent bins, and the
number of MEPC events registered in each bin was recorded. A PG was
computed for this sequence of counts. Smoothing was achieved by mul-
tiplying the estimated correlation function by a triangular window. The
dashed curve represents the smoothed PG for a truncated segment of the
data, which shows no such power-law behavior. Short data sets generally
do not exhibit fractal behavior.

lowest frequency available to this PG is f,,;, = 1/L = 1/162 ~6 X
103 Hz, the left-hand endpoint of the dashed curve. Although
the agreement of the two curves is reasonable over the range
where they coexist, it is plain that the fractal behavior in the full
data set cannot be accessed in the truncated version. Similarly, the
AF of the truncated MEPC data set cannot be estimated reliably
for T > 16 sec, assuming that a minimum of 10 samples is
required for statistical accuracy. The dotted curve in Figure 6b
reveals that the AF begins to depart from simple renewal behav-
ior only for counting times >16 sec. Moreover, selecting a par-
ticular short segment of data on the basis of lack of variability (i.e.,
lack of burstiness or lack of progressive changes of the mean)
serves to reduce further any manifestations of fractal-rate
behavior.

We conclude that fractal-rate behavior, although it well may
have been present in the original data set collected by Fatt and
Katz, could not be discerned in the 176.8 sec segment that they
analyzed.

Power-law behavior of the AF for rat hippocampal
synapses, Xenopus myocytes, and rat fibroblasts
Although our attention thus far has been directed principally
toward the Xenopus neuromuscular junction, we also have ob-
served vesicular exocytosis consistent with fractal-rate behavior
from other neuronal and non-neuronal preparations, as men-
tioned earlier. Figure 8 displays the AFs for spontaneous vesicu-
lar release from two neuronal and two non-neuronal cells: the
Xenopus neuromuscular junction (solid curve; reproduced from
Figs. 4, 6D), the rat hippocampal synapse in the presence of TTX
(long-dashed curve), Xenopus-myocyte autoreception (short-
dashed curve), and the exogenously loaded rat fibroblast brought
into synaptic contact with a Xenopus myocyte (dotted curve). The
curves presented in Figure 8 are representative of the data sets
that were sufficiently long to merit analysis (N = 400); these
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Figure 8. Comparison of AFs for four biological preparations exhibiting
in vitro fractal spontaneous vesicular release: the Xenopus neuromuscular
junction (solid curve, reproduced from Figs. 4, 6b; E[t] ~3.09 sec), a rat
cultured hippocampal synapse (long-dashed curve; E[t] ~1.95 sec), Xeno-
pus myocyte autoreception (short-dashed curve; E[t] ~3.44 sec), and a rat
fibroblast (dotted curve; E[t] ~12.1 sec). For longer counting times, all of
the AFs suggest the presence of a power-law increase.

comprise four Xenopus neuromuscular junctions, four hippocam-
pal synapses, one Xenopus myocyte, and two fibroblasts.

For large counting times, all of the eleven vesicular-exocytosis
data sets examined to date exhibit AFs that increase with the
counting time, in a form consistent with the presence of fractal
behavior. Fractal exponents estimated from the AF plots were in
the range o, = 0.1-2.7 (mean = 1.23), whereas those from the PG
plots were in the range ag = 0.2-4.0 (mean = 1.79). The fractal
exponents calculated from the AF and PG were in general agree-
ment (Teich et al.,, 1996a; Thurner et al., 1997); the overall
correlation coefficient was +0.62, with substantially superior
agreement for the longer data sets. Improved correlation would,
no doubt, be obtained if the recordings were of yet longer dura-
tion so that asymptotic power-law behavior could be attained.
Nevertheless, fractal-rate activity seems to be ubiquitous in exo-
cytic events.

Biophysical origin of the fractal behavior

A number of possible origins exist for the observed fractal be-
havior. One plausible scenario is that exocytosis is governed by
fractal Ca®*-ion channel activity and that this activity ultimately
derives from 1/f-type fluctuations of the membrane voltage. We
proceed to provide a biophysical description of this process. The
mathematical formulation, which leads to the FLNDP, is devel-
oped in Appendix B.

It generally is accepted that voltage-gated Ca?*-ion-channel
openings are responsible for vesicular exocytosis (Zucker, 1993).
For a fixed membrane voltage V near the resting potential, cal-
cium flow is negligible. Occasionally, however, random thermally
induced channel openings occur, which often lead to spontaneous
exocytic events for nearby vesicles. Such spontaneous behavior is
almost completely memoryless and is therefore well modeled by
an HPP, with rate A given by the Arrhenius equation (Berry et al.,
1980) A = sdexp{—[E, — zFV]/RJ}, as given in Equation BI.
Here o is a rate constant (often called the frequency factor), E ,
is the constant activation energy associated with the ion-channel
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opening, z is the valence of the charge involved in the channel
opening, F is the Faraday constant (coulombs/mol), R is the
thermodynamic gas constant, and J is the absolute temperature.
Channel-opening events that do not lead to exocytosis are ac-
counted for in the values of & and E ;. According to this picture,
different fived membrane voltages V' lead to spontaneous exocytic
patterns that differ only in their average rates; all are HPPs.
These rates are exponential functions of the membrane voltage,
as prescribed by the Arrhenius equation. Indeed, the low-
variability sections of data selected for analysis by Fatt and Katz
(1952) likely would be associated with regions for which the rate
is relatively constant so that the sequence of events could be well
approximated by an HPP, as they found.

However, the membrane voltage is not fixed but, rather, varies
randomly in time. Denoted V(¢), it has a gaussian amplitude
distribution and a 1/f-type spectrum (Verveen and Derksen,
1968). The rate A(?) of the Poisson process, therefore, also varies
in time, as described by Equation B2, which shows that the rate is
the exponential transform of the voltage. Because the latter has a
gaussian (normal) amplitude distribution, the rate is described by
a lognormal amplitude distribution (Saleh, 1978) with a closely
related spectrum. (A lognormal random variable is one for which
the logarithm is normally distributed.) The rate process therefore
is called fractal lognormal noise (FLN) and is described in
Appendix B. In short, the channel openings are characterized by
a doubly stochastic Poisson process (Cox and Lewis, 1966) with a
rate that is FLN: the FLNDP.

The net result is that the calcium-flow events, and therefore the
exocytic events, are described by the FLNDP, the properties of
which are provided in Appendix B. Unlike the HPP, the FLNDP
has memory. Thus, the fluctuating membrane voltage imparts
fractal correlations to the rate of exocytic events so that the
observation of a short (long) interevent interval, for example,
signifies a locally high (low) rate A(7), which in turn indicates that
the next interevent interval is also likely to be short (long). The
FLNDP is clearly a nonrenewal process. However, the sequence
of events generated by the FLNDP model does not form a proper
fractal in time because it does not itself scale. Rather, the rate of
event occurrences scales so that the FLNDP belongs to the family
of fractal-rate stochastic point processes.

Analytical predictions and computer simulations based on this
model were compared with the exocytic-event data for a variety of
statistical measures. We performed 100 simulations of the
FLNDP, using parameter values obtained from the data set that
is displayed in Figures 2-5. ITH plots were computed for each
simulation; these differed only in the seeds used for the random
number generator. These 100 plots were averaged together to
yield an aggregate IIH plot. This same process was used to
construct AF and PG plots, using the same simulations (and
therefore the same parameters and random seeds).

The resulting theoretical curves, denoted FLNDP, are pre-
sented as the dotted curves in Figures 2, 4, and 5. The theo-
retical results shown in all of these figures used a single set of
parameters derived from the experimental data. Agreement
with the data is excellent over all time scales. The slight
deviations between the behavior of the FLNDP and the ex-
perimental data evidenced in the AF (Fig. 4) and in the PG
(Fig. 5) would diminish no doubt were refractoriness included
in the simulation. Indeed, it is known that refractoriness pro-
duces a dip in the AF for counting times in the vicinity of the
refractory period (Lowen and Teich, 1997), the very region
where the agreement is least satisfactory in Figure 4. More-
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over, the AF and PG calculated using shuffled FLNDP simu-
lations are in excellent accord with those of the shuffled data
(long-dashed curves) in Figures 4 and 5, respectively. We con-
clude that, aside from its physiological plausibility, the FLNDP
provides an excellent mathematical model for characterizing
sequences of MEPCs observed in our experiments.

It is, however, possible that the fractal-rate behavior mani-
fested in exocytic data derives from other mechanisms. Wide
ranges of conformational states and time scales seem to be
ubiquitous in large proteins (Liebovitch and Toéth, 1990) so
that fractal-rate exocytic behavior could originate from fractal
behavior of the specialized proteins directly involved in vesic-
ular exocytosis rather than via mediation by calcium. Or,
fractal Ca®"-ion-channel openings could lead to average in-
tracellular Ca”"-ion concentrations that behave in a fractal
manner, in turn modulating global docking- and transport-
protein behavior (Zucker, 1993). Even in these cases, however,
the FLNDP model would provide a useful mathematical de-
scription of the vesicular release process, albeit with a different
biological interpretation.

DISCUSSION

As indicated above, activity consistent with fractal-rate behavior
is present in every in vitro spontaneous vesicular-secretion prep-
aration of sufficient length (N = 400 events) that we have exam-
ined, neuronal and non-neuronal alike. Because vesicular exocy-
tosis at the synapse shares many features and proteins in common
with exocytosis and intracellular trafficking in all eukaryotic cells
(Bennett and Scheller, 1993), it may be that such behavior is
present in these systems as well.

Fractal and fractal-rate behavior are also present in excitable-
tissue recordings for various biological systems in vivo, from the
microscopic to the macroscopic (Bassingthwaighte et al., 1994;
West and Deering, 1994). Examples include the openings and
closings of ion channels (Liuger, 1988; Millhauser et al., 1988;
Liebovitch and Té6th, 1990; Teich et al., 1991; Lowen and Teich,
1993a-c); patterns of action-potential firings in the auditory sys-
tem (Teich, 1989, 1992; Teich et al., 1990; Powers and Salvi, 1992;
Kumar and Johnson, 1993; Kelly et al., 1996; Lowen and Teich,
1996, 1997), visual system (Turcott et al., 1995; Teich et al,
1996a,b, 1997), somatosensory cortex (Wise, 1981), and mesen-
cephalic reticular formation (Griineis et al., 1993); and even the
sequence of human heartbeats (Kobayashi and Musha, 1982; Saul
et al., 1988; Turcott and Teich, 1993, 1996). In almost all of these
cases, the upper limit of the observed time over which fractal
correlations exist is imposed by the duration of the recording.
The appearance of fractal-rate behavior at synapses, as well as in
systems comprising collections of synapses, indicates that such
behavior is ubiquitous in neural signaling.

The connection between fractal-rate fluctuations and informa-
tion encoding and transmission in neurons, if there is one, re-
mains unclear. Fractal noise exhibits larger fluctuations at lower
frequencies and thereby generally renders difficult the detection
of the slowest, most gradual changes in a signal. Thus fractal
exocytic activity could represent a fundamental source of noise
ubiquitous in living cells, to which natural systems must adapt.
However, many natural signals are themselves fractal (Voss and
Clarke, 1978), and it may be that fractal activity in neurons
provides some advantages in terms of matching the detection
system to the expected signal (Teich, 1989, 1992).

Fractal-rate activity also represents a form of memory, because
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the occurrence of an event at a particular time increases the
likelihood of another event occurring later, with the strength of
this memory persisting for some time. Fractal-rate synaptic ac-
tivity therefore provides a distributed network for memory and
may provide a mechanism for potentiation.

Although it is difficult to ascribe definitively the observed
long-term correlation in neurotransmitter release events to
fractal-rate behavior for a single data set of the limited size
available in these experiments, it is gratifying that the FLNDP
model, which relies on only three free parameters (interevent-
interval mean and variance, and fractal exponent), provides good
agreement with the exocytic data. That activity consistent with
fractal-rate behavior exists in all of the 11 data sets that we have
examined indicates that the FLNDP is a useful model for de-
scribing our observations. Further confidence in the use of this
model is engendered by the success of its close relative, the
refractoriness-modified fractal binomial-noise-driven doubly sto-
chastic Poisson process (FBNDP), for modeling action-potential
activity of primary afferent auditory-nerve fibers in the cat (Lo-
wen and Teich, 1995, 1996; Thurner et al., 1997). For voltage
fluctuations small enough so that the exponential transform
in Equation B2 can be approximated by a linear function, the
FLNDP becomes nearly the same as the FBNDP. Moreover, the
FLNDP and another related process, the fractal binomial-noise-
driven doubly stochastic gamma process (FBNDG), have been
used successfully to model retinal-ganglion-cell and lateral-
geniculate-cell action-potential activity in the visual system of the
cat (Teich et al., 1997).

In conclusion, it is clear that traditional renewal models treat-
ing vesicular exocytosis as a memoryless stochastic process are
wholly inadequate for representing many of its salient features.
Rather, a new class of models that rely on fractal-rate stochastic
point processes is required.

APPENDIX A: DEFINITION AND PROPERTIES

OF THE AF

The Allan factor (AF) is defined as the ratio of the Allan variance
to twice the mean of the event count (Teich et al., 1996a). The
Allan variance, in turn, is the average variation in the difference
of adjacent counts (Allan, 1966). To compute the Allan variance
at a specified counting time 7, the data record of duration L first
is divided into L/T contiguous counting windows, each of dura-
tion 7. Much as in the procedure used to calculate the rate
estimate, the number of events Z,(7) falling within the k-th
window is registered for all indices k corresponding to windows
lying entirely within the data record. The difference between the
count numbers in a given window [i.e., Z,(7T)] and the one after
it [Z,;(T)] is then computed for all k. The mean square of this
quantity, E{[Z, , ,(T) — Z,(T)]*}, is the Allan variance. Dividing
the Allan variance by twice the mean yields the AF:

E{[Z,(T) — Zu(D ]}

AD = EZ{D)]

(A1)

This process is performed for a set of different counting times T
(leading to different sequences of counts {Z,(7)}), to generate
plots of the functional form of the AF versus counting time. For
general sequences of events, A(7) varies with 7; the unique
exception is the HPP, for which A(T) = 1 for all T. Sequences of
events also may be represented by a counting process, N(7T), equal
to the number of events registered between the time origin and a
time ¢, so that:
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Z(T) = N[(k + 1)T] — N(kT). (A2)

For an arbitrary sequence of events, useful values of the count-
ing time 7T typically range from one-half the minimum interevent
interval, below which A(T) = 1, to approximately one-tenth the
duration of the recording (L/10), above which the statistical
accuracy becomes poor as a result of an insufficient number of
samples L/T. The behavior of the AF plot at various intervening
time scales reveals important information about the behavior of
the underlying process. One example is provided by absolute or
relative refractoriness, which, if present, causes a dip in the AF
plot for counting times near (and somewhat larger than) the
refractory period. This arises because refractoriness imposes a
minimum spacing between events, which serves to regularize the
numbers of events Z,(7) in each counting window. This, in turn,
reduces the Allan variance, thereby leading to a diminished AF in
the vicinity of those counting times.

An increase in the AF near a specific time scale occurs if
event clusters of that particular scale are present in the data;
the AF then will reach a plateau beyond the largest time scale
present. Such behavior would be manifested, for example, by a
Bartlett—Lewis cluster process such as that used by Cohen et al.
(1974b) to model the MEPC sequence in the frog neuromus-
cular junction. A fractal-rate stochastic point process, in con-
trast, generates a hierarchy of clusters of different durations,
which leads to an AF plot that continues to rise as each cluster
time scale is incorporated in turn. The net result is an AF that
rises in power-law manner with increasing counting time T
(straight line on a doubly logarithmic plot). For such processes
the AF begins to rise above its asymptotic value of unity at a
counting time that depends on the relative strength of the
fractal component of its rate.

It is important to note that the random fluctuations inherent in
any finite data set lead to AF plots that exhibit variability about
the values predicted for exactly defined (nonrandom) point pro-
cesses (Thurner et al., 1997). For data sets of sizes comparable
with those used in this paper, such fluctuations can prove signif-
icant for any single plot, and conclusive proof of fractal behavior
is not always possible. However, given a number of data sets of
this size, uncertainty is greatly reduced. A similar argument
applies for the PG.

The AF is preferred to the count index of dispersion (Fano
factor), a similar measure constructed from the ordinary vari-
ance-time curve, for the analysis of fractal-rate stochastic
point processes because of its greater generality and freedom
from bias (Lowen and Teich, 1996; Teich et al., 1996a; Thurner
et al., 1997). A particular advantage of the use of the AF (or,
equivalently, the Allan variance-time curve, which contains
the same information) over the ordinary variance-time curve
(Cox and Smith, 1953; Cohen et al., 1974b) lies in its insensi-
tivity to linear trends, a result of the fact that it relies on a
first-order difference. This is a very important feature, which
stems from the close relation of the AF to wavelet theory and,
in particular, to the Haar wavelet. Generalizations of the AF,
based on other wavelets, are insensitive to higher order trends
(Teich et al., 1996a).

APPENDIX B: MATHEMATICAL FORMULATION OF

THE FLNDP

For a membrane voltage near the resting potential, calcium-ion
flux into the cell generally remains well below the value needed
to trigger an exocytic event (Zucker, 1993), because voltage-
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gated Ca?"-ion channels tend to remain closed under these
conditions. Random thermal fluctuations, however, occasion-
ally cause a few nearby channels to open in the same time
frame, although the membrane voltage greatly favors the
closed state. It turns out that only a few such channels need
open to provide sufficient calcium to trigger vesicular exocyto-
sis (Zucker, 1993). Were the membrane voltage fixed, this
spontaneous behavior would be essentially memoryless; knowl-
edge of all previous event occurrence times would yield no
additional information about the future beyond that given by
the average rate A of the events. The mathematical model for
discrete events in this case is the HPP, which is specified by a
single parameter: the expected rate A of nearby, nearly simul-
taneous Ca?"-ion-channel openings and, therefore, of the as-
sociated exocytic events.

Transition-state theory (Berry et al., 1980) describes the de-
pendence of this expected rate A on various parameters of the ion
channels (Hille, 1992) and predicts that it is given by the Arrhe-
nius equation:

A = sdexp{—[E, — zFV]/RT}. (B1)

Here o is a rate constant (often called the frequency factor), E  is
the constant activation energy associated with the ion-channel
opening, z is the valence of the charge involved in the channel
opening, F is the Faraday constant (coulombs/mol), R is the ther-
modynamic gas constant, and J is the absolute temperature. That
some channel-opening events do not lead to exocytosis is incorpo-
rated into the values of «¢ and E,. Different fixed membrane
voltages V' lead to spontaneous exocytic patterns that differ only in
their average rates; all are HPPs. These rates are exponential
functions of the membrane voltage, as prescribed by Equation B1.

However, the resting voltage V' of an excitable-tissue membrane
is not fixed but, rather, exhibits fractal (1/f~type) fluctuations with
a gaussian amplitude distribution (Verveen and Derksen, 1968).
We therefore replace V' by V() in Equation B1 to accommodate
these voltage fluctuations:

A1) = dexp{—[E4 — zFV(¢)]/RT}. (B2)

For a stationary process with a gaussian amplitude distribution,
the mean and spectrum suffice to describe the process completely
(Saleh, 1978). The power spectral density S,(f) for a 1/f-type
process follows the form:

Sy(f) = clf*

over a range of frequencies for some positive constants ¢ and a. A
rate function with a power spectral density of the form of Equa-
tion B3 is fractal, because changing the frequency (or time) scale
is tantamount to changing the amplitude. For example, replacing
f by 2f yields the same result as changing ¢ to 2~ “c.

Thus, three parameters completely describe the membrane
voltage: u,, = E[V], ¢, and a. (The membrane voltage variance,
o3 = Var[V], is expressible in terms of these three parameters.)
We could, alternatively, have used a formulation in terms of the
autocorrelation function R (7) = E[V(t)V(t+7)], which is the
Fourier transform of the power spectral density.

Because the voltage is gaussian (normal), and the rate is the
exponential transform of the voltage in accordance with Equation
B2, the rate has a lognormal amplitude distribution [the expo-
nential of a gaussian is defined to be lognormal (Saleh, 1978)].
The random process describing the rate A(¢) therefore is given the
appellation fractal lognormal noise (FLN); its amplitude distri-

(B3)
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bution is lognormal, and its spectrum is derived from 1/f~type
noise. The mathematical model for the discrete events in this case
is therefore a Poisson process with a rate described by FLN, i.e.,
the FLNDP.

It remains for us to determine the relevant statistics of A(¢) for
the FLN described by Equation B2. These, in turn, will be used to
determine the statistics of the exocytic events themselves, which
are described by the FLNDP. We proceed by defining an auxil-
iary process X(f), which is a normalized version of the membrane
voltage V(¢):

X(t) = [2FV(t) — E,IRT, (B4)
so that the rate in Equation B2 becomes:
A(t) = dexp[X(1)]. (B5)

X(t) also has a gaussian amplitude distribution, with associated
mean uy = E[X] = (zFu, — E,)/R7, variance oy = Var[X] =
(zF/RT)? o2, and autocorrelation function Ry(7) = ui + (zF/
RI)[R, (1) — ui]. Straightforward application of probability
theory yields the moments of the rate:

E[\] = sd”Efexp[nX(1)]}

= &ﬂ"(27ra§()”2f explnx—(x — py¥20%] dx

= sl"exp(npy + n’cy/2) (B6)

by completing the square. In particular, the rate A(7) has a mean
E[\] = sdexp(uy + 0%/2) and a variance Var[A] = 42 exp(2uy)
X [exp(203) — exp(a)].

We now turn to the autocorrelation function of the rate:

Ry(7) = E[A(®)A(t + 7)] = A’E{exp[X(¢) + X(¢ + 7)]}.(
B7

To proceed, we split X(¢# + 7) into two portions, one of which is
proportional to X(f) and the other uncorrelated with it. We
therefore write:

Xt + 1) = px(D[X(0) = px] + px + Y, 1),  (B8)
in which the correlation coefficient py(7) is given by:
px(1) = [Ry(T) — p,f(]/o)z(, (B9)

and where Y(¢,7) is defined implicitly by Equation BS. Since:
Rx(7) = E[X(1) X(t + 7)]

= px(MEMX* ()] — pi} + px +E[X(O)Y(5,7)]

= Rx(7) + ELX()Y(t,7)], (B10)

we see that E[X(¥)Y(r + 7)] = 0 so that X(¢) and Y(z,7) are
uncorrelated and Y{(#,7) has zero mean. Because X(¢) is a gaussian
process and Y(#,7) is linearly related to it, it is apparent that Y(z,7)
is also gaussian and, in fact, is jointly gaussian with X(¢). There-
fore, X(¢) and Y(t,7) are independent (Saleh, 1978). Rearranging
Equation B8 leads to the variance of Y(¢,7):

E[Y*(t,n)] = Elpx(D[X(1) = ] =[X(t + 7) — px]}?]

=o3{1 — pi(7)]. (B11)
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We now use conditional expectation to determine the autocorre-
lation function of A(?):

R\(1) = E[AOA(E + 1)]
= A’El{exp[X(®) + Xt + D ]}
= AE[exp{[1 + p(1)]X(1) + [1 — px(7)]ux + Y(t,7)}]

= s’Eexp{[1 + px(n X} expi[1 — px(n)JuxElexp{Y(z,0}],
(B12)

where the independence of X(f) and Y(¢,7) permits the replace-
ment of the expectation of the product by the product of the
expectations. Using a relation analogous to that used in Equation
B6 to evaluate the first and third factors on the right-hand side of
Equation B12 yields the final result:

Ry(7) = sl’exp{[1 + px(n)Ipx + [1 + px(7)]*03/2}
Xexp{[1 — px(7)]uxt X expi[1 — pi(r)]o3/2}
= dl’exp{2uy + [1 + px(7)]o 3}
= E’[Mlexp[Rx(7) — pi]

= EAJexp{(zF/RT )[R A7) — pil}. (B13)

The associated power spectral density S,(f) of A(?) is the Fourier
transform of R,(7). The exponential transformation in the right-
most portion of Equation B13 renders the relationship between the
autocorrelation functions of the voltage V(f) and the rate A(¢)
nonlinear; in particular, S,(f) will not follow an exact power-law
decay as does S,(f). However, for relatively small o%, which
appears to apply for the vesicular-release events we have recorded,
the forms of the two power spectral densities do not differ greatly.

Finally, we consider the process of the exocytic events them-
selves, which we denote N(¢), as in Appendix A. These events are
described in terms of a Poisson process driven by a fractal
lognormal rate function A(¢). The sequence of the coincident
calcium-flow events, and therefore of the vesicular release events
themselves, is then described by a FLNDP, as promised. The
statistics of the FLNDP process are computed readily from those
of the FLN rate. If the results for a general Poisson process
(Saleh, 1978; Lowen, 1996) are used, the power spectral density
Sy(f) of the events becomes:

Sn(f) = 8\(f) + E[A]
The AF is related to the power spectral density by (Lowen, 1996):

(B14)

%

AT) =1+ ﬂ_E?A]TJ' S (w)sint(wT/2)w ? do.
‘ (B15)

For a power spectral density that takes the form of Equation B3,
we have A(T) ~ T*.

If we assume further that the rate A(f) [or equivalently the
voltage V(¢)] exhibits fluctuations that are slow in comparison
with the average rate of channel openings E[A], closed-form
expressions for the moments of the times ¢ between channel
openings also can be obtained, again with the help of general
Poisson-process theory (Saleh, 1978):

E[¢"] = n! E[A'™]/E[A] = n! 0™ exp[—nuy + (n* — 2n)0%/2].
(B16)
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In particular, ¢ has a mean:

E[f] = 1/E[A] = o 'exp(—py — 0%/2), (B17)
and a variance:
Var[t] = 72 exp(—2uy)[2 — exp(—aD)]. (B18)

In short, a membrane voltage with a 1/f-type power spectral
density ultimately leads to a sequence of exocytic events with an
approximately 1/f-type spectrum. The argument is summarized as
follows. The voltage V() has an amplitude distribution that is
gaussian and a spectrum S, ( f) that decays as 1/f* (Eq. B3). The
autocorrelation function of the voltage R, (1) (which is the inverse
Fourier transform of the spectrum) does not itself scale for the
values of «a determined from most exocytic recordings but none-
theless contains all of the information that resides in the spectrum
S f). The normalized voltage X(¢) (Eq. B4) is linearly related to
V(¢) and therefore has statistics simply related to those of V{(¢). The
rate A(f) is obtained by exponentially transforming the voltage V()
(Eq. B2) or, equivalently, the normalized voltage X(¢) (Eq. BS); it
therefore exhibits a lognormal amplitude distribution and an au-
tocorrelation function R,(7) obtained via the exponential trans-
form of R (7) (Eq. B13). The spectrum of the rate S, ( f) is obtained
by Fourier transformation of R,(7). For the parameter values that
emerge from the data, the exponential transform is roughly linear
so that R (1) and R,(7) are approximately proportional to each
other, so that S,( f) essentially follows the same 1/f* form as S, f).
The spectrum S,(f) of the exocytic event sequence itself, N(¢),
differs from S, (f) only by a constant (Eq. B14) so that it also then
varies as 1/f“. Finally, for such processes the AF A(T) increases
with counting time 7" as 7 (Eq. B15 and following). We conclude
that the spectrum of the membrane voltage, of the rate, and of the
exocytic events all decay as 1/f* with the same power-law exponent
a, which is identical to the exponent that appears in the AF.
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