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The subpopulation of identified interneurons in the local 
bending reflex receive multiple inputs from dorsal and ven- 
tral mechanoreceptors and have outputs to dorsal and ven- 
tral motor neurons. Their connections suggest a distributed 
processing mechanism in which withdrawal from dorsal, ven- 
tral, or lateral stimuli is controlled by a single population of 
approximately 40 multifunctional interneurons, but it is un- 
clear whether additional interneurons dedicated to particular 
inputs are needed to account for each kind of bend. We 
therefore asked whether a model could be constructed that 
reproduced all behaviors without dedicated interneurons. 
Interneurons in the model were constrained to receive both 
dorsal and ventral inputs. Connection strengths were ad- 
justed by gradient descent optimization until the model re- 
produced the amplitude and time course of motor neuron 
synaptic potentials in intracellular recordings of the re- 
sponse to many different stimuli. After optimization, the sim- 
ilarity between model and identified interneurons showed 
that additional dedicated interneurons are not necessary to 
produce all forms of the behavior. Successful optimization 
of networks with many fewer interneurons showed that the 
40-interneuron network is redundant, raising the possibility 
that the interneurons have additional functions. Finally, op- 
timizing networks with additional constraints produced bet- 
ter matches to some of the identified interneurons and 
showed that local bending can be produced by two popu- 
lations of interneurons: one with outputs consistent with dor- 
sal bending, the other with ventral bending. This suggests 
a simple model in which two principal types of interneurons 
produce many different behaviors and predicts the type of 
interneuron that remains to be identified. 

In the leech local bending reflex, different spatial patterns of 
mechanosensory input lead to distinct patterns of excitation and 
inhibition of longitudinal muscle motor neurons (Lockery and 
Kristan, 1990a). For example, in response to a dorsal stimulus, 
the leech withdraws from the site of contact by contracting dorsal 
muscles beneath the stimulus and relaxing ventral muscles op- 
positc the stimulus. Analogous motor responses are produced 
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by ventral and lateral stimuli. These relationships constitute the 
input-output function of the reflex. 

A previous investigation, which sought interneurons contrib- 
uting to dorsal contractions in dorsal bending, identified a sub- 
population of 17 interneurons (Lockery and Kristan, 1990b). 
Physiological determination of the inputs to these interneurons 
from P cells, the dorsal and ventral mechanoreceptors that pro- 
vide the major input to the reflex, revealed that the majority of 
local bending interneurons receive excitatory input of similar, 
but not identical, strength from all four mechanoreceptors. This 
suggested that the interneurons in the reflex form a distributed 
representation of the spatial pattern of P cell stimulation in 
which the differences between input connections from P cells 
to intemeurons produce differences in the pattern of intemeu- 
ronal activation. Under this hypothesis, the different patterns 
of interneuron activation are translated into behaviorally correct 
patterns of motor output by the connections made to the motor 
neurons and the temporal dynamics of interneuron activity. 

The complexity of the reflex makes it difficult to determine 
whether such a hypothesis is consistent with what is known of 
the local bending circuit for several reasons. First, the distrib- 
uted processing mechanism must reproduce accurately the am- 
plitude and time course of synaptic potentials recorded intra- 
cellularly in eight different motor neurons in response to eight 
different patterns of sensory input. Second, it must accommo- 
date the large number of electrical and chemical synapses be- 
tween local bending motor neurons. Third, this must be accom- 
plished with a limited number of intemeurons, each with realistic 
temporal dynamics. 

To test the adequacy of the distributed processing hypothesis 
of the local bending reflex, we constructed a model of the circuit 
containing the known sensory and motor neurons, together with 
the expected number of intemeurons, connected in a manner 
consistent with previous physiological results (Kristan, 1982; 
Granzow et al., 1985; Friesen, 1989a; Lockery and Kristan, 
1990b). Connection strengths in the model were adjusted by a 
neural network optimization procedure (Pearlmutter, 1989) un- 
til the model accurately reproduced the amplitude and time 
course of synaptic potentials recorded from the motor neurons 
in response to eight different patterns of P cell stimulation. The 
optimization procedure incorporated additional physiological 
details, including the input resistance and time constants of each 
neuron, and the sign and amplitude of known connections. After 
optimization, intemeurons in the model network closely resem- 
bled identified local bending intemeurons in many respects, 
including the number of input and output connections, the dis- 
tribution of synaptic potential amplitudes, the time course of 
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Figure I. Network model of the local bending reflex. The network 
contained 4 sensory neurons (P cells), from 4 to 40 intemeurons, and 
8 longitudinal muscle motor neurons. Each neuron was represented as 
a single electrical compartment with an input resistance and membrane 
time constant. S-units were inserted between pairs of neurons connected 
by chemical synapses. The time constant of s-units represented the 
delays in chemical synaptic transmission. Input from sensory neurons 
to intemeurons was mediated by parallel with fast and slow time con- 
stants. Input from intemeurons to motor neurons, and between motor 
neurons, was mediated by single s-units with an intermediate time con- 
stant. Connection strengths (w) from sensory neurons to intemeurons 
and from intemeurons to motor neurons were adjusted by an optimi- 
zation procedure to reproduce the amplitude and time course of motor 
neuron synaptic potentials recorded in response to stimulation of sen- 
sory neurons. Motor neurons were also connected by numerous electrical 
synapses (g). PD, P cell with dorsal field; PV, P cell with ventral field; 
DE, excitor ofdorsal muscle; VE, excitor of ventral muscle: DI, inhibitor 
of dorsal muscle; VZ, inhibitor of ventral muscle. 

their synaptic potentials in response to P cell stimulation, and 
the effects on motor output of removing individual interneu- 
rons. The similarity between model and actual intemeurons 
shows that a single population of intemeurons generalized from 
the types identified so far is sufficient to account for the am- 
plitude and time course of the motor neuron synaptic potentials. 
Thus, the model provides an accurate account of the local bend- 
ing input-output function. 

Varying the assumptions of the model showed that many 
other local bending networks are possible. First, changing the 
number of intemeurons in the network revealed that accurate 
motor responses could be produced by a model with just four 
interneurons. This indicates that the biological network, which 
contains tens of local bending intemeurons, is highly redundant. 
Second, constraining half the model intemeurons in the com- 
plete network to represent in more detail the connectivity of the 
17 previously identified intemeurons, whose output is most 
consistent with dorsal bending, led to networks in which most 
of the unconstrained intemeurons had outputs consistent with 
ventral bending, Reducing the population of unconstrained in- 
temeurons showed that no more than two are required to pro- 

duce the motor neuron synaptic potentials. This places a lower 
bound on the number of local bending intemeurons that remain 
to be identified and suggests a simple model in which lateral 
bending is produced by the combined action of two types of 
intemeurons whose outputs are most consistent with either dor- 
sal or ventral bending. 

The dynamical model presented here generalizes a previous, 
static mqdel based on a feedforward network (Lockery et al., 
1989). Preliminary results based on the dynamical model are 
presented in Lockery et al. (1990). 

Materials and Methods 
Specification of the model 
Circuit. The model comprised 4 sensory neurons (P cells), up to 20 pairs 
of left-right symmetrical intemeurons, and 8 motor neurons (Fig. 1). T 
cells, sensory neurons responding to touch (Nicholls and Baylor, 1968), 
were excluded from this preliminary model, since their effects on be- 
havior are small in comparison to the effects of the P cells (Kristan, 
1982). 

The maximum number of intemeurons represented, in round num- 
bers, an upper estimate ofthe total number of local bending intemeurons 
in a single mid-body ganglion. A previous study (Lockery and Kristan, 
1990b) identified eight paired and one unpaired intemeuron contrib- 
uting to dorsal local bends. In the model networks, the unpaired neuron, 
which is symmetrical about the midline,. can be represented as an ad- 
ditional left-right pair, bringing the total to nine. We assumed that a 
search for ventral bending intemeurons might yield another 9 pairs, 
thus 18 in total. In simulations only concerned with the general prin- 
ciples of local bending function, this number was rounded to 20 pairs 
for convenience. We refer to this as a 40-intemeuron network. In other 
simulations, we maintained two populations of intemeurons, nine pairs 
of dorsal bending intemeurons, and either one or nine pairs of nonspe- 
cific intemeurons. These we refer to as 20- or 36-intemeuron networks, 
respectively. Pilot simulations showed that a minimum of two pairs 
was required to reproduce the motor neuron synaptic potentials accu- 
rately. We refer to this as a 4-intemeuron network. 

Each of the eight motor neurons in the model represented one of eight 
types of longitudinal muscle motor neurons, there being two to four 
neurons per type (Stuart, 1970; Ort et al., 1974). These comprise the 
excitors and inhibitors of dorsal longitudinal muscle, DE and DI, re- 
spectively, and the excitors and inhibitors of ventral longitudinal mus- 
cle, VE and VI, respectively. Two additional motor neurons, the L cell 
and cell 106, were omitted from the model because their response to 
the patterns of P cell stimulation used in the optimization procedure 
(see below) is not known. 

All known chemical and electrical synaptic connections between mo- 
tor neurons were included, and connection strengths (weights) were 
determined from previous physiological recordings (Granzow et al., 
1985). Weights of feedforward connections from sensory neurons to 
intemeurons, and from intemeurons to motor neurons, were adjusted 
using an iterative optimization procedure (Pearlmutter, 1989) so that 
the model reproduced the amplitude and time course of motor neuron 
synaptic potentials recorded in response to single and paired P cell 
stimulation in eight different patterns (Lockery and Kristan, 1990a). 
The optimization procedure was not allowed to insert connections be- 
tween intemeurons, since functional connections of this type have not 
been found; nor was the optimization procedure allowed to insert feed- 
back connections from motor neurons to intemeurons, since only one 
such connection has been identified to date (Friesen, 1989b). 

The previous static model excluded electrical and chemical synapses 
that would introduce feedback among the motor neurons (Lockery et 
al., 1989). Feedback requires an optimization procedure that works on 
networks whose activity evolves in time and can optimize neurons to 
follow a predetermined time course. Thus, recurrent backpropagation 
(Pearlmutter, 1989) was used instead of the original backpropagation 
algorithm (Rumelhart et al., 1986), which only applies to feedforward 
networks. The present model is also more realistic because the response 
of model motor neurons matches the real motor neurons in time course 
as well as amplitude. By incorporating temporal dynamics, the model 
is now capable of reproducing the time course of synaptic potentials in 
the intemeurons. 

Neurons. Neurons were modeled as passive, single electrical com- 
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partments having in parallel an input resistance (R,) and capacitance 
(C) to ground. Accordingly, the rate of change of membrane potential 
(dV,/dt) for neuron i was determined by the voltage V, and the sum of 
the current introduced by synaptic inputs using 

Threshold for synaptic transmission was placed at the resting potential 
(V = 0), consistent with the fact that the inhibitory motor neurons do 
not release transmitter at rest (S. R. Lockery and W. B. Kristan, Jr., 
unpublished observations). Total current due to chemical synapses 
Z:hem was given by 

where the neuronal time constant T, = R,C,, and Z, is the sum of the 
current introduced by chemical and electrical synapses: 

z = pm + pem~ , I (2) 
Trains of action potentials in sensory neurons were modeled as stepwise 
increases in presynaptic voltage. Action potentials within trains were 
not represented individually, since the model is concerned with the rise, 
fall, and amplitude of the motor neuron synaptic potentials in response 
to trains of sensory cell impulses, not in response to individual action 
potentials. 

Synapses. Electrical synapses were modeled as ohmic conductances. 
Current introduced by electrical synapses clec was given by Ohm’s law, 
and summed linearly according to 

(1) zy”” = z WJ,,, (6) 

PC = z g,,(v, - Y), 
where g,, is the conductance of the electrical synapse between neurons 
i and j. Within the ganglion, chemical synaptic transmission between 
inhibitory and excitatory motor neurons (Granzow et al., 1985), as well 
as from interneurons to motor neurons and other intemeurons in the 
leech (Friesen, 1985; Granzow et al., 1985; Angstadt and Calabrese, 
1991), is a graded function of presynaptic voltage; it does not require 
action potentials, nor is it substantially affected by them. The synapse 
between inhibitory and excitatory motor neurons was used as a model 
for all chemical synapses in the network, since this connection is the 
most thoroughly studied. In physiological experiments (Granzow et al., 
1985), a stepwise increase in presynaptic voltage in DI produced a slowly 
rising postsynaptic potential in DE (cell 3; Fig. 2A). To account for the 
long synaptic rise time, synapse units (s-units; Fig. 1) were inserted 
between pairs of neurons connected by chemical synapses. The acti- 
vation of each s-unit (S,) was given by 

Tr,% = -s, + f(v,), 

where T,, is the synaptic time constant andf( V,) is a sigmoidal function 
(0 5 f  5 1) relating pre- and postsynaptic membrane potential (see 
below). 

The s-unit time constants combined the temporal dynamics of all the 
steps in transmitter rclcasc and production of postsynaptic current. 
Single s-units were inserted between intemeurons and motor neurons, 
and between pairs of motor neurons. Preliminary simulations showed 
that the time course of motor neuron synaptic potentials, which exhibit 
a fast and slow exponential decay, could not be produced by a local 
bending model having only one s-unit with a single time constant at 
each connection. Therefore, two s-units, one with a fast and one with 
a slow time constant, were inserted between each sensory neuron and 
each interneuron. This was consistent with intracellular recordings of 
synaptic potentials from intemeurons in response to P cell stimulation, 
which showed both fast, slow, and mixed fast and slow synaptic poten- 
tials (Lockery and Kristan, 1990b). 

In the equation for s-unit activation, the sigmoidal function f( V,) 
represented the many processes that limit synaptic current, including 
limits on presynaptic calcium accumulation and number of vesicles 
released, the saturation of binding of transmitter to receptors, and the 
reversal potential of the synaptic conductance. The form of the sig- 
moidal function (Fig. 2c) was determined from published data on steady- 
state postsynaptic voltage as a function of presynaptic voltage at the 
synapses between two different inhibitory-excitatory motor neuron 
pairs-cells 1 and 3, and cells 2 and 4 (Granzow et al., 1985, their Fig. 
5). Normalization of the extrapolated curves to maximum postsynaptic 
voltage showed that the form of the function was the same for these 
two different synapses; in each case, the data were well described by 

where w,, is the strength of the chemical synapse to neuron i from neuron 
j, and is functionally equivalent to the product of the maximum synaptic 
conductance and the driving force (E,, - V). Thus, in the model, 
currents from chemical synapses added linearly. Theoretical studies 
indicate that linear summation occurs for inputs at dendritic positions 
that are electronically distant (Koch et al., 1982). For closely spaced 
inputs, in contrast, summation can be nonlinear because the driving 
force changes; however, synaptic potentials in the model were kept small 
with respect to reversal potential. In this range, even closely spaced 
inputs add linearly. A more detailed model might have included reversal 
potentials explicitly; however, this would have greatly complicated the 
optimization procedure, which would have to change the reversal po- 
tential should the sign of a connection change during optimization. 

Combining Equations l-6 yields the final equation for the voltage in 
neuron i: 

T,!$ = - v, + R, z g,,(V, - v,) + R, z w,,S,. (7) 
/ I 

Fixed parameters 
Input resistance and time constants. Motor neuron input resistance (20 
MQ) and time constant (10 msec) were estimated from the time course 
and amplitude of the postsynaptic potential in DE in response to a 
depolarizing current step (1.5 nA) injected into DI (Fig. 2A). Interneuron 
input resistance was assumed to be higher (40 Ma) because the somata 
of most local bending intemeurons are smaller than the somata of the 
motor neurons. For simplicity, the time constants for the intemeurons 
were the same as for the motor neurons. The time constants for the 
s-units between motor neurons were chosen to reproduce the time course 
of postsynaptic voltage in DE upon injection of a square step of de- 
polarizing current in the presynaptic motor neuron cell 1 (Fig. 2B). For 
simplicity, the same value was chosen for the s-units between inter- 
neurons and motor neurons. The same time constant was used for all 
s-units between intemeurons and motor neurons. Time constants for 
the fast (10 msec) and slow (1500 msec) s-units between sensory and 
intemeurons were fit by hand, using a simplified model network with 
one sensory neuron, one interneuron, and one motor neuron. The values 
selected provided a good fit to the time course of the intracellularly 
recorded motor neuron synaptic potential in response to P cell stimu- 
lation. 

Electric& synuppsrs. The coupling resistance (R,) of electrical connec- 
tions was calculated using the expression 

R,, 

where p is the steady-state coupling ratio ( VPO,,/ VP,) and R, is the resis- 
tance to ground of the postsynaptic neuron excluding paths to ground 
provided by electrical synapses to other neurons. This expression was 
derived by considering the voltage divider formed by the coupling re- 
sistance in series with the shunt resistance of the postsynaptic neuron. 
In accordance with pairwise recordings from motor neurons (W. 0. 
Friesen, unpublished observations; Lockery and Kristan, unpublished 
observations), the coupling ratio p = 0.1 was assumed for all electrical 
connections. This gave R,. = 180 MR for R, = 20 MQ. 

Synaptic weights. Weights for chemical synapses were found by ap- 
plying 

dV 
TV, i = - V, + R,w,S, 

dt 

(5) to the monosynaptic connection between inhibitory and excitatory mo- 
tor neurons for the case where the maximum steady-state postsynaptic 
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Figure 2. Physiological details of the network model. A, The IPSP recorded intracellularly in DE (cell 3) in response to depolarization by current 
injection of the ipsilateral DZ (cell 1). Data are reproduced with permission from Figure 4 of Granzow et al. (1985). B, Simulated response of the 
model network to current injection in DI. Motor neuron input resistances, membrane time constants, synaptic strengths, and s-unit time constants 
were adjusted by trial and error to achieve the match between the recordings in A and B. C, Steady-state postsynaptic voltage (absolute value) in 
excitatory motor neurons in response to steady-state presynaptic depolarization in inhibitory motor neurons. Data points are from Figure 5 of 
Granzow et al. (1985). The data were fit by a sigmoidal function (see Materials and Methods) that was used for all chemical synapses in the model 
network. D, Time course of a representative motor neuron synaptic potential (thin line) in response to stimulation of a single P cell. The idealized 
curve used to construct the data set for optimization of the model network (thick line) overlies the physiological data. To construct the data set, 
the amplitude of the ideal curve was scaled to match the average peak amplitude of the synaptic potential recorded from each motor neuron in 
response to each of the eight patterns of P cell stimulation (Lockery and Kristan, 1990a). 

voltage is achieved by maximally depolarizing the presynaptic neuron 
(compare Eq. 1). At maximal presynaptic depolarization, S,, = 1 by 
definition, and one can solve for wU, since R, is known. This gives the 
relationship 

w = VmWR ‘, I 1. (10) 
l’,mai was estimated by fitting the sigmoidal function f( V,) to the data 
relating steady-state postsynaptic voltage to steady-state presynaptic 
voltage given in Granzow et al. (1985). For the VI to VE connection, 
this yielded a value of 16.7 mV, for the DI to DE connection, the value 
was 11.0 mV. Thus, the weight for the VI to VE connection was 0.84; 
for the DI to DE connection it was 0.55. The weight for the DI to 
contralateral VI connection was made equal to the weight for the DI to 
DE connection, in accordance with the data of Friesen (1989a). 

Optimized parameters 

Many techniques are available for optimizing weights and other param- 
eters in neural network models. The simplest is numerical differentia- 
tion, in which a parameter is incremented by a small amount and the 
performance of the network is evaluated. If  the performance of the 
network improves, the change is kept; if performance degrades, the 
parameter is decreased (Robinson and Arnold, 1990). Backpropagation 
(Rumelhart et al., 1986) relies on the same principle but evaluates all 
parameters simultaneously. Backpropagation is thus simply a means of 
finding an optimum set of parameters, much like conventional curve- 
fitting techniques. There is no evidence that backpropagation is used in 
the nervous system; it is used here only as a convenient way to search 
the high-dimensional space of parameters for values that are consistent 
with the observed behaviors. 

The objective of the optimization procedure was to choose a set of 
connection strengths to and from the interneurons such that the time 
course and amplitude of motor neuron synaptic potentials in the model 
matched those in physiological recordings. The synaptic potential time 

course of a representative motor neuron recording was adopted as a 
template (Fig. 20). The rising phase of the template was fit by 

V(t) = 41(1 - em Nmxl) + q1 - e-t/200)~ 

The falling phase was fit by 

(11) 

V(t) = 25~-‘/1000 + ~()e-f/Zoo. (12) 

To construct the set of input-output relations, or data set, for the op- 
timization procedure, the amplitude of the template was scaled to the 
average peak amplitude for each motor neuron in response to each of 
eight patterns of single and paired P cell stimulation (Lockery and Kris- 
tan, 1990a, their Figs. 4, 5). The eight patterns used were (1) left dorsal 
P cell, (2) left ventral P cell, (3) right ventral P cell, (4) right dorsal P 
cell, (5) both dorsal P cells, (6) both ventral P cells, (7) left dorsal and 
ventral P cells, and (8) right dorsal and ventral P cells. Patterns 7 and 
8 are referred to as lateral stimulation. Motor neuron response patterns 
associated with simultaneous stimulation of the two dorsal P cells, as 
well as with stimulation of the two ventral P cells, were made sym- 
metrical about the midline by averaging corresponding responses; this 
was done to remove sampling error in accordance with the assumption 
of bilateral symmetry in the leech nervous system and behavior. 

Initially, connections from sensory neurons to interneurons and in- 
temeurons to motor neurons were small and randomly assigned. In 
accordance with the recurrent backpropagation algorithm (Pearlmutter, 
1989), connections in the network were optimized to reduce the total 
error (E) defined as 

E = 2 I: j-= 03V,,(t) - V&)] dt, (13) 
P k 0 

where p ranges over the input patterns in the data set, k ranges over the 
motor neurons in the model, and T is the duration ( 1 set) of the voltage 



trajectories in the simulation. The quantity v(f) is the desired voltage 
specified by scaling Equations 11 and 12. For each iteration of opti- 
mization, an input pattern from the data set was presented and the 
network’s behavior was simulated for 100 time steps (10 msec/step) 
using forward Euler integration. The time course and amplitude of the 
simulated synaptic potential in each motor neuron were then compared 
to the desired time course for the relevant motor neuron in response to 
the same pattern of P cell stimulation; this gave a measure of the in- 
stantaneous error [Q(t) - V,(t)] for each motor neuron at each time 
step. The instantaneous error was used to calculate at each time step 
(dEldw,,)(t) the sensitivity of the error E to a change in w,, at time t. 
This procedure was repeated for each pattern in the data set, and the 
total error gradient &/dw,, was calculated according to 

(14) 

Every connection in the network was then adjusted by a small amount 
proportional to the total gradient 

Aw ‘I = -$E 
dw,, ’ 

where e is the learning rate parameter. The entire process was repeated 
until the average instantaneous error was less than 0.18 mV. At this 
point in the process, an additional iteration would have reduced the 
error by no more than 1 part in 10,000. After 5000 or more iterations, 
a good match was obtained between simulated and desired motor neu- 
ron synaptic potentials (Fig. 3) for each input-output relation in the 
data set. The number of iterations needed was reduced by using a sep- 
arate learning rate for each weight (Jacobs, 1988; Fang and Sejnowski, 
1990). Optimization required 19-21 hr on an MIPS RC3240 worksta- 
tion. To determine the reproducibility of optimization results, each type 
of network was optimized from at least six different random initial 
conditions. Initial input weights were chosen randomly from a uniform 
distribution over the interval [0, 0.11. Initial output weights were chosen 
over the interval [ -0.1, 0.11. 

Connection strengths from sensory neurons to intemeurons were con- 
strained to be positive, since no inhibitory connections have been ob- 
served between such pairs. In addition, they were constrained to be 
greater than 1.35 mV to ensure that sensory input was widely distributed 
across all the intemeurons. Because most neurons in the leech occur in 
left-right pairs, each model intemeuron on the left was constrained to 
be the mirror image of a homolog on the right. This was implemented 
by initializing homologous weights with the same random value and 
updating them by the average of the amount specified by the algorithm 
for each weight independently (Eq. 15). 

Preliminary simulations showed that the correspondence between 
model and actual histograms of strengths of connections from P cells 
depended on the amplitude of the voltage step representing the P cell 
stimuli that served as input to the network. Optimizing networks with 
different step amplitudes showed that a step of 10 mV produced the 
best-matching histogram (see Fig. 6A), and this value was adopted for 
all the simulations in this study. Step amplitude is a scale factor that 
was necessary to compensate for the absence of action potentials in the 
model. The amplitude ofthe step therefore has no biological significance. 

The best correspondence for histograms of connection strengths to 
motor neurons (see Fig. 6B) was achieved when model intemeurons 
were stimulated with current pulses large enough to bring the intemeu- 
ron to motor neuron s-units into the flat region of the synaptic transfer 
function of Figure 2C (+2.5 nA, 2.6 set). This pulse size agrees with 
the current pulses used in the physiological experiments to determine 
the actual connection strengths (Lockery and Kristan, 1990b). 

Terminology 
It has been standard to refer to the optimization of neural network 
models as training or learning. We prefer the term optimization because 
it connotes neither psychological nor biological events. However, in 
using this term we do not imply that backpropagation finds the optimum 
solution, because there is always the possibility of locally optimal so- 
lutions. Nor do we imply that the model is optimized for anything but 
the data set used in the optimization procedure. 

The terms ipsilateral and contralateral, applied to sensory and motor 
neurons, refer to the relative positions of their receptive or projective 
fields, rather than to the location of their somata. 
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Figure 3. Simulated synaptic potentials in 4 motor neurons in the 40- 
intemeuron model network in response to stimulation of the contra- 
lateral ventral P cell after synaptic connections had been optimized. 
Each panel shows the response of a single motor neuron, together with 
the target response from the data set. For comparison of model and 
target responses, the latter have been shifted upward by 1 mV. A similar 
match between model and target synaptic potentials was achieved for 
the ipsilateral motor neurons and for all other motor neurons in all 
other patterns. 

Results 
Comparison of model and actual local bending networks 
Simulated injection of depolarizing current into single motor 
neurons in the model network reproduced the results of phys- 
iological recordings under analogous conditions (Fig. 2A,B). In 
both cases, the membrane potential in the injected neurons rose 
quickly to a steady-state plateau, accompanied by a slower re- 
sponse in the postsynaptic neuron. [The small voltage deflec- 
tions in the presynaptic motor neuron (DI, Fig. 2A) are atten- 
uated action potentials, which are absent in the model, because 
neurons were modeled as passive electrical compartments.] Thus, 
the input resistance as well as membrane and synaptic time 
constants chosen for motor neurons in the model provided a 
reasonable approximation to the pairwise physiological record- 
ings. 

Synaptic weights in the model from P cells to interneurons, 
and from intemeurons to motor neurons, were chosen to op- 
timize the correspondence between P cell-evoked motor neuron 
synaptic potentials in the model and physiological experiments. 
Comparison of motor neuron synaptic potentials in the 40- 
intemeuron model to the desired synaptic potential wave forms 
showed good agreement in the amplitude and time course (Fig. 
3). Figure 3 shows the response of four of the eight motor neu- 
rons to simultaneous stimulation of the contralateral P cell with 
a ventral receptive field, a similar degree of correspondence was 
found for all eight motor neurons and all eight patterns of P cell 
stimulation (not shown). Similar fits were obtained for the 4-, 
20-, and 36-interneuron networks with the exceptions noted 
below. 
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Because synaptic weights were chosen to optimize only the 
simulated motor neuron synaptic potentials, it was necessary to 
examine whether several other properties of the model network 
also matched physiological data. First, there was good agree- 
ment between simulated and recorded synaptic potentials in 
interneurons in response to P cell stimulation (Fig. 4A). Some 
interneurons showed mostly the slow response component, oth- 
ers the fast, and some showed mixed responses. Because P cell 
action potential trains were represented in the model as step 
increases in membrane potential (see Materials and Methods), 
summaring unitary synaptic potentials were not visible in the 
model. Second, simulated injection of current pulses into in- 
terneurons in the model produced sustained synaptic potentials 
in the motor neurons, consistent with physiological recordings 
(Fig. 4B). The rise and fall of the motor neuron synaptic po- 
tential in this case were governed by the membrane time con- 
stant of the motor neuron, together with the time constant of 
the interneuron to motor neuron s-unit. Inspection of Figure 
4B shows that the time to maximum response, as well as the 
time course of decay of the potential after stimulus offset, was 
adequately matched by the model. 

Connectivity of each model and actual interneuron was rep- 
resented as a domino with three sections, each with four 
squares (Fig. 54). The area of each square is proportional to the 
synaptic strength of a single connection, with white squares for 

excitatory connections, and black squares for inhibitory con- 
nections. Connection strengths in the model were determined, 
as in physiological experiments, by finding the peak synaptic 
potential in the postsynaptic neuron when a standard stimulus 
was delivered to a single presynaptic neuron-a P cell in the 
case of an interneuron (10 mV, 0.5 set), an interneuron in the 
case of a motor neuron (+2.5 nA, 2.6 set). Within each domino, 
the top section shows connections from sensory neurons, the 
middle shows connections to inhibitory motor neurons, and the 
bottom shows connections to excitatory motor neurons. Within 
each section, the upper two boxes show connections from or to 
neurons with dorsal receptive (sensory) or projective (motor) 
fields; the lower two show connections to neurons with ventral 
fields. Left and right in the diagram correspond to left and right 
in the animal. 

Because of the amplitude constraints on input connections 
(see Materials and Methods), all interneurons in the 40-inter- 
neuron model received four substantial connections from sen- 
sory neurons, though connection strength varied within and 
between neurons (Fig. 5B). Sensory input was thus widely dis- 
tributed across the interneurons, capturing this salient feature 
of the identified interneurons (Fig. 54). 

No constraints were placed on the amplitude or sign of con- 
nections from interneurons to motor neurons. Therefore, to 
determine the correspondence between output connections of 
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Figure 5. Connections of identified 
and model interneurons. A, Average 
connection strengths of identified local 
bending ,intemeurons determined pre- 
viously (Lockery and Kristan, 1990b). 
White pluses indicate excitatory con- 
nections of unknown strength deter- 
mined from extracellular recordings of 
DE. Blank spaces indicate connections 
that have not been determined because 
the presynaptic neurons lie on the ven- 
tral surface of the ganglion while the 
postsynaptic neurons lie on the dorsal 
surface. B, Connection strengths of in- 
temeurons in a 40-interneuron model 
network after optimization. In A and B, 
each square shows the connection from 
the sensory or motor neuron shown in 
the key. White squares are excitatory 
connections; black squares are inhibi- 
tory connections. Square area is pro- 
portional to connection strength, mea- 
sured as the peak synaptic potential in 
the postsynaptic neuron in response to 
a standard stimulus in sensory or in- 
temeurons. The names of identified and 
model interneurons are given below 
each interneuron (L, left; R, right). 
Model interneurons with the same 
number were constrained during opti- 
mization to be a left-right symmetrical 
pair in accordance with the bilateral 
symmetry of the identified intemeu- 
rons (not shown). Like identified inter- 
neurons, model interneurons received 
substantial connections from four sen- 
sory neurons and most had outputs to 
seven or eight motor neurons. 

the model and actual intemeurons, counts were made of the 
number of intemeurons having a given number of output con- 
nections above a threshold strength of 0.1 mV. The most fre- 
quent type of intemeuron in the model had eight output con- 
nections, in agreement with the eight output connections of the 
two identified neurons for which it has been possible technically 
to measure output connection strengths (intemeurons 115 and 
125, Fig. 54). Similar results were obtained for a range of thresh- 
olds, from 0.0 to 0.2 mV. 

We also compared the distribution of synaptic strengths in 
the model and actual networks. Distributions were determined 
by counting the number of synaptic potentials in the actual (Fig. 
54) and model (Fig. 5B) network in 1 mV bins for input con- 
nections and 2 mV bins for output connections. For both the 
model and actual networks, small-amplitude input connections 
were more frequent than large ones and the range of input con- 
nection strengths was comparable (Fig. 64. The small-ampli- 
tude output connections were also the most frequent (Fig. 6B), 
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and motor neurons (B) in response to 
a standard presynaptic stimulus (see 
Materials and Methods). Physiological 
histograms are shown on the left (Data); 
histograms from a single model net- 
work are shown on the right (Model). 
The physiological data are the connec- 
tion strengths shown in Figure 5A. The 
histograms showed that interneurons in 
the model functioned in the same op- 
erating range as in the biological net- 
work. 

with both model and actual networks having approximately 
symmetrical distributions about zero amplitude. 

The degree of similarity between model and actual intemeu- 
rons, shown by the above comparisons, establishes the central 
result that a network composed of interneurons with left and 
right, dorsal and ventral inputs and multiple motor outputs is 
sufficient to produce the input-output function of the biological 
network. This means that additional types of interneurons spe- 
cific for dorsal, ventral, or lateral stimuli are not required. How- 
ever, further simulations showed that such interneurons can 
contribute to local bending in unexpected ways (see below). 

Distributed representation of sensory input 
Each interneuron in the model network receives input from all 
four P cells (Fig. 5B). However, inspection of the synaptic 
strengths in Figure 5B gives an incomplete picture of how sen- 
sory information is represented, and motor responses con- 
trolled, because it does not show explicitly the effect of simul- 
taneous stimulation of pairs of P cells, or the temporal dynamics 
of the network. Plotting the voltage of each neuron at different 
times (Fig. 7) showed that each pattern of sensory input pro- 
duced a different pattern of interneuron activation. For example, 
the pattern of interneuron activation during simultaneous stim- 
ulation of the two dorsal P cells was distinct from the pattern 
produced by stimulation of the two ventral P cells (Fig. 7, Dorsal 
vs. Ventral). Moreover, patterns changed as a function of time 
from stimulus onset. While almost every interneuron was strongly 
activated during stimulation of the two dorsal P cells (Fig. 7, 
Rising phase), a much smaller subset remained active after the 
stimulus, that is, during the falling phase of the motor neuron 
synaptic potentials (Fig. 7, Falling phase). A similar distinction 
was evident in the response to other input patterns, including 
stimulation of the two ventral P cells (Fig. 7, Ventral). Thus, 

the distributed representation of sensory information was time 
dependent and the falling phase of the motor neuron response 
was controlled by a subset of the interneurons active during its 
rising phase. 

Tests of the necessity of interneurons for motor responses 
Whether an identified interneuron made a necessary contribu- 
tion to dorsal bending was tested in previous physiological ex- 
periments by hyperpolarizing the interneuron (4-5 nA) while 
stimulating the dorsal P cell and recording from the DE motor 
neuron (Lockery and Kristan, 1990b, their Fig. 7B-D). The 
resulting decrements in the DE synaptic potential were on the 
order of 1 mV (Fig. 8A,C), consistent with the large number of 
interneurons thought to contribute to dorsal local bending. Hy- 
perpolarization of interneurons in the model produced effects 
that were similar in size (Fig. 8B,D). 

There was also a correlation between interneuron postsyn- 
aptic potential shape and the time course of the decrement 
hyperpolarization of the interneuron produced in DE. Hyper- 
polarization of cell 125, which receives a mixed fast and slow 
synaptic potential from the dorsal P cell, produced a small dec- 
rement in the response of DE that was evident throughout the 
time course of the motor neuron synaptic potential. Hyperpo- 
larization of mixed fast and slow interneurons in the model (5 
nA) produced a small decrement like that of cell 125, which 
was evident throughout the motor neuron synaptic potential 
(Fig. 8B), in agreement with physiological data. Hyperpolariza- 
tion of cell 2 18, which exhibits only the fast synaptic component, 
produced decrements that were visible only at the very begin- 
ning of the synaptic potential (Fig. 8C’). Hyperpolarization of a 
model neuron that, like cell 218, had only the fast synaptic 
component produced a decrement in the rising phase of the 
motor neuron synaptic potential (Fig. 8D). In this case, there 
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was a discrepancy between data and model, in that the effect of 
hyperpolarizing the fast-type model interneuron was evident 
throughout the stimulus, while in the physiological experiments, 
it was evident only at the very beginning of the stimulus. Thus, 
the model can account for the amplitude but not the time course 
of decrements in motor neuron synaptic potentials produced by 
hyperpolarizing interneurons of the fast type. This suggests that 
in the biological system there is a process operating on a faster 
time scale than the fast synaptic event represented by the fast 
s-units (Fig. l), and this process alters the relative contribution 
of individual interneurons to a given motor neuron synaptic 
potential. Possibilities include facilitation of the sensory to in- 
terneuron or interneuron to motor neuron synapses as well as 
active subthreshold conductances in the interneuron. 

Sources of nonlinearity in the input-output function 

An interesting property of the pattern of motor neuron acti- 
vation and inactivation in response to paired stimulation of P 
cells is that it is not always the linear sum of the response to 

Figure 7. Response of the 40-inter- 
neuron model network to paired stim- 
ulation of the two dorsal or ventral P 
cells. The deviation from resting poten- 
tial in each model neuron is shown at 
three points in time: before P cell stim- 
ulation (Resting), 10 msec before stim- 
ulus offset when the motor neuron syn- 
aptic potentials are still increasing 
(Risingphase), and 30 msec after stim- 
ulus offset when the motor neuron syn- 
aptic potentials are decreasing (Falling 
phase). Membrane potential is repre- 
sented by the gray scale shown on the 
right. Different patterns of sensory in- 
put produced different patterns of in- 
terneuron activation. However, a 
smaller number of interneurons remain 
more strongly activated during the fall- 
ing phase than the rising phase. Thus, 
the reprcscntation of sensory informa- 
tion varies with stimulus pattern and is 
time dependent. 

each P cell stimulated individually. This is evident in examining 
the average response patterns (Lockery, 1989), as well as in the 
response of individual preparations (Lockery and Kristan, 
1990a). In the response of excitatory motor neurons to simul- 
+~YOUS stimulation of the two ventral P cells, or the lateral 
stimulus pattern (see Materials and Methods), this nonlinearity 
contributes positively to the behavior, since the excitatory mo- 
tor neurons whose excitation is necessary for withdrawal from 
the stimulus are more excited than linear summation would 
predict. Because the model was optimized to reproduce accu- 
rately the average motor output to single and paired P cell stim- 
ulation, it too exhibited this nonlinearity (Fig. 9A). One possible 
source of the nonlinearity in the model is the sigmoidal function 
governing steady-state activation of the s-units. A second source 
might be the connections between motor neurons. 

To determine the source of the nonlinearity in the model, a 
linear function was substituted for the sigmoid in a 40-inter- 
neuron network that had been optimized using the sigmoidal 
function (Fig. 9D). Almost all the motor neuron responses to 
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Figure 8. Contribution to motor neuron synaptic potentials of individual interneurons in the actual and model network. A and C: Top, Averaged 
intracellular recordings of EPSPs in DE in response to a train of six dorsal P cell action potentials (arrowheads). For one trace, the indicated 
interneuron was hyperpolarized (A, 3.8 nA; C, 5.1 nA). The other is a control. Bottom, The difference postsynaptic potential found by subtracting 
the hyperpolarized trace from the control. The dotted line is zero difference. Data are reproduced with permission from Figure 7 of Lockery and 
Kristan (1990b). B and D: Top, Simulated intracellular recordings from DE in the model in response to a standard dorsal P cell stimulus (stim). 
The solid line shows the control response. The dotted line shows the response when the indicated interneuron was removed from the model. Bottom, 
The difference postsynaptic potential found by subtracting the hyperpolarized trace from the control. The dashed line is zero difference. In A and 
B, interneurons with mixed fast and slow response components (see Fig. 4) were hyperpolarized and the decrement in DE lasts for the duration of 
the recording. In C and D, interneurons with only the fast response component were hyperpolarized and the decrement is transient. 
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paired P cell stimulation were now linear (Fig. 9B), indicating 
that the small deviations from linearity of the sigmoidal function 
in the model network’s operating range were the major con- 
tributors to the nonlinear response to paired P cell stimulation 
in the model. Nonlinearities remained only in the response of 
VE to stimulation of the two ventral P cells, or stimulation of 
ipsilateral dorsal and ventral P cells (not shown). These nonlin- 
earities disappeared when the inhibitory connection from VI to 
VE in the model was removed, resulting in a fully linear network 

c 

Figure 9. Nonlinearity in the input-output function of the local bend- 
ing reflex. The solid line in each panel shows the simulated response of 
four motor neurons to simultaneous stimulation of the ventral P cells 
(actual). The broken line shows the response predicted by the sum of 
the responses to the same two P cells stimulated individually (predicted). 
A, Comparison of actual and predicted responses in the normal model 
network. Similar nonlinearities were also evident in the response to 
other patterns of paired P cell stimulation. B, Comparison of actual and 
predicted responses in the model network when the sigmoidal function 
of synaptic transmission was linearized (shown in D). The nonlinearities 
were removed, except in the VE motor neurons. C, Comparison of 
actual and predicted responses with the synaptic function linearized and 
the inhibitory connections from VI to VE removed. Actual and pre- 
dicted responses now superimpose, showing that the input-output func- 
tion of the network is completely linear. D, Linearization of the sig- 
moidal function governing chemical synaptic transmission. The curve 
shown in Figure 2C and reproduced here (dashed) was linearized by 
fitting a straight line to it in the range of O-15 mV (solid). This range 
was chosen because all synaptic potentials in the model were within 
this range (Fig. 6A). 
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(Fig. SC). Thus, the lateral inhibitory connections make a small shows that there exist multiple solutions to the local bending 
additional contribution to the nonlinearity of the network. data set. 

Multiple local bending networks Minimal local bending networks 

To determine whether there exists a single network capable of 
producing the local bending input-output function or whether 
multiple networks exist, 40-interneuron networks were opti- 
mized from six different sets of random initial weights. Com- 
parison of Figures 5 and 10 shows that different networks were 
produced by optimizing from different random initial condi- 
tions in the sense that interneuron 1 L in Figure 5B differs from 
interneuron IL in Figure 10, and so on for the other intemeu- 
rons. Nevertheless, the possibility remained that by shuffling 
the order of interneurons, similarities between interneurons that 
happened to have different numbers could be found and the 
equivalence of superficially different networks established. For 
example, interneuron 7L in Figure 5B is similar to interneuron 
SL in Figure 10. However, inspection of all interneurons in each 
pair of networks showed this to be the exception rather than 
the rule; shuffling did not reveal every neuron in one network 
to have an analog in the other. In dozens of 40-interneuron 
networks, we did not find a solution that repeated, although the 
statistical properties of the connections, as shown in Figures 6 
and 7, were similar for all 40-interneuron networks. This result 

To determine whether 40 interneurons are required for local 
bending, or whether a smaller number would suffice, we used 
optimization to seek solutions having fewer than 40 intemeu- 
rons. As before, model networks were optimized to reproduce 
the time course and amplitude of motor neuron synaptic po- 
tentials in response to the eight patterns of P cell stimulation 
(Fig. 3). To increase the likelihood that a solution would be 
found, the requirement that each interneuron have an input 
from all four sensory neurons was removed. Networks with 
fewer than four interneurons could not be optimized to produce 
recognizable local bending motor output patterns. Therefore, 
the minimum number of interneurons appeared to be four. 
However, we cannot rigorously exclude the possibility that in 
the networks with fewer than four interneurons the optimization 
procedure became trapped in a local minimum. 

In the 4-interneuron networks, final instantaneous error (0.42- 
0.45 mV) was higher than in networks with 40 interneurons 
(0.19 mV) despite much longer optimization runs (>40,000 
optimization steps). Inspection of the motor neuron synaptic 
potentials in the minimal networks showed that although the 

are possible. Symbols are as in Fig- 
ure 5. 
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Figure II. Simulated synaptic potentials in four motor neurons in the 
4-intemeuron network after optimization. Each panel shows the re- 
sponse of a single motor neuron, together with the target response from 
the data set. For comparison of model and target responses, the latter 
have been shifted upward by 1 mV. The model was stimulated with 
the lateral stimulus pattern in which the right dorsal and ventral P cells 
are activated. Final instantaneous error across all eight patterns in the 
data set was higher in the 4-intemeuron network than in the 40-inter- 
neuron network, and the greatest error was in this and the other lateral 
pattern. Despite the higher error, the 4-intemeuron model still produced 
local bending motor output, since in all eight patterns the polarity of 
the motor neuron synaptic potentials was correct. 

error was increased, the polarity was correct for each motor 
neuron in all eight output patterns (Fig. 11). The major source 
of error was a reduction in the amplitude of otherwise correct 
synaptic potentials, particularly in lateral bending. 

The 4-interneuron networks reveal several aspects of the so- 
lutions that arise when two pairs of interneurons are forced to 
accommodate the three basic types of local bending: dorsal, 
ventral, and lateral. First, interneurons differed in the degree to 
which they were specific for single patterns of sensory input in 
the data set. At one extreme (Fig. 12A), each interneuron re- 
sponded only to dorsal or ventral stimuli. At the other extreme 
(Fig. 120, interneurons responded to most or all inputs. Inter- 
neurons in intermediate networks (Fig. 12%E) had both specific 
and nonspecific sensory inputs. Second, interneuron output con- 
nections revealed a strong bias toward production of a single 
motor response pattern: lateral local bending. In the networks 
shown in Figure 12, A, B, E, and F, all of the output connections 
(or all but one) are consistent with a pattern that produces lateral 
local bending. Other output types did occur, such as ventral 
bending interneurons (Fig. 12C, interneuron 2L) and approxi- 
mate dorsal bending interneurons (Fig. 120, interneuron 1 L). 
However, every network had at least one pair of lateral bending 
interneurons. 

That some networks contained nothing but lateral bending 
interneurons raises the question of how these networks produced 
dorsal and ventral bends. Inspection of the input and output 

connections of individual interneurons suggests that nonlateral 
output patterns are the result of small differences between large 
effects of interneurons on motor neurons. For example, in Figure 
12A, a dorsal stimulus excites interneurons 1 L and 1 R. The net 
excitation of DES in this motor pattern comes about because 
the excitatory connections to DES are slightly stronger than the 
inhibitory connections. For VEs, which are inhibited in this 
motor pattern, the inhibitory connections are larger than the 
excitatory connections. A similar explanation accounts for the 
production of the correct net synaptic potentials in the inhibitory 
motor neurons if one takes the contralateral DI to VI inhibition 
into account (Fig. 1). 

Networks with ventral bending interneurons 

The previously identified interneurons (Fig. 5A) do not comprise 
the entire population of local bending interneurons. These in- 
temeurons were identified on the basis of receiving excitatory 
input from dorsal P cells and in turn exciting the dorsal excit- 
atory motor neurons (Lockery and Kristan, 1990b). However, 
in the patterns of motor neuron synaptic potentials produced 
by lateral and ventral sensory stimulation, one or both of the 
dorsal excitors are inhibited. Because none of the identified 
interneurons inhibit the dorsal excitor, at least one and perhaps 
several types of interneurons remain to be identified. 

To predict the identity of these interneurons, we divided a 
population of 36 interneurons in a model network into two equal 
subpopulations. The first subpopulation, which we refer to as 
dorsal bending interneurons (Fig. 13), was a generalization of 
the connectivity of the identified local bending interneurons in 
four respects. First, this group contained nine left-right ho- 
mologous pairs of interneurons reflecting the eight paired and 
one unpaired type of identified interneuron (see Materials and 
Methods). Second, each interneuron in the group was con- 
strained to receive substantial excitatory input from all four P 
cells, that is, both dorsal and ventral inputs. Third, connections 
to dorsal excitatory motor neurons were constrained to be ex- 
citatory while connections to ventral excitatory motor neurons 
were constrained to be inhibitory. This ensured that the output 
of this population would be consistent with dorsal bending, 
reflecting the assumption that the output connections of inter- 
neurons 115 and 125 to excitatory motor neurons are typical 
of the other identified interneurons. Fourth, no constraints were 
placed on the connections to the inhibitory motor neurons, since 
connections to inhibitory motor neurons from interneurons 115 
and 125 are not necessarily opposite in sign to the connections 
to the excitatory motor neuron of the same body quadrant (Fig. 
5A). 

The second subpopulation, which we refer to as unconstrained 
interneurons, also contained nine left-right homologous pairs, 
and each interneuron was constrained to receive substantial 
excitatory input from all four P cells. However, no constraints 
were placed on the connections to either excitatory or inhibitory 
motor neurons. We relied instead on optimization to set these 
connections. 

Starting from six different initial conditions, the optimization 
procedure found sets of connections that reproduced the local 
bending motor output patterns as accurately as in the networks 
with a single homogeneous population (not shown). The re- 
sulting dorsal bending interneurons faithfully reflected the iden- 
tified interneurons, with effects on excitatory motor neurons 
consistent with dorsal bending and multiple effects on inhibitory 
and excitatory motor neurons. The most frequent type of un- 
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Figure 12. The range of4-intemeuron 
models. To determine the minimal net- 
work that was sufficient to produce lo- 
cal bending motor output, the number 
of intemeurons was reduced from 40 to 
4, that is, to two left-right symmetrical 
pairs. Smaller numbers of intemeurons 
were insufficient, since such networks 
could not be optimized to produce rec- 
ognizable local bending outputs. A range 
of solutions was produced that varied 
from having inputs that were specific 
for particular patterns of sensory input 
(A) to intemeurons that responded to 
most or all inputs (F). Surprisingly, 
some intemeurons in A and B had inputs 
specific for dorsal or ventral bending 
but outputs specific for lateral bending. 
In some sensory specific intemeurons, 
there was thus a dissociation between 
input and output specificity. Symbols 
are as in Figure 5. 

constrained intemeuron had output connections to the excit- 
atory motor neurons that were consistent with a role in ventral 
bending (Fig. 13, intemeurons lOL, 1 lL, 12L, 14L, 17L, and 
their homologs). In the six networks optimized in this way, 6 1% 
of the unconstrained intemeurons fell into this category. Other 
frequently encountered types of intemeurons included ones that 
excited all four excitatory motor neurons (Fig. 13, interneuron 
15L) and ones that inhibited all four excitatory motor neurons 
(Fig. 13, interneuron 16L). These categories accounted for 9% 
and 13% of the intemeurons, respectively. The remaining 17% 
had unique motor effects. The predominance of ventral bending 
intemeurons shows that a model in which the output patterns 
are produced by two populations of intemeurons, one biased 
toward dorsal bending and one toward ventral bending, is con- 
sistent with the physiological details of the input-output func- 
tion of the reflex. The types of intemeurons that arose in the 
unconstrained subpopulation reflect possible connectivities of 
as yet unidentified interneurons. However, a different set of 
assumptions regarding the dorsal bending subpopulation may 
have led to different predictions. 

That fewer than 18 unconstrained intemeurons might be suf- 
ficient to produce the motor output patterns is suggested by the 
fact that the input-output function can be quite closely approx- 
imated by the 4-interneuron networks. This was tested by op- 
timizing networks in which the number of unconstrained in- 
temeurons in the model was reduced from 18 to 2, that is, to a 
single left-right pair (Fig. 14). The resulting 20-interneuron net- 
works reproduced patterns of motor neuron synaptic potentials 

with a final instantaneous error of 0.29-0.30 mV. As with the 
4-interneuron network, most of the error was due to a reduction 
in amplitude of the synaptic potentials, especially in lateral 
bending. In six networks optimized from different initial con- 
ditions, the 18 dorsal bending intemeurons were similar to the 
dorsal bending intemeurons in the 36-interneuron networks, 
while the unconstrained pair of intemeurons were like the pre- 
dominant type of unconstrained interneuron in the 36-inter- 
neuron network. While there was considerable variability among 
the ventral bending intemeurons in the 36-intemeuron net- 
works, only two types of ventral bending intemeurons were seen 
in the 20-interneuron networks (Fig. 14B). In one type, one VI 
was excited and the other was inhibited (Fig. 14A); in the other 
type, both VIs were excited (Fig. 14B). Otherwise, the connec- 
tions to the motor neurons were consistent with ventral bending 
in that the DIs were excited, the DES inhibited, and the VEs 
excited. This shows that a single pair of intemeurons whose 
effect is to produce ventral bends is sufficient to complement a 
population of dorsal bending intemeurons qualitatively iden- 
tical to the population of identified local bending interneurons. 
However, the output connections to the motor neurons were 
stronger than can be expected on physiological grounds. For 
example, maximum depolarization (+2.5 nA, 2.6 set) of inter- 
neurons 1OL and 1 OR produced IPSPs 77 mV in amplitude, 
which exceeds the reversal potential for IPSPs in the leech (Nich- 
olls and Wallace, 1978; Cline, 1986). Presumably, such large 
synaptic effects were necessary to counteract the effect of the 18 
dorsal bending intemeurons. In actuality, therefore, more than 



3890 Lockery and Sejnowski l Network Model of Local Bending in the Leech 

Dorsal bending interneurons 

IL 2L 3L 4L 5L 6L 7L 8L 9L 
@$fg 
. . . . . . ..ii........... 
;ggg$ 

. . . . . . . . . . . . ..L.. . . . ::Z$$:~:~:~~$~:~: 
$&:::y::::::::i 
. . . . . . . . . . . . . . . . . . . . . . . . . . . ..i.. 

:::::i:::::::::g:: 
. ..A..~...:.: .,.,.,.: . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . 
:~:~:~:~&:~: 
:+A~.~.~.~.~.~.~.~. 
::::::::::::::::::::::: 
:::a::$$:&::: 
. . . . i..... . . . . . . . . . . ..i............. 

1R 

... . . . . . . . . . . . . . . . . . . . .  
$Z:<<$Zj<: 

. . . . .  .+:+.+: 

. . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . .  
::::(-J:::::j-Ji: 
. . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  

~~~:~~ 

. . . . . . . . . .  
$i&$yj$ 

. . . . . . . . . . . . . . .  .  

. . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . .  
:g-Jz:i:i:I;T~i 
: . :  . . . . . .  : : . : . :  . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . .  
$g$E# 

. . . . . . . . . . . . . . . . . .  .  . . . . . . . . . . .  

2R 

........................ 
$giiiiii 

... 
@$yJ 

:.:.:::: ........ 
r ........... ........................ 
::::*g::*:::: 
................. ............. ....................... ............ ........................ .......... r.:.:.:.:w ......... 
........................ ............ 
....................... 
;;E,;gg 
........................ ........................ ........................ 
::sm::::::m:;< 
:::::.:.:::::t::.::::::: ...... 

3R 

............ ....................... 
j:!-J:::j-J:: 
... ........ ...... ....................... ....................... 
yj~$yf:i: 
:.: ...... ::.::. ..... :.: 
............. ....................... 
:if#i:i:yiii; 
:.:..... :.:.: .......... 
....................... ....................... 
:::ti:::::::*i:i: 
................ 
g@@ 
..... : ............ ....................... ........... 
;~#$$#$ 
:.:.:.:.:::.:::.:.:.::: 

4R 

Unconstrained interneurons Key 

Figure 13. The 36-intemeuron net- IOL 11L 12L 13L 14L 15L 16L 17L 18L 
work model. Interneurons lG9R were 
constrained to receive four excitatory P 
cell inputs and have outputs to excit- 
atory motor neurons consistent with 
dorsal bending. Interneurons I OL-I 8R 
were constrained only to receive four 
excitatory P cell inputs; no constraints 
were placed on the sign or amplitude 
of their output connections. After op- 
timization to the local bending data set, 
most of the unconstrained interneurons 
had developed connections to the ex- 
citatory motor neurons that were con- 
sistent with ventral bending. Symbols 
are as in Figure 5. 
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one pair of ventral bending interneurons may be required. Nev- 
ertheless, the 20 interneuron network shows that the basic pat- 
tern of sensorimotor relations can be established with a single 
pair of ventral bending interneurons acting in concert with a 
population of dorsal bending interneurons. 

Discussion 
Network models of the local bending reflex 
The present dynamic model confirms and extends the results 
of the previous static model (Lockery et al., 1989) by showing 
that interneurons qualitatively identical to the identified inter- 
neurons are sufficient to account for the local bending input- 
output function in the context of a more complete set of phys- 
iological constraints. The model now includes all the known 
electrical and chemical connections between motor neurons. 

Feedback among the motor neurons necessitated the use of re- 
current backpropagation as an optimization procedure for the 
weights in the new model, since the original backpropagation 
algorithm for feedforward networks (Rumelhart et al., 1986) 
does not accommodate feedback connections. This had the ad- 
ditional benefit of including other physiological constraints, such 
as motor and interneuron time constants and input resistances, 
actual motor neuron synaptic potential time courses, and the 
fast and slow components of sensory neuron to interneuron 
connections. 

Future models will incorporate additional biological con- 
straints as more is learned about the anatomy and physiology 
of the reflex. The present model represents each neuron as a 
single electrical compartment. An important step will be to use 
multicompartmental neurons (Segev et al., 1989), which will 
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improve the accuracy of the passive properties of individual 
neurons. One can also add compartments representing time- 
dependent variables other than voltage. To some extent, this 
has already been done insofar as the s-units represent not voltage 
but the degree of activation of a synapse. Other variables include 
regenerative currents giving rise to action potentials or synaptic 
currents that undergo facilitation and depression. The latter 
might improve the performance of the model in tests of the 
necessity of interneurons for motor neuron synaptic potentials 

Figure 14. The 20-intemeuron net- 
work model. A, Intemeurons IG9R 
were constrained to receive four excit- 
atory P cell inputs and have outputs to 
excitatory motor neurons consistent 
with dorsal bending. Intemeurons I OL 
and 1OR were constrained only to re- 
ceive four excitatory P cell inputs. After 
optimization to the local bending data 
set, this pair had output connections 
that were most consistent with ventral 
bending. B, Optimization of other net- 
works from different initial conditions 
sometimes yielded a second type of 
ventral bending interneuron that excit- 
ed all the inhibitory motor neurons. No 
other types were seen. Intemeurons IL- 
9R in such networks (not shown) were 
similar to those in A. Connection 
strengths for the unconstrained inter- 
neurons are much larger than the dorsal 
bending intemeurons, whose connec- 
tions are shown on the same scale. The 
connection strengths of the dorsal 
bending intemeurons are similar to 
those in the 40-interneuron networks. 
Symbols are as in Figure 5. 

because it would enable an interneuron to make a different 
relative contribution to a postsynaptic response at different times 
during the stimulus (Fig. 8C’). 

Comparison of model and actual interneurons 
After optimization, the 40-interneuron model accurately repro- 
duced the amplitude and time course of synaptic potentials 
recorded in motor neurons in response to eight different patterns 
of P cell stimulation. Intemeurons in the model resembled iden- 
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tified local bending interneurons in several respects. First, the 
time course and amplitude distribution of synaptic potentials 
from P cells to interneurons, and from interneurons to motor 
neurons, matched those of identified local bending interneurons. 
Second, all interneurons received four substantial input con- 
nections from P cells, and most had eight substantial output 
connections to motor neurons. Third, hyperpolarization of in- 
dividual interneurons produced decrements in motor neuron 
synaptic potentials in response to P cell stimulation that were 
comparable in amplitude to those seen in physiological exper- 
iments. The similarity between model and actual interneurons 
shows that it is possible to discover a set of connection strengths 
between interneurons and motor neurons sufficient to resolve 
differences in intemeuronal activation patterns associated with 
each pattern of P cell stimulation, and so to produce distinct 
patterns of motor neuron excitation and inhibition that accu- 
rately match the observed responses. It thus shows that the 
distributed processing hypothesis is consistent with the details 
of the local bending network. 

The correspondence between model and actual interneurons 
in the 40-interneuron model was not absolute in several respects. 
First, no attempt was made to match the input connections of 
particular identified local bending interneurons. The emphasis 
lay instead on reproducing the general feature of having a widely 
distributed intemeuronal representation of sensory input. Sec- 
ond, many of the model interneurons had connections of the 
same polarity to all four excitatory motor neurons, while in the 
two identified interneurons for which these connections have 
been measured, the dorsal excitors are excited and the ventral 
excitors are inhibited. On a more detailed level, there was never 
a perfect match to all eight output connections of interneurons 
115 and 125 (Fig. 5AJ). 

Discrepancies such as these are related to the functional spec- 
ificities of model and actual interneurons. The identified inter- 
neurons represent a specific subpopulation contributing to the 
dorsal component of dorsal local bending, that is, having ex- 
citatory input from at least one dorsal P cell, and an excitatory 
output connection to at least one DE. Thus, the identified in- 
temeurons are functionally specific; for example, none inhibit 
DES and excite VEs, connections expected of interneurons se- 
lected for contributing to ventral local bending. By contrast, the 
interneurons in the 40-interneuron model have no such func- 
tional specialization; rather, they combine the functionality of 
both dorsal bending and ventral bending interneurons, and so 
are different from the identified neurons in certain details of 
their connectivity. As more biological data become available, 
future models will include additional constraints on the inter- 
neurons, reducing these discrepancies. 

Production of motor responses 
Plotting the time course of activation of interneurons showed 
that they form a distributed representation of the spatial pattern 
of P cell stimulation in which differences between input con- 
nections from P cells to interneurons produce differences in the 
pattern of intemeuronal activation for each of the patterns of P 
cell stimulation. The different patterns of interneuron activation 
are then translated into behaviorally correct patterns of motor 
neuron activation by the connections made by the interneurons 
onto the motor neurons and the time course of interneuron 
responses. In the model, the rising phase of the motor neuron 
response was controlled by strong activation of almost every 
interneuron, though which ones were most active varied across 

patterns. The falling phase was controlled by a subpopulation 
of interneurons with a sustained synaptic potential that was the 
result of the slow synaptic event represented by the slow s-units 
(Fig. 1). The similarity between model and actual interneurons 
in the number of sensory inputs (Fig. 5B) and interneuron dy- 
namics (Fig. 4A) suggests that a similar functional division exists 
in the biological network. In fact, the divisions in the biological 
system may be not just between the rising and falling phase of 
the motor neuron synaptic potential, but also within the rising 
phase itself, since previous physiological data suggest that some 
interneurons contribute disproportionately to the very early part 
of the rising phase (Fig. 8C). Such a mechanism allows more 
flexibility in the construction of different time courses of motor 
neuron synaptic potentials. 

Nonlinearity of the input-output function 
We examined the source of the nonlinearity inherent in the local 
bending input-output function by substituting a linear approx- 
imation to the sigmoidal synaptic transfer function (Fig. 9), an 
experiment that is impossible to do physiologically. Almost all 
of the nonlinearities of the local bending input-output function 
in the model were attributable to the minor nonlinearities in- 
herent in the empirical sigmoidal function used. This does not 
rule out the possible contribution of nonlinear summation of 
synaptic currents introduced by neighboring synapses on the 
dendritic tree of the postsynaptic neurons (Koch et al., 1982; 
Lytton and K&tan, 1989). Nor does it rule out a contribution 
from the lateral inhibitory connections between DI and DE and 
VI and VE. However, when the input-output function was mea- 
sured, it was considered to be essentially linear (Granzow et al., 
1985). It is thus significant that the rather small deviation from 
linearity over the working range of the model interneurons was 
sufficient to produce the nonlinearities inherent in the local 
bending input-output function. This illustrates the power of a 
distributed network of weakly nonlinear neurons to synthesize 
complex behaviors. 

Multiple local bending networks 
Each time the 40-interneuron model was optimized from a new 
set of random initial weights, a different network resulted (Figs. 
5B, 10). Theoretically, this can be explained by the fact that 
there are 480 adjustable connections in the model, and only 
eight input-output patterns in the data set upon which the model 
was optimized. By analogy to a polynomial curve-fitting pro- 
cedure, where the weights are the free parameters and the input- 
output relations are the set of points to be fit, infinitely many 
different high-order polynomials can be drawn through a small 
number of points. Despite variability at the level of individual 
interneurons, each of the 40-interneuron models shared such 
statistical properties such as the number of input and output 
connections and the distribution of synaptic potential ampli- 
tudes (Fig. 6). Thus, all models provided an equally good fit to 
the identified local bending interneurons. 

Optimizing the network in the future on a larger data set will 
restrict the number of possible solutions, and could improve 
the correspondence between model and actual interneurons. The 
present data set contains the motor neuron responses to stim- 
ulation of single P cells and four of the six possible P cell pairs, 
and all P cell stimulus trains had the same firing frequency and 
duration. The data set could be enlarged by including responses 
to the remaining P cell pairs (contralateral dorsal and ventral P 
cells) as well as simultaneous stimulation of three and four P 
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cells. One might also vary the frequency and duration of the P 
cell stimulus trains. Finally, it is possible that some of the actual 
intemeurons participate in several different behaviors, and have 
connections optimized for this multibehavioral role. In support 
of this possibility, interneuron 115 is known to participate in 
the swimming central pattern generator (Friesen, 1989b), and 
interneuron 125 has been shown to contribute to the shortening 
reflex (Wittenberg, 1991). This suggests that a better fit of the 
model to the data might be achieved by optimization to several 
different behaviors at once. Optimization can also be used to 
assemble models of central pattern generators (Doya and Yoshi- 
zawa, 1989; Rowat and Selverston, 199 1). By optimizing a single 
network for local bending and swimming, it will be possible to 
find new ways in which single intemeurons can contribute to 
qualitatively different behaviors. 

Dedicated versus distributed local bending networks 

The leech withdraws from dorsal, ventral, and lateral stimuli 
by contracting longitudinal muscles on the stimulated side and 
relaxing them on the unstimulated side. Thus, dorsal, ventral, 
and lateral sensory stimuli each impose a different pattern of 
longitudinal muscle motor neuron activation. At one conceptual 
extreme, this could be accomplished by four different types of 
intemeurons, each dedicated to the detection of a particular 
stimulus location and the imposition of the appropriate motor 
pattern through a behaviorally specific pattern of output con- 
nections to the motor neurons (Fig. 15A). In such a dedicated 
interneuron network, input specificity would be provided by 
excitatory and inhibitory connections from the sensory neurons, 
and output specificity by excitatory and inhibitory connections 
to motor neurons. 

However, optimization of 4-interneuron networks showed 
that even simpler dedicated interneuron networks are possible. 
The 4-interneuron network of Figure 12A has just two types of 
dedicated intemeurons, one for dorsal and one for ventral bends, 
and lateral bending is produced by the concerted action of both 
types. It is also simpler because input specificity does not require 
inhibitory connections from sensory neurons to interneurons. 

That the 40-interneuron model can be reduced to a model 
having just 4 interneurons indicates redundancy in the local 
bending system. Redundancy could stabilize the network’s re- 
sponses in the face of perturbations such as the loss of one or 
more connections or interneurons. Additionally, when our 
knowledge of the local bending reflex and other behaviors in 
which local bending intemeurons may partake is more complete, 
we might find that accurate models require many more than 
four intemeurons. These possibilities are not exclusive; the leech 
nervous system may have evolved for both stability and a wider 
range of local bending and other behaviors than the present 
model is currently optimized to produce. 

At the other extreme, in a fully distributed network, there 
could be a single population of multifunctional intemeurons in 
which each interneuron responds to all sensory inputs and the 
output effects of none of the intemeurons are specific for a 
particular behavior (Fig. 150. The 40-interneuron networks 
suggest that such a proposal is consistent with our knowledge 
of the input-output behavior of the reflex. However, the iden- 
tified local bending intemeurons, which generally receive inputs 
from all four sensory neurons yet have outputs that are most 
like the dorsal bending motor pattern (Lockery and Kristan, 
1990b), are inconsistent with this view, since each interneuron 
responds to all sensory inputs but the output effects of individual 
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Figure 15. Three different computational strategies for the local bend- 
ing reflex. A, Individual interneurons are dedicated to the detection of 
dorsal, ventral, and left (L) and right (R) lateral stimulus locations and 
have effects on motor output that are consistent with withdrawal from 
the stimulated site. These hypothetical interneurons are thus function- 
ally specific in their inputs and their outputs. B, An intermediate case 
in which interneurons respond to all stimulus locations but have outputs 
that are generally consistent with withdrawal from dorsal or ventral 
stimuli. These interneurons are functionally specific only in their out- 
puts. C, Individual interneurons respond to all stimulus locations and 
have outputs that are not consistent with any ofthe observed withdrawal 
responses. These interneurons are nonspecific in their inputs and out- 
puts. The identified local bending interneurons are most consistent with 
the intermediate strategy, and the 20- and 36-interneuron networks 
show that such networks can be functional. Symbols are as in Figure 5. 

intemeurons are largely consistent with a single behavior, in 
this case dorsal bending (Fig. 5A). 

The present results establish the possibility of the interme- 
diate hypothesis in which all forms of the behavior are produced 
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by just two types of partly dedicated, partly distributed inter- 
neurons (Fig. 15B). In the 20-interneuron network, 18 inter- 
neurons were constrained to be dorsal-like, with four sensory 
inputs and multiple outputs to excitatory motor neurons con- 
sistent with dorsal bending: excitation of DES and inhibition of 
VEs. From each random initial condition, the two uncon- 
strained interneurons, which were also required to have four 
sensory inputs, developed ventral-like output connections: ex- 
citation of VEs and inhibition of DES. This shows that all eight 
motor patterns, including lateral local bends, can be produced 
by networks with interneurons specific (or nearly so) for dorsal 
and ventral bends, and without interneurons specific for the 
lateral bending motor pattern itself. In these networks, lateral 
bends are produced by the summed effects of dorsal-like and 
ventral-like interneurons. Perhaps this represents an economical 
solution to local bending in which multiple types of behavior 
are produced by a smaller number of interneuron types. 

Minimal local bending networks 

The 4-interneuron networks constitute unexpected solutions to 
the local bending input-output function. Like the 20- and 36- 
intemeuron networks, these had interneurons that were inter- 
mediate between the dedicated and distributed hypotheses. Al- 
though a range of solutions was produced, at one extreme these 
interneurons were like the ideal dedicated neurons, in that they 
had functionally specific inputs and outputs. Surprisingly, how- 
ever, the two functional specificities were not necessarily related. 
For example, in Figure 12A, the interneurons are specific for 
dorsal or ventral stimuli but lateral withdrawal behavior. At the 
other extreme, interneurons responded to many or all inputs, 
yet had outputs consistent with a single behavior (e.g., Fig. 12F). 
Interneurons in the 4-interneuron networks are thus deceptive 
in that they have a wider functional role than their input and 
or output specificity would suggest, since each network produces 
dorsal, ventral, and lateral responses. This draws attention to 
the pitfalls, in distributed processing networks, of interpreting 
the function of single neurons in isolation. 

The connectivity of unidentljied local bending interneurons 

The networks in which unconstrained interneurons were al- 
lowed to develop alongside a subpopulation constrained to rep- 
resent the 17 identified local bending interneurons predict as- 
pects of the connectivity of unidentified local bending 
interneurons. The 20-interneuron model predicts that the net 
effect of all the unidentified interneurons is to produce a motor 
output pattern that resembles ventral bending, since the two 
unconstrained interneurons must perform the function of the 
entire subpopulation of unidentified cells, however many there 
may be in the biological network. When the number of uncon- 
strained neurons was increased to 18 in the 36-interneuron mod- 
el, the predominant type of interneuron was still ventral-like. 
We propose, therefore, that a prominent feature of the uniden- 
tified local bending interneurons will be output effects biased 
toward ventral bending and that lateral bending is the result of 
simultaneous activation of dorsal and ventral bending inter- 
neurons. However, we cannot exclude the possibility that the 
unidentified interneurons might include lateral bending inter- 
neurons. The solutions found in the 20- and 36-interneuron 
networks may simply be the local minima nearest the random 
initial starting point and other more distant minima might con- 
tain lateral bending interneurons. We nevertheless favor the 
dorsal-ventral hypothesis because it accounts for all forms of 

local bending with two basic interneuron types and is thus more 
parsimonious than postulating additional lateral bending inter- 
neurons. 

This hypothesis can be tested by attempting to locate and 
identify other local bending interneurons. Interneuron 115, which 
has dorsal-like outputs in local bending (Fig. 54) is active during 
the phase of swimming in which dorsal contraction occurs (Frie- 
sen, 1989b). Thus, a precedent exists for a relationship between 
the phase of an interneuron in the swim central pattern generator 
and a role in a particular form of local bending. Perhaps swim 
oscillator neurons active during or near the ventral phase of the 
swimming motor pattern, including cells 28, 60, 33, and 27 
(Friesen, 1989b), also serve as ventral bending interneurons. 
This could be tested by determining P cell input and motor 
output connections of these interneurons. 

Local bending as a model system in computational 
neuroscience 

The primary function of interneurons in the local bending net- 
work is to associate with each sensory stimulus that pattern of 
motor neuron excitation and inhibition that is required to with- 
draw from the site of contact. In computational terms, the reflex 
computes a function between a four-dimensional input vector 
encoding stimulus location and an eight-dimensional output 
vector encoding the associated movement. Because most inter- 
neurons in the reflex receive inputs from all four sensory neu- 
rons, the computation is achieved using a distributed represen- 
tation of sensory input and motor output. In form and function, 
the reflex thus bears strong resemblance to perceptrons (Church- 
land and Sejnowski, 1992) and other artificial neural networks 
that excel in many biologically relevant tasks including pattern 
recognition, data compression, interpolation, signal detection, 
and prediction. The present study shows that local bending net- 
works can vary greatly in the number of interneurons used and 
the degree of sensory and motor specificity. Thus, the actual 
local bending circuit must be one among many biologically plau- 
sible networks with identical motor output. Based on the con- 
nectivity of the identified local bending interneurons, it appears 
that the actual local bending network has adopted a computa- 
tional strategy that, though distributed, involves aspects of a 
solution using dedicated interneurons. The 36-interneuron net- 
work shows that such a circuit can produce local bending re- 
sponses. The question whether the biological system actually 
functions in this way will require identification of additional 
local bending interneurons and measurement of their input and 
output connection strengths. The question why the leech ner- 
vous system has adopted this solution will require a more com- 
plete definition of the behavioral constraints under which the 
interneurons operate, including the response of the motor neu- 
rons to sensory inputs that are spatially and temporally complex, 
and the role the interneurons may have in other behaviors that 
involve the same motor neurons such as swimming, shortening, 
and stepping (Kristan et al., 1988). That the reflex occurs in a 
comparatively simple animal with an easily accessible nervous 
system composed of identifiable neurons provides a unique op- 
portunity to understand completely a real-life example of pow- 
erful and potentially quite general computational mechanisms. 
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