Abstract
The following psychophysical data were obtained from 13 patients with unilateral cerebral hemispheric lesions and 20 control subjects: speed thresholds for detecting and for recognizing motion-defined letters, speed thresholds for detecting coherent motion and for discriminating its direction, and visual acuity for recognizing letters of 96% and 11% contrast. Acuity was between 6/6 and 6/3 for all patients. Four patients showed a selective loss of ability to recognize motion-defined letters, while the ability to detect those same letters was spared, as was the ability to detect coherent motion and discriminate its direction (type I loss). Three patients showed a loss of ability both to recognize and to detect motion-defined letters, while the ability to detect coherent motion and discriminate its direction was spared (type II loss). All seven patients who failed to recognize motion-defined letters had extensive lesions in parietotemporal white matter underlying Brodmann cortical areas 18, 19, 37, 39, 21, and 22. The lesion was in the left hemisphere for three patients and in the right hemisphere for the remaining four. The region of overlap in these seven patients was not invaded by the lesion in any of the other six patients, and none of these six patients showed a loss of ability to recognize motion-defined letters. Three patients showed selective loss of acuity for low-contrast letters with normal Snellen acuity. The lesions in these three patients extended more posteriorly than in any other patient, and their region of overlap was in white matter underlying areas 18 and 19. We conclude that (1) the loss of ability to recognize letters in seven patients was specific to motion-defined letters rather than being a general loss of letter-recognition ability, (2) this visual loss was specific to motion-defined form rather than being a general failure of motion processing, and (3) the visual loss was not produced by lesions that did not involve the localized cerebral region specified above. To explain the existence of type I and of type II loss with sparing of the detection and discrimination of coherent motion, we propose that motion information is processed hierarchically. We further suggest that homologs of the socalled motion and color/form pathways (i.e., areas V1/MT/MST/7a and areas V1/V4/IT) are interconnected to form a distributed system that is important for the recognition of motion-defined form.(ABSTRACT TRUNCATED AT 400 WORDS)