Skip to main content
Current Developments in Nutrition logoLink to Current Developments in Nutrition
. 2019 Jun 13;3(Suppl 1):nzz039.P18-017-19. doi: 10.1093/cdn/nzz039.P18-017-19

Beverage Consumption and Longitudinal Changes in Lipid Concentrations and Incident Dyslipidemia in U.S. Adults: The Framingham Heart Study (P18-017-19)

Danielle Haslam 1, Gina Peloso 2, Mark Herman 3, Josee Dupuis 4, Alice Lichtenstein 5, Caren Smith 5, Nicola McKeown 5
PMCID: PMC6574243

Abstract

Objectives

Limited data are available on the prospective relationship between beverage consumption and plasma lipid and lipoprotein concentrations in population-based studies. Two major sources of sugar in the US diet are sugar-sweetened beverages (SSB; sodas and fruit drinks) and 100% fruit juices (FJ). Low-calorie sweetened beverages (LCSB) are common replacements for SSB and FJ.

Methods

Fasting plasma triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) concentrations were measured at up to 5 exams in the Framingham Heart Study offspring and up to 2 exams in generation 3 cohorts (1998–2005; N = 6730). Consumption of SSB, FJ, and LCSB were estimated from food frequency questionnaires and intakes were categorized. Mixed-effect linear regression models were used to examine changes in lipid concentrations, and Cox proportional hazard models were used to estimate hazard ratios (HR) for incident dyslipidemia, adjusting for potential confounding factors. Results were statistically significant at a Bonferroni-corrected P-value < 0.017 (0.05/3 outcomes).

Results

In multivariate-adjusted models, SSB intake was associated with smaller mean 4-year changes in HDL-C [high (>1 serving/day) vs. low intake category (<1 serving/month) (H vs. L): β ± SE: −1.0 ± 0.3 mg/dl, p trend < 0.0001] and greater mean 4-year changes in TG concentrations (H vs. L: β ± SE: 5.7 ± 2.1 mg/dl, p trend = 0.0003), along with a higher incidence of low HDL-C [H vs. L HR (95% CI): 1.64 (1.06–2.54), p for trend = 0.01] and high TG concentrations [H vs. L HR (95% CI): 1.46 (1.05–2.03); p trend = 0.009]. LCSB intake was associated with a higher incidence of low HDL-C [H vs. L HR (95% CI): 1.38 (1.02–1.86), p trend = 0.01] and high LDL-C concentrations [H vs. L HR (95% CI): 1.19 (1.00–1.41); p trend = 0.01]. No other significant associations between beverage consumption and lipid concentrations or incident dyslipidemia were observed.

Conclusions

SSB intake was associated with changes in HDL-C and TG concentrations and higher risk of dyslipidemia, suggesting that SSB consumption should be limited. LCSB intake was not associated with changes in lipid concentrations, but higher intake was associated with risk of dyslipidemia. Thus, limiting LCSB intake is recommended based on these study findings.

Funding Sources

NIH, AHA, and ARS, USDA.


Articles from Current Developments in Nutrition are provided here courtesy of American Society for Nutrition

RESOURCES