The Distribution of 13 GABA, Receptor Subunit mRNAs in the Rat Brain. I. Telencephalon, Diencephalon, Mesencephalon

W. Wisden, D. J. Laurie, H. Monyer, and P. H. Seeburg

Laboratory of Molecular Neuroendocrinology, Zentrum für Molekulare Biologie, University of Heidelberg, D-6900 Heidelberg, Germany

The expression patterns of 13 GABA, receptor subunit encoding genes ($\alpha_1 - \alpha_6, \beta_1 - \beta_3, \gamma_1 - \gamma_3, \delta$) were determined in adult rat brain by in situ hybridization. Each mRNA displayed a unique distribution, ranging from ubiquitous (α , mRNA) to narrowly confined (α_6 mRNA was present only in cerebellar granule cells). Some neuronal populations coexpressed large numbers of subunit mRNAs, whereas in others only a few GABA, receptor-specific mRNAs were found. Neocortex, hippocampus, and caudate-putamen displayed complex expression patterns, and these areas probably contain a large diversity of GABA, receptors. In many areas, a consistent coexpression was observed for α_1 and β_2 mRNAs, which often colocalized with γ_2 mRNA. The $\alpha_1\beta_2$ combination was abundant in olfactory bulb, globus pallidus, inferior colliculus, substantia nigra pars reticulata, globus pallidus, zona incerta, subthalamic nucleus, medial septum, and cerebellum. Colocalization was also apparent for the α_2 and β_3 mRNAs, and these predominated in areas such as amygdala and hypothalamus. The α_3 mRNA occurred in layers V and VI of neocortex and in the reticular thalamic nucleus. In much of the forebrain, with the exception of hippocampal pyramidal cells, the α_4 and δ transcripts appeared to codistribute. in thalamic nuclei, the only abundant GABA, receptor mRNAs were those of α_1 , α_4 , β_2 , and δ . In the medial geniculate thalamic nucleus, $\alpha_{\rm 1},~\alpha_{\rm 4},~\beta_{\rm 2},~\delta,$ and $\gamma_{\rm 3}$ mRNAs were the principal GABA_A receptor transcripts. The α_5 and β_1 mRNAs generally colocalized and may encode predominantly hippocampal forms of the GABA, receptor. These anatomical observations support the hypothesis that $\alpha_1\beta_2\gamma_2$ receptors are responsible for benzodiazepine I (BZ I) binding, whereas receptors containing α_2 , α_3 , and α_5 contribute to subtypes of the BZ II site. Based on significant mismatches between α_4/δ and γ mRNAs, we suggest that in vivo, the α_{\star} subunit contributes to GABA, receptors that lack BZ modulation.

GABA is the principal inhibitory transmitter in vertebrate brain. GABA produces its inhibitory effect by interacting with two

Received Aug. 8, 1991; revised Oct. 21, 1991; accepted Oct. 23, 1991.

Copyright © 1992 Society for Neuroscience 0270-6474/92/121040-23\$05.00/0

classes of molecules on the target cell: (1) GABA_A receptors, which are ligand-gated anion channels that exhibit a diverse and clinically important pharmacology, being the locus of action for barbiturates, benzodiazepines (BZs), and steroids, which all act alosterically to modify the efficacy of GABA (Haefely and Polc, 1986; Lambert et al., 1987; Puia et al., 1990); ethanol also appears to mediate some of its effects through this receptor (Wafford et al., 1990, 1991); and (2) GABA_B receptors, which are coupled to G-protein-mediated cellular responses (Bowery, 1989). These two GABA receptor classes act on different time scales, often in the same synapse (Dutar and Nicoll, 1988).

Our knowledge regarding the molecular composition of the GABA_A receptor has increased considerably over recent years. Once thought to be a single molecular species (Häring et al., 1985), this receptor now presents a staggering molecular diversity revealed by cDNA cloning of GABA, receptor subunits. In keeping with other members of the ligand-gated ion channel superfamily (Unwin, 1989; Cooper et al., 1991), the GABA receptor is probably assembled as a pentameric structure from a number of possible subunit classes. The subunit stoichiometry in any given GABA receptor complex is unknown. In the rodent there are currently six α -subunits ($\alpha_1 - \alpha_6$), three β -subunits $(\beta_1 - \beta_3)$, three γ -subunits $(\gamma_1 - \gamma_3)$, and a δ -subunit (Olsen and Tobin, 1990; Seeburg et al., 1990; Herb et al., 1992; Lüddens and Wisden, 1991; Wilson-Shaw et al., 1991). Additionally a ρ-subunit cDNA has recently been isolated from human retina (Cutting et al., 1991). Molecular diversity rather than uniformity probably accounts for the pharmacological heterogeneity of GABA_A receptors seen by numerous laboratories (Unnerstall et al., 1981; Young et al., 1981; Sieghart, 1989; Olsen et al., 1990).

Different subunit combinations confer disparate pharmacologies on GABA, receptors expressed from combinations of cDNAs. For example, the γ -subunit class is required to confer a generally robust BZ responsiveness on any α/β subunit combination (Pritchett et al., 1989b), such that a minimum requirement for conventional GABA, receptor pharmacology would be an $\alpha_x \beta_x \gamma_x$ combination (where x is any variant). However, studies on $\alpha_x \beta_x \gamma_2$ receptors reveal that it is the members of the α -subunit class that dictate which type of BZ ligand binds to, and allosterically modulates, the receptor complex (Pritchett et al., 1989a,b; Lüddens et al., 1990; Pritchett and Seeburg, 1990; Seeburg et al., 1990; Lüddens and Wisden, 1991). The α_1 -containing complexes exhibit high affinity for CL 218-872 and β -carbolines, whereas the complexes containing α_2 , α_3 , and α_5 show lower affinity for these compounds (Pritchett et al., 1989a; Pritchett and Seeburg, 1990). However, all display high affinity for the BZ antagonist Ro 15-1788 and, particularly, for the

We gratefully acknowledge Ulla Keller for expert and dedicated technical help and Jutta Rami for efficient secretarial skills. D.J.L. was a recipient of a European Science Exchange Program fellowship awarded by the Royal Society (London). W.W. held an EMBO long-term fellowship. This work was supported by the Bundesministerium für Forschung und Technologie, Grant BCT 364 Az 231/7291, the Deutsche Forschungsgemeinschaft (SFB 317, B9), and the Fonds der Chemischen Industrie (P.H.S.).

Correspondence should be addressed to W. Wisden, Laboratory of Molecular Neuroendocrinology, Zentrum für Molekulare Biologie, University of Heidelberg, Im Neuenheimer Feld 282, D-6900 Heidelberg, Germany.

"alcohol antagonist" Ro 15-4513. The α_4 and α_6 subunits in combination with a $\beta_2\gamma_2$ subunit pair bind Ro 15-4513 at a site insensitive to diazepam (Lüddens et al., 1990; Wisden et al., 1991b), and hence $\alpha_4\beta\gamma_2$ and $\alpha_6\beta\gamma_2$ receptors do not bind BZ agonists. The β -subunits have been reported to modulate current amplitudes (Sigel et al., 1990) and appear to differ in binding of GABA analogs and pentobarbital (Bureau and Olsen, 1990). The role of the δ -subunit remains unclear, but this subunit forms homomeric channel complexes gated by GABA (Shivers et al., 1989). The ρ -subunit appears to be quantitatively unimportant in rodent CNS, with its mRNA restricted to retina (Cutting et al., 1991).

Clearly, in order to proceed with electrophysiological and pharmacological analyses, it is important to know which subunit combinations occur in vivo. Two approaches are available: mapping the site of protein expression using subunit-specific antibodies (immunocytochemistry), or tracing sites of gene expression using in situ hybridization. The immunocytochemical approach, although providing useful information about the cellular distribution of GABA_A receptors, is severely hindered by the difficulty of raising unique antibodies. Previously used antibodies, for example, monoclonal antibody (mAb) bd-17 and mAb 62-3G1 (Richards et al., 1986, 1987; de Blas et al., 1988), react with both β_2 and β_3 subunits (Fuchs et al., 1988; Ewert et al., 1990, 1991). However, one recent report using synthetic peptide-derived antibodies has demonstrated differential localization of immunoreactivity specific for α_1 , α_2 , and α_3 subunits in rat brain (Zimprich et al., 1991). The γ_2 and δ -subunits have also been detected immunohistochemically using peptidespecific antisera (Benke et al., 1991a,b).

The sites of gene expression of some of the subunits have been partially mapped by in situ hybridization. In rodent brain these are the mRNAs for α_1 (Séquier et al., 1988; Khrestchatisky et al., 1989; Lolait et al., 1989; Hironaka et al., 1990; Malherbe et al., 1990b; Seeburg et al., 1990; MacLennan et al., 1991), α_2 (Seeburg et al., 1990; MacLennan et al., 1991; Persohn et al., 1991; Wisden et al., 1991a), α_3 (Seeburg et al., 1990; Persohn et al., 1991; Wisden et al., 1991a), α_4 (Wisden et al., 1991b), α_5 (Khrestchatisky et al., 1989; MacLennan et al., 1991, termed α_4 by these authors), α_6 (Kato, 1990; Lüddens et al., 1990), β_1 (Séquier et al., 1988; Malherbe et al., 1990b; Seeburg et al., 1990; Zhang et al., 1990), β_2 and β_3 (Lolait et al., 1989; Seeburg et al., 1990; Zhang et al., 1990), γ_1 (Ymer et al., 1990), γ_2 (Shivers et al., 1989; Malherbe et al., 1990b; Persohn et al., 1991; Wisden et al., 1991a), and δ (Shivers et al., 1989). In bovine brain, the α_1 , α_2 , and α_3 mRNAs (Wisden et al., 1988, 1989a,b) and β_1 mRNAs (Siegel, 1988), and in chicken brain the α_1 mRNA (Bateson et al., 1991a), have also been studied.

However, no systematic comparison is currently possible. First, studies have selectively focused on different brain regions and/or different species, and second, the mRNA abundance has been assessed by oligonucleotides, cRNA, or DNA restriction fragment probes. The combined results make a systematic comparison between data difficult. In addition, studies employing extended cRNA or DNA probes may produce misleading results, since such probes may cross-hybridize to closely related gene family members.

In this and the accompanying article (Laurie et al., 1992), we have undertaken a systematic comparison of the brain distribution of the 13 currently known rat GABA_A receptor transcripts by *in situ* hybridization using unique oligonucleotide probes specific for each subunit mRNA.

Materials and Methods

For detection of GABA_A receptor subunit transcripts, 45-base antisense oligonucleotides were synthesized, each of a unique sequence often taken from the region encoding the divergent intracellular area between putative transmembrane domains M3 and M4. The oligonucleotides were constructed complementary to rat cDNA encoding subunit residues as follows: α_1 , 342–356 (Khrestchatisky et al., 1989); α_2 , 340–344 (Khrestchatisky et al., 1991); α_3 , 361–375 (Malherbe et al., 1990a); α_4 , 15–30 of the signal peptide (Ymer et al., 1989; Wisden et al., 1991b); α_5 , 355–369 (Khrestchatisky et al., 1989; Malherbe et al., 1990a; the subunit termed α_5 by us is termed α_4 by Khrestchatisky et al., 1989); α_6 , 342–356 (Lüddens et al., 1990); β_1 , 382–396 (Ymer et al., 1989b); β_2 , 382–396 (Ymer et al., 1989b); γ_1 , 341–354 (Ymer et al., 1990); γ_2 , 338–352 (Shivers et al., 1989); γ_3 , 343–358 (Herb et al., 1992; see also Wilson-Shaw et al., 1991, for the mouse sequence); δ , 335–349 (Shivers et al., 1989).

The procedures used (Monyer et al., 1991; Wisden et al., 1991c) were a modification of those by Young et al. (1986). Probes were 3' end labeled using a 30:1 molar ratio of α -35S-dATP (1200 Ci/mmol; Amersham) to oligonucleotide, and terminal deoxynucleotidyl transferase (Boehringer Mannheim). Unincorporated nucleotides were removed by Bio-Span 6 chromatography columns (Bio-Rad). Nonperfused brains were removed and frozen on dry ice. Sections (14 μ m) were cut on a cryostat, mounted onto poly-L-lysine-coated slides, and dried at room temperature. Sections were fixed in 4% paraformaldehyde, washed in phosphate-buffered saline, and dehydrated into 95% ethanol for storage at 4°C until required. Prior to hybridization, sections were removed from ethanol and allowed to air dry. Labeled probe dissolved in hybridization buffer (0.06 fmol, 1000 dpm/µl) was then applied to sections. Hybridization buffer contained 50% formamide/ $4 \times$ SSC (1 × SSC:0.15 м NaCl, 0.015 м Na-citrate)/10% dextran sulfate. Hybridization was at 42°C overnight. Sections were washed to a final stringency of 1× SSC at 60°C, before alcohol dehydration and exposure to Kodak XAR5 film. Anatomy of sections and autoradiographs was determined using the atlas of Paxinos and Watson (1986), and for thalamus the monograph of Jones (1985) was consulted. Signal specificity was assessed by use of competition experiments in which radiolabeled probes were hybridized to sections in the presence of an excess (50-fold) unlabeled probe. This resulted in blank autoradiographs. Specificity was also confirmed by reference to previous reports of the distribution of GABA, transcripts in rat performed by other laboratories or other methods (e.g., Northern blot analysis): the distribution of α_1 (Northern blot and in situ hybridization–cRNA probes, Khrestchatisky et al., 1989), α_2 (Northern blot, Khrestchatisky et al., 1991; in situ hybridization-cRNA probe, Mac-Lennan et al., 1991), α_s (Northern blot and in situ hybridization–cRNA probes, Khrestchatisky et al., 1989; MacLennan et al., 1991), α_6 (Northern blot and in situ hybridization-cDNA probe, Kato, 1990), β_1 (Northern blot, Garrett et al., 1990), β_2 and β_3 (Northern blot and in situ hybridization-oligonucleotides, Lolait et al., 1989; Ymer et al., 1989b; Zhang et al., 1990), γ_2 (in situ hybridization–cRNA probes, Shivers et al., 1989; Malherbe et al., 1990b), and γ (in situ hybridization-cDNA probe, Shivers et al., 1989). Our results were in general agreement with these studies.

Results

Within the predicted cytoplasmic loop between transmembrane domains M3 and M4, all GABA_A receptor subunits carry divergent amino acid sequences (Seeburg et al., 1990). Therefore, this segment is ideal for designing subunit-specific nucleic acid probes that will not cross-hybridize to transcripts of related genes. However, several subunit genes (γ_2 and avian β_4) have been recently shown to be differentially spliced in this region (Whiting et al., 1990; Bateson et al., 1991b; Kofuji et al., 1991; Wafford et al., 1991). These new findings mean that we have to be cautious in evaluating whether our probes would be truly selective (or nonselective) for any, as yet undiscovered, splice products. For example, our γ_2 probe detects both known versions of the γ_2 mRNA.

In situ hybridization was performed with subunit mRNAspecific ³⁵S-labeled oligonucleotide probes on various horizontal and coronal sections through the rat brain in order to cover a

Table 1. Distribution of α_1 - α_6 , β_1 - β_3 , γ_1 - γ_3 , and δ mRNAs of GABA_A receptors in the CNS

	α1	α2	α3	α4	α5	α6	β1	β2	β3	γ1	γ2	γ3	δ
Olfactory bulb Periglomerular Tufted cells Mitral cells Granule cells	0 ++ +++ 0	+ (+) 0 +++	(+) + + (+)	(+) 0 0 ++	0 0 0 ++	0 0 0 0	0 0 ++ 0	++ +++ +++ 0	+ ++ +++ +++	(+) 0 0 (+)	+ ++ +++ (+)	(+) 0 0 (+)	(+) 0 0 +
Neocortex layer II/III layer IV layer V/VI	++ + ++	++ + +	+ + ++	++ + +	(+) (+) +	0 0 0	(+) (+) +	++ + ++	++ + ++	(+) (+) (+)	++ + ++	+ + +	+ (+) (+)
Pyriform cortex	+++	+++	++	++	0	0	+	+++	+++	+	+++	+	+
Hippocampus CA1 str. pyramidalis CA3 str. pyramidalis DG granule cells	++ + ++	+++ +++ +++	(+) (+) +	++ ++ +++	+++	0 0 0	+++ +++ +++	+ + ++	+++ +++ +++	+ + +	+++ +++ +++	(+) (+) (+)	(+) (+) ++
Tenia tecta	+	+++	0	+++	++	0	+++	0	+++	0	0	0	0
Basal nuclei Caudate -putamen Nucleus accumbens Globus pallidus Endopeduncular n. Claustrum Subthalamic nucleus	(+) (+) +++ +++ ++	++ ++ + (+) ++ 0	(+) (+) (+) 0 +++	++ ++ 0 0 + 0	0 0 0 0 + 0	0 0 0 0 0	(+) (+) (+) 0 ++ 0	(+) (+) +++ +++ ++	++ (+) 0 ++ (+)	(+) (+) ++ 0 (+) 0	+ + + + +	+ + 0 0 ++ (+)	+ + 0 0 (+) 0
Amygdala central amygdaloid n. med. amygdaloid n. lateral amygdaloid n.	(+) (+) ++	++ +++ +++	(+) + +	(+) + +	0 0 (+)	0 0 0	+ + +	+ ++ +	+ ++ ++	++ +++ (+)	+ + ++	(+) 0 (+)	0 0 0
Septum bed nucleus s. t. lateral septum medial septum diagonal band	+ + +++ +++	+++ +++ 0 +	++ ++ (+) +	+ + 0 (+)	(+) 0 0 0	0 0 0 0	++ + (+) (+)	+ (+) +++ +++	++ + 0 +	+++ ++ 0 (+)	+ + ++ ++	(+) (+) 0 +	0 0 0 0
Medial Habenula	(+)	++	(+)	0	0	0	(+)	(+)	++	+	++	(+)	0
Thalamus Medio dorsal Paraventricular n. Rhomboid nucleus Dorsolat. geniculate Ventrolat. geniculate Medial geniculate Parafascicular n. Reticular nucl. Ventr. posterior n. Zona incerta	++ + ++ ++ ++ ++ ++ +	0 ++ ++ 0 0 0 0 + (+) 0	0 + ++ 0 0 0 (+) + 0 (+)	+++ +++ +++ +++ +++ (+) +++ 0	0 (+) 0 0 0 0 0	0 0 0 0 0 0 0	0 (+) + 0 0 0 (+) 0 0	+++ +++ +++ +++ +++ (+) +++	0 (+) (+) 0 0 (+) (+) 0 0	(+) (+) (+) (+) (+) (+) (+) (+) 0 0	(+) ++ + (+) (+) + + + + +	+++++++++++++++++++++++++++++++++++++++	+ 0 0 + + + + + 0 0 + 0 0 + 0
Hypothalamus Medial preoptic area Arcuate nucl. Dorsomedial nucl. Ventromedial nucl.	+ (+) (+) (+)	+++ ++ + ++	+ 0 (+) +	(+) 0 (+) 0	+ + 0 +	0 0 0 0	+ 0 0 +	(+) 0 0 0	++ ++ +	+++ + (+) +	+ + +	(+) 0 0 0	0 0 0 0
Midbrain Red nucleus	+++	(+)	0	0	0	0	0	++	(+)	(+)	++	(+)	0
Inferior colliculi Central nucleus	+++	+	(+)	0	0	0	0	++	0	(+)	++	(+)	0
Substantia nigra Pars reticulata Pars compacta	+++ (+)	(+) 0	(+) +	0 +	0	0	0 (+)	++ (+)	(+) +	+ (+)	+++	(+) (+)	0
Cerebellum Stellate/Basket cells Purkinje Bergmann glia Granule cells	+++ +++ 0 +++	0 0 + 0	(+) 0 0 0	0 0 0 (+)	0 0 0 0	0 0 0 +++	0 0 0 (+)	(+) +++ 0 +++	0 +++ 0 +++	0 0 ++ 0	++ +++ 0 ++	0 0 0 (+)	0 0 0 +++

broad range of structures. The results compiled from the figures and also unpublished data are summarized in Table 1. Results for the olfactory bulb and cerebellum are described and discussed in detail in the accompanying article (Laurie et al., 1992).

Telencephalon (cortex, hippocampal formation, septum, striatum)

Neocortex

In the neocortex and hippocampus, 12 of the 13 subunits are present (Figs. 1–14). The α_6 mRNA is restricted completely to the cerebellum (Fig. 1), and its expression will not be further described here (see accompanying article, Laurie et al., 1992). Considering first the α -subunit class, α_1 mRNA is present in cortex in a laminated pattern, with layers II/III and V/VI expressing higher levels than layer IV (Figs. 1, 5, 11). In contrast, the α_2 mRNA is most predominant in layer II, although it is present in deeper layers (Figs. 1, 3, 5, 7, 9). The α_3 mRNA occurs in a gradient reciprocal to that of α_2 , with layer VI expressing most of this transcript (Figs. 1, 5, 7, 9). The α_4 mRNA appears to be highest in layers II and III, although significant levels are present in deeper layers (Figs. 1, 3, 7, 9). The α_5 mRNA is rare in cortex, but the expression pattern appears weakly delineated in layer VI (Figs. 1, 3, 5, 7, 9).

For the β -subunit mRNAs in cortex (Figs. 2, 4, 6, 8, 10), that of β_1 resembles α_5 mRNA in that it is present at overall uniformly low levels, but layer VI has slightly higher levels. The β_2 and β_3 transcripts are present in similar amounts in the same pattern of lamination, with layers II/III, V, and VI having higher levels than layer IV (Figs. 2, 4, 6, 8, 10).

All three γ -subunit genes are expressed in cortex (Figs. 2, 4, 6, 8, 10), although only the pattern of γ_2 expression appears strongly laminated, similar to that of the α_1 , β_2 , and β_3 mRNAs. The γ_1 mRNA is present at uniformly low levels throughout all layers of the cortex. Interestingly, parts of the corpus callosum appear to contain targets hybridizing with the γ_i probe, as witnessed by the lack of a signal boundary between cortex and caudate putamen for the γ_1 autoradiographs (e.g., Figs. 2, 4, 6). In addition, white matter tracts in the hippocampus also appear to be weakly labeled. This effect seems specific because (1) two independent γ_1 oligonucleotides recognizing different parts of the mRNA (Ymer et al., 1990) give the same result, (2) the signal can be competed by competition with unlabeled probe, and (3) γ_1 probes do not label white matter tracts in the cerebellum or olfactory bulb (Fig. 2; Laurie et al., 1992). No other subunit mRNAs could be detected in corpus callosum, and the demarcation between cortex and caudate-putamen was always pronounced for these subunit mRNAs.

The δ -subunit mRNA pattern resembles that of the α_2 and α_4 mRNAs, with layer II showing moderate levels (Figs. 3, 5, 7, 9, 11).

Piriform cortex

The piriform cortex expresses every subunit mRNA, to a greater or lesser extent, except α_6 (data not shown). The most abundant transcripts are α_1 – α_4 , β_2 , β_3 , γ_2 , and δ (Figs. 3–6). The autoradiographic images obtained over this area are often extremely intense.

Hippocampus

Examining the hippocampal expression of the α -subunit genes, the α_2 mRNA is consistently the most abundant product and is expressed at high levels in the CA1, CA3, and dentate gyrus cell

layers (Figs. 1, 7, 9, 12). The α_1 and α_4 mRNAs are also found in all sectors of the hippocampus (Figs. 1, 7, 9, 11, 12). The α_3 mRNA occurs mainly in the dentate granule cells, with some pyramidal cell expression also. The α_5 mRNA appears as abundant as the α_2 transcript in the CA1 and CA3 areas, but is less prominent in the dentate gyrus (Figs. 1, 7, 9, 12). In fact, the α_5 mRNA appears to encode a predominantly hippocampal subunit, since it is virtually absent from most other areas of the brain (see also Khrestchatisky et al., 1989).

Regarding β -subunit mRNAs, all three are present in CA1, CA3, and dentate gyrus cell layers (Figs. 2, 8, 10, 13), with β_1 and β_3 being more abundant than β_2 mRNA. Reminiscent of the α , mRNA, the β_1 mRNA is expressed at its highest levels in the hippocampus but is rare elsewhere. All three γ -subunit mRNAs are detectable in the hippocampus (Figs. 2, 8, 10, 13), with the γ_2 mRNA being most abundant. The γ_3 mRNA is rather rare, cortical levels being higher than those in the hippocampus. The δ mRNA is restricted to dentate granule cells at the resolution of x-ray film autoradiographs (Figs. 7, 9, 11, 12).

Tenia tecta

The tenia tecta, a structure embryologically related to hippocampus, expresses a number of subunit genes at very high levels (Figs. 3, 4). These abundant mRNAs are α_2 , α_4 , α_5 , β_1 , and β_3 . No γ -subunit or δ -subunit mRNAs are detected in this structure.

Septum

The lateral septum contains a variety of subunit mRNAs, the most abundant of which are α_2 , α_3 , β_3 , and γ_1 transcripts (Figs. 3, 4). Some subunit mRNAs such as α_5 , γ_2 , and γ_3 are completely absent from the lateral septum. The medial septal nucleus (data not shown; Wisden et al., 1991b) and the nucleus of the diagonal band contain very high levels of α_1 , β_2 , and γ_2 mRNAs (Table 1; Figs. 5, 6). This is consistent with these two nuclei being anatomically linked and containing the same cell types (Bleier and Byne, 1985). In the ventral septum, a different profile of subunit transcripts is found. The bed nucleus of the stria terminalis contains very high levels of α_2 and γ_1 transcripts (saturating autoradiographic signals), moderate levels of α_3 , β_1 , and β_3 mRNAs and low levels of α_1 , α_4 , β_2 , and γ_2 mRNAs (Table 1; Figs. 5, 6).

Basal ganglia: caudate-putamen, nucleus accumbens, and globus pallidus

In the caudate nucleus the most prevalent α -subunit mRNAs are α_2 and α_4 (Figs. 1, 3, 5). However, longer exposure times also reveal the presence of α_1 and α_3 mRNAs. The α_5 mRNA was undetectable. The predominant β -subunit in the caudate is β_3 (Figs. 2, 4, 6), followed in order of abundance by β_2 and β_1 mRNAs. All three γ -subunit mRNAs are present at low levels in caudate, with the γ_3 mRNA slightly elevated relative to the others (Figs. 2, 4, 6). The δ -subunit mRNA is moderately expressed in the caudate nucleus (Figs. 3, 5, 11).

Levels of subunit transcripts in the nucleus accumbens parallel their respective levels in caudate. Subunit mRNAs abundant in the caudate are also abundant in the nucleus accumbens, while those mRNAs rare in nucleus accumbens are also rare in caudate. The most abundant accumbens transcripts are those of α_2 , α_4 , and β_3 . However, the γ_3 mRNA appears to be elevated in the medial parts of the nucleus accumbens (Fig. 4).

In the globus pallidus, the major α -subunit mRNA is that of α_1 (Fig. 5). There are also smaller but significant amounts of α_2

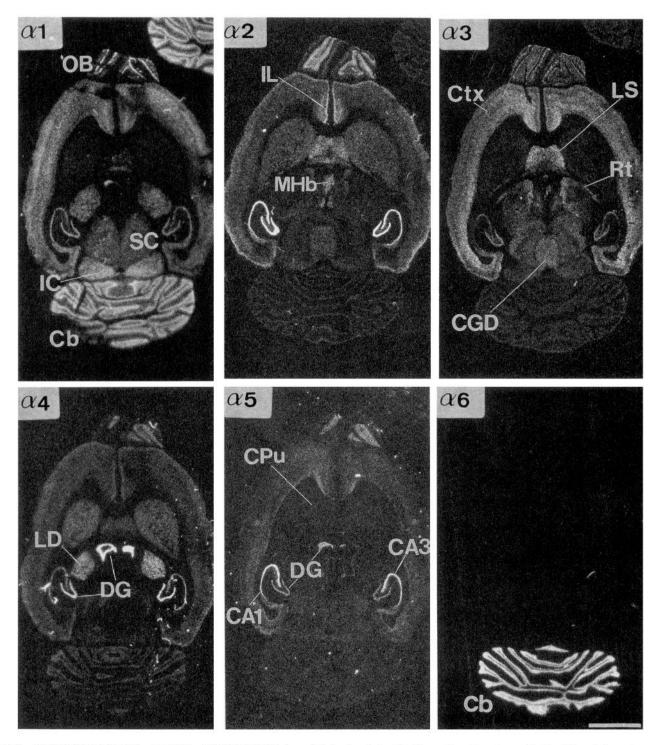


Figure 1. Distribution of GABA_A receptor α -subunit mRNAs (α_1 - α_6) in horizontal rat brain sections. See Appendix for abbreviations. Scale bar, 4.4 mm.

and α_3 mRNAs in this area (Fig. 5). The β_2 mRNA is the only β mRNA found in the globus pallidus (Fig. 6). Regarding the γ -subunit class, γ_1 mRNA is marginally the more abundant γ -transcript in this region (Fig. 6). The δ and γ_3 mRNAs are not expressed in the globus pallidus (Figs. 5, 6).

Subthalamic nucleus

In the subthalamic nucleus, the α_1 and β_2 mRNAs are the most significant GABA_A receptor transcripts present (Figs. 9, 10). γ_2

mRNA is also in this area, but at lower levels (Fig. 10). Longer exposure times also indicate the presence of γ_3 mRNA (not shown).

Amygdala

In the amygdaloid complex, α_2 mRNA is found at very high levels and is the predominant α -subunit mRNA in the medial amygdaloid nucleus (Fig. 9), lateral amygdaloid nucleus (Fig. 7), and posterior medial cortical nucleus (not shown). All other

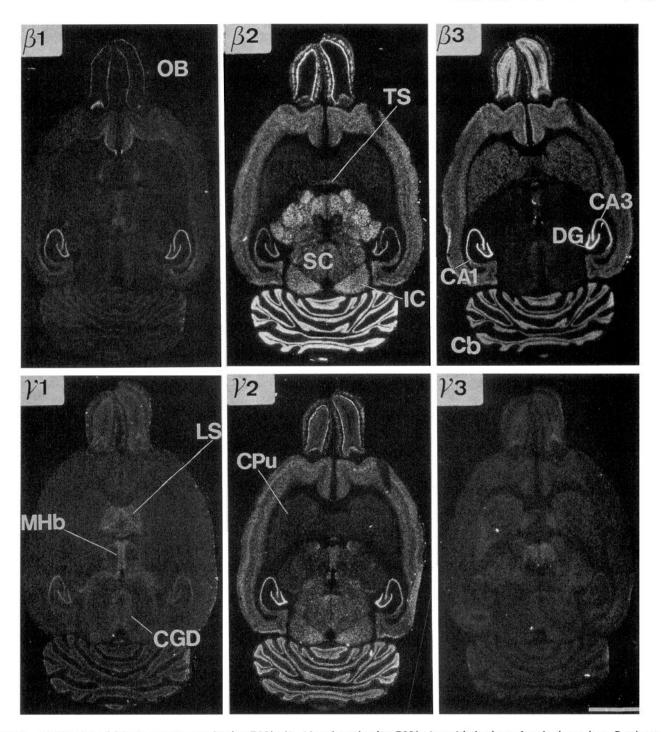


Figure 2. Distribution of GABA_A receptor β -subunit mRNAs $(\beta_1 - \beta_3)$ and γ -subunit mRNAs $(\gamma_1 - \gamma_3)$ in horizontal rat brain sections. See Appendix for abbreviations. Scale bar, 4.4 mm.

 α -subunit mRNAs, except α_6 , are also present in these nuclei but at differing degrees. The rarest is a, mRNA. Similarly, all β -genes are expressed in these nuclei, with β , generally being the best expressed β -subunit mRNA (Figs. 8, 10).

The differential expression of the γ -subunit genes in the amygdaloid nuclei is noteworthy. For example, γ_1 mRNA is expressed at striking levels in the medial amygdaloid nuclei (Fig. 10), an area where there is relatively little of the γ_2 and γ_3 mRNAs. Indeed, this nucleus contains some of the highest amounts of γ_1 mRNA in the brain. However, γ_2 mRNA is the main representative of the γ -class in the general amygdaloid area (Figs. 8, 10). The γ_3 mRNA is present in diffuse, low levels throughout the complex. The δ -transcript is absent from the amygdala (Figs. 7, 9).

Diencephalon (epithalamus, thalamus, and hypothalamus) The medial habenula expresses significant quantities of α_2 and β_3 mRNAs and some γ_1 and γ_2 mRNAs (Figs. 7, 8). All other subunit mRNAs are rare or undetectable.

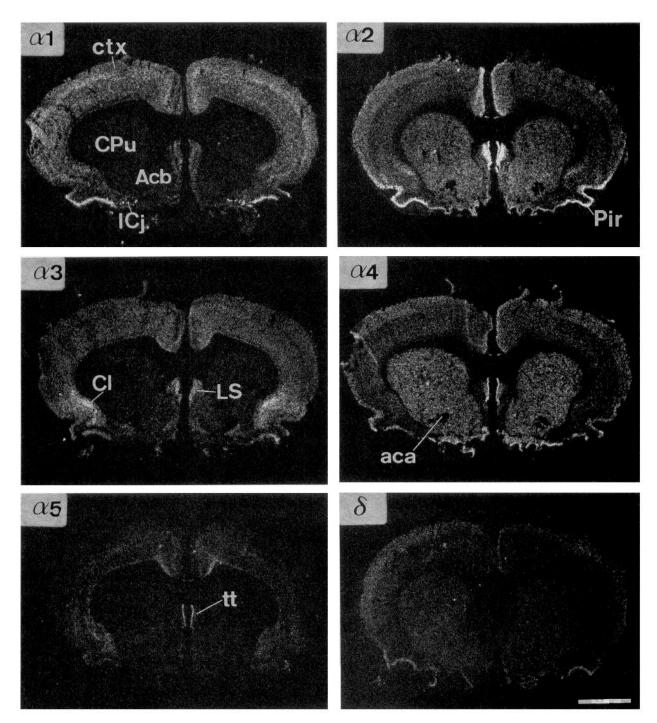


Figure 3. Distribution of α_1 - α_5 and δ GABA_A receptor subunit mRNAs in coronal sections at the level of caudate nucleus and nucleus accumbens. See Appendix for abbreviations. Scale bar, 2.8 mm.

Thalamus

The α_1 and α_4 transcripts are the most prominent α -subunit mRNAs throughout the whole thalamus. On sections through caudal portions of the thalamus, the dorsal lateral geniculate, ventral lateral geniculate, and the ventral posterior nuclei are clearly positive with the α_1 and α_4 probes (Figs. 7, 9, 11, 14), as is the lateral dorsal complex (Fig. 1). The α_2 and α_3 mRNAs are also present in the thalamus, but in more restricted subpopulations (Figs. 7, 9, 14). The α_5 mRNA was absent from all thalamic nuclei examined (Figs. 7, 9).

Examining the thalamic distribution of the α -subunit mRNAs in more detail, several features become apparent. The α_4 mRNA is very abundant in most nuclei of the thalamus, with some exceptions. For example in the zona incerta, a part of the ventral thalamus, α_1 mRNA is the only α -variant present (Fig. 9), while in the reticular thalamus α_4 mRNA is absent but α_3 mRNA is present (Figs. 7, 9). The α_2 and α_3 mRNAs are absent from the ventral posterior nucleus where the α_1 and α_4 mRNAs appear (Figs. 7, 9). In very caudal parts of the thalamus, such as the medial geniculate nucleus, the α_1 and α_4 mRNAs predominate, with α_4 mRNA being the most abundant (Fig. 12). The α_2 and

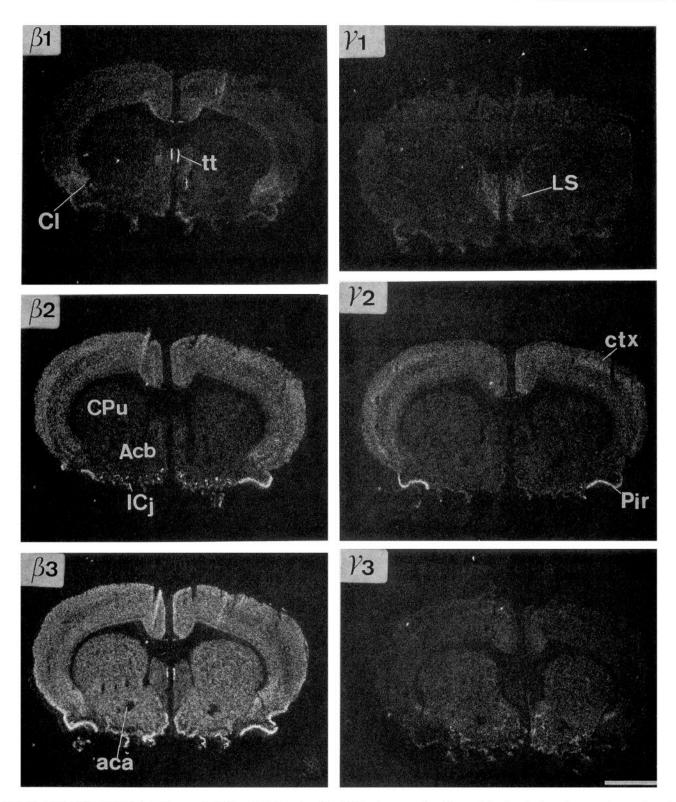


Figure 4. Distribution of β_1 - β_3 and γ_1 - γ_3 GABA_A receptor subunit mRNAs in coronal sections at the level of caudate nucleus accumbens. See Appendix for abbreviations. Scale bar, 2.8 mm.

 α_3 mRNAs appear to be restricted to predominantly midline nuclei (e.g., paraventricular nuclei, rhomboid nuclei) and also the central lateral nucleus, and seem to colocalize in these structures. Both the α_2 and α_3 mRNAs are absent from the mediodorsal nucleus (Fig. 7).

Certain areas of the thalamus show a surprising degree of microheterogeneity with regard to α -subunit expression. This is illustrated by the parafascicular thalamic nucleus (Fig. 14, PF), which encircles the fasciculus retroflexus (fr) fiber tract (Jones, 1985; Paxinos and Watson, 1986). The α_4 transcript is the high-

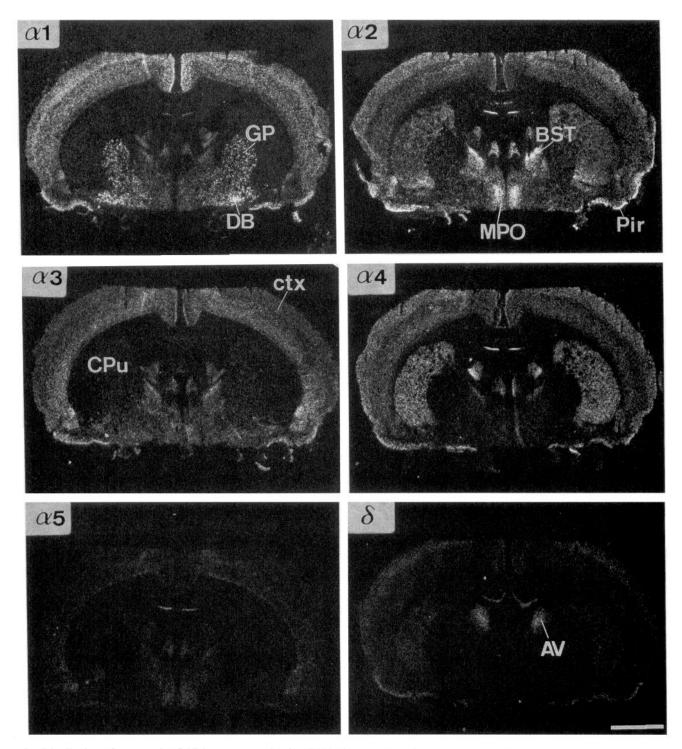


Figure 5. Distribution of α_1 - α_5 and δ GABA_A receptor subunit mRNAs in coronal sections at the level of globus pallidus and medial preoptic hypothalamic area. See Appendix for abbreviations. Scale bar, 2.8 mm.

est overall in this nucleus and is more abundant in the lateral and ventral parts than in the most medial part (Fig. 14). In contrast, α_1 mRNA is largely restricted to the lateral portion (Fig. 14 α_1 , arrowheads), and the α_2 mRNA is present in the most medial midline portion (Fig. 14, α_2 , arrowhead). The α_3 mRNA is present at diffuse low levels throughout the parafascicular nucleus (Fig. 9).

A pronounced feature of β -subunit mRNA expression in thalamus is the diffuse low-level expression of β_1 and β_3 mRNAs. Levels for these mRNAs increase in midline nuclei, for example, paraventricular, rhomboid, and central lateral nuclei. By contrast, β_2 mRNA is ubiquitous in thalamus (Figs. 2, 8, 10, 13, 14), and its pattern resembles in detail that of α_1 mRNA, both in spatial distribution and relative abundance.

All members of the γ -subunit mRNA class are poorly expressed in the thalamus (Figs. 2, 8, 10, 13). Of these, the γ_2 mRNA is the most abundant, with the γ_1 and γ_3 probes giving weaker, diffuse signals. The γ_3 mRNA is present at moderate

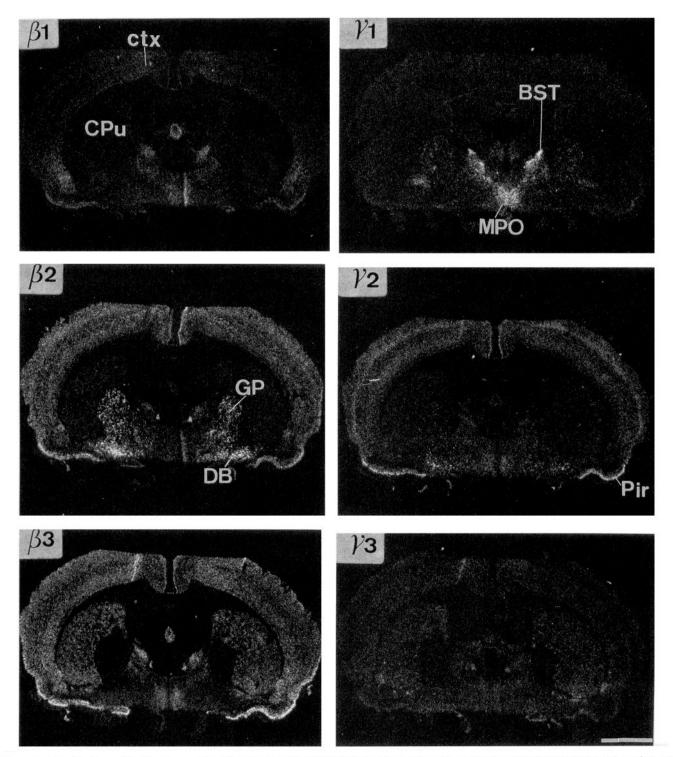


Figure 6. Distribution of β_1 - β_3 and γ_1 - γ_3 GABA_A receptor subunit mRNAs in coronal sections at the level of globus pallidus and medial preoptic hypothalamic area. See Appendix for abbreviations. Scale bar, 2.8 mm.

levels in the medial geniculate nucleus (Fig. 13), being more abundant than γ_1 and γ_2 mRNAs in this nucleus.

The δ -subunit mRNA is observed in a broad range of thalamic nuclei and colocalizes with the α_4 mRNA in the medial geniculate, ventral posterior, ventral lateral geniculate, and dorso-lateral geniculate nuclei (Figs. 5, 7, 9, 11, 12). However, unlike the α_4 mRNA, δ mRNA is absent from the parafascicular thalamic nucleus (Fig. 9). The δ mRNA also appears to be absent

from midline nuclei such as the paraventricular nucleus and rhomboid nucleus, and is also absent from the reticular nucleus (Fig. 7). However, it is found in the mediodorsal nucleus (Fig. 7). In this respect, δ -gene expression is reciprocal to the thalamic nuclei expressing the α_2 and α_3 subunit genes. For example, the autoradiographic signals for α_2 and α_3 mRNAs result in the formation of a trident-like pattern (comprising the centrolateral, paraventricular, and rhomboid nuclei) in the middle of the thal-

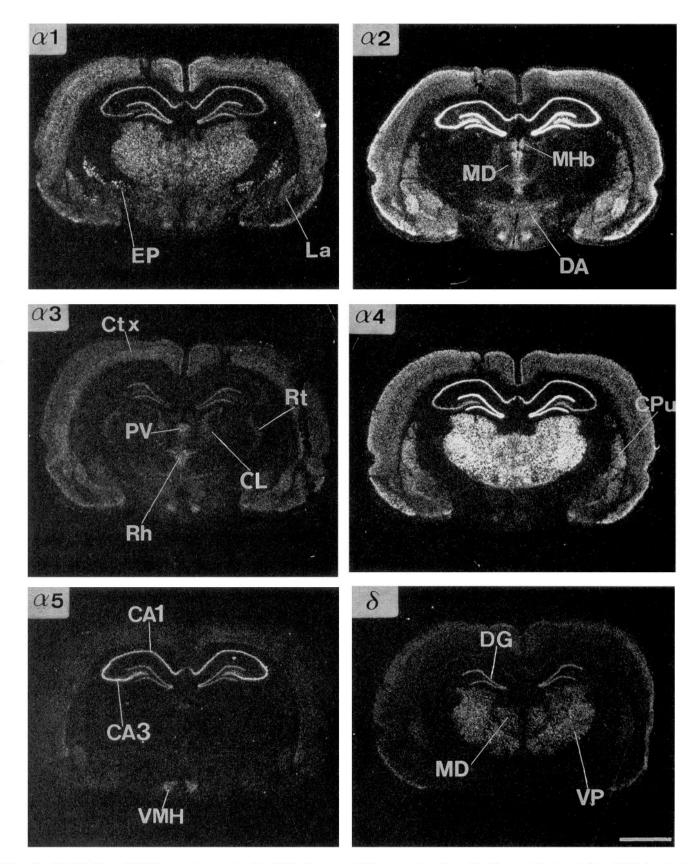


Figure 7. Distribution of GABA_A receptor α -subunit mRNAs (α_1 - α_5 and δ) in coronal sections of rat brain at the level of medial habenula. See Appendix for abbreviations. Scale bar, 3 mm.

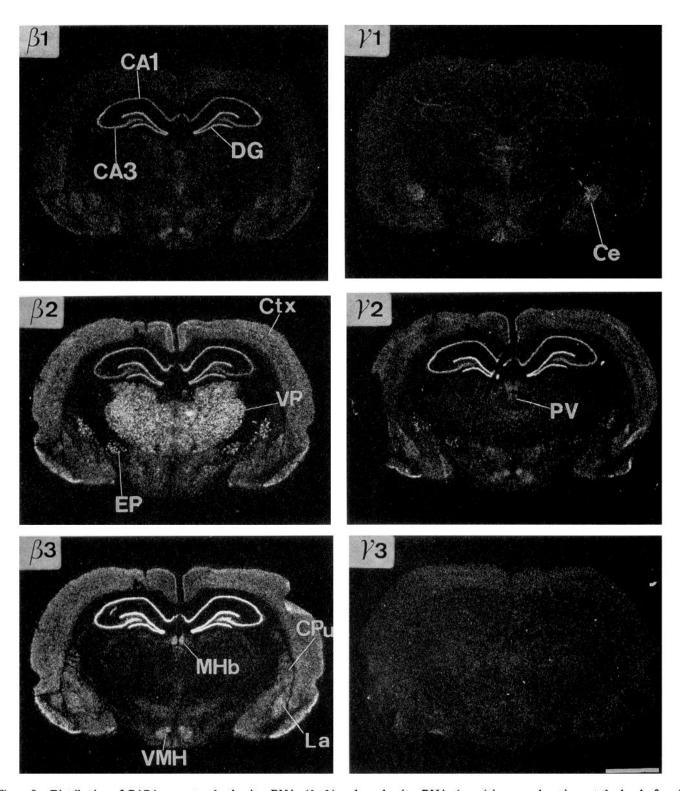


Figure 8. Distribution of GABA_A receptor β -subunit mRNAs (β_1 - β_3) and γ -subunit mRNAs (γ_1 - γ_3) in coronal sections at the level of medial habenula. See Appendix for abbreviations. Scale bar, 3 mm.

amus (Fig. 7), and the δ mRNA distribution traces the negative image of this pattern (Fig. 7).

Hypothalamus

In the hypothalamus, the most prominent mRNA is that of α_2 (Figs. 5, 7, 9, 14). This mRNA is abundantly present in the

medial preoptic, dorsomedial, ventromedial, and arcuate nuclei and in the dorsal hypothalamic area. The α_1 , α_3 , and α_5 subunit mRNAs are also found in these nuclei, but in lower amounts. The α_4 mRNA appears to be absent from the hypothalamus (Fig. 14).

Regarding β -subunits, the β_3 mRNA predominates in the me-

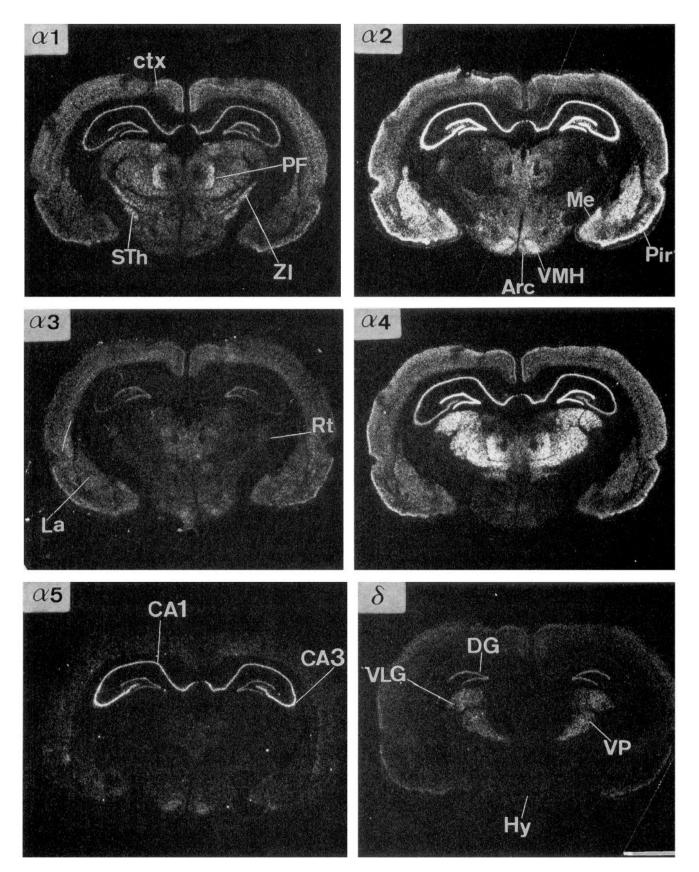


Figure 9. Distribution of α_1 - α_5 and δ GABA_A receptor subunit mRNAs in coronal sections at the level of the parafascicular nucleus. See Appendix for abbreviations. Scale bar, 3 mm.

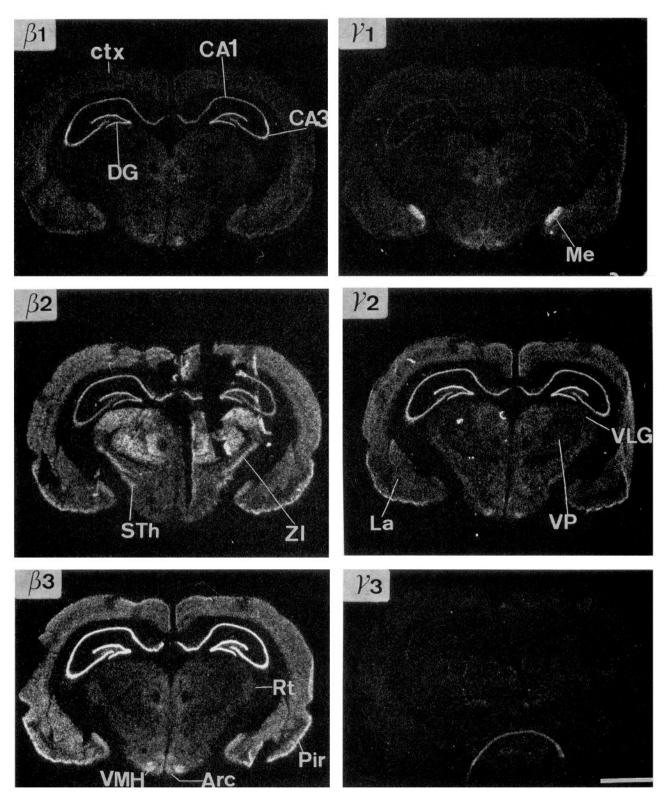


Figure 10. Distribution of β_1 - β_3 and γ_1 - γ_3 GABA_A receptor subunit mRNAs in coronal sections at level of the parafascicular nucleus. See Appendix for abbreviations. Scale bar, 3 mm.

dial preoptic, dorsomedial, ventromedial, and arcuate nuclei (Figs. 6, 8, 10). A low amount of β_1 mRNA is seen in the arcuate and the ventromedial nuclei, whereas β_2 mRNA is rare in all hypothalamic nuclei examined. Considering the γ -subunit class,

 γ_1 and γ_2 mRNAs are found in dorsomedial, ventromedial, and arcuate nuclei (Figs. 8, 10). The γ_1 mRNA conspicuously predominates in the medial preoptic area (Fig. 6). The δ -subunit mRNA is undetectable in hypothalamus.

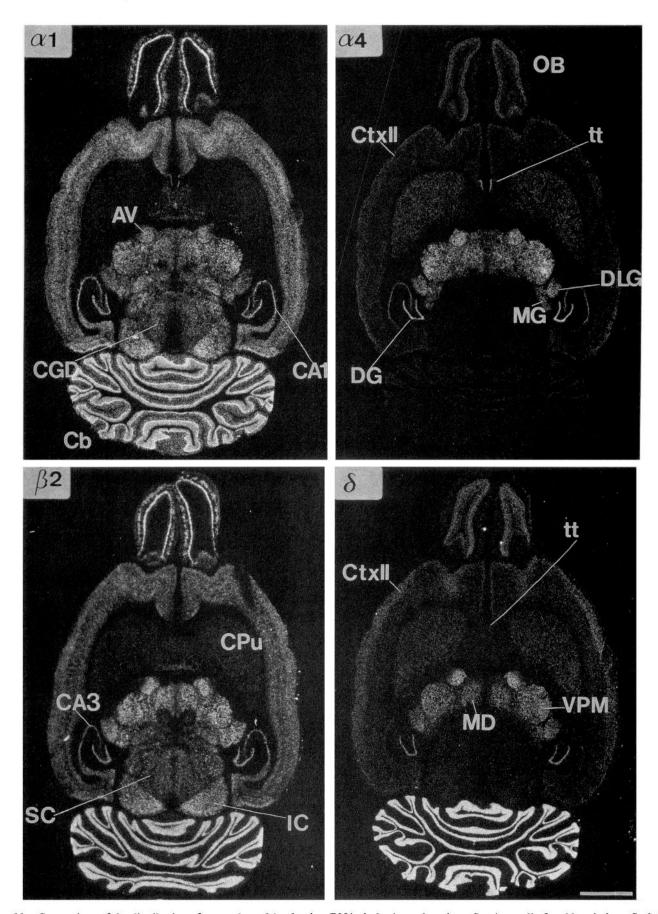


Figure 11. Comparison of the distribution of α_1 , α_4 , β_2 , and δ -subunit mRNAs in horizontal sections. See Appendix for abbreviations. Scale bar, 3.1 mm.

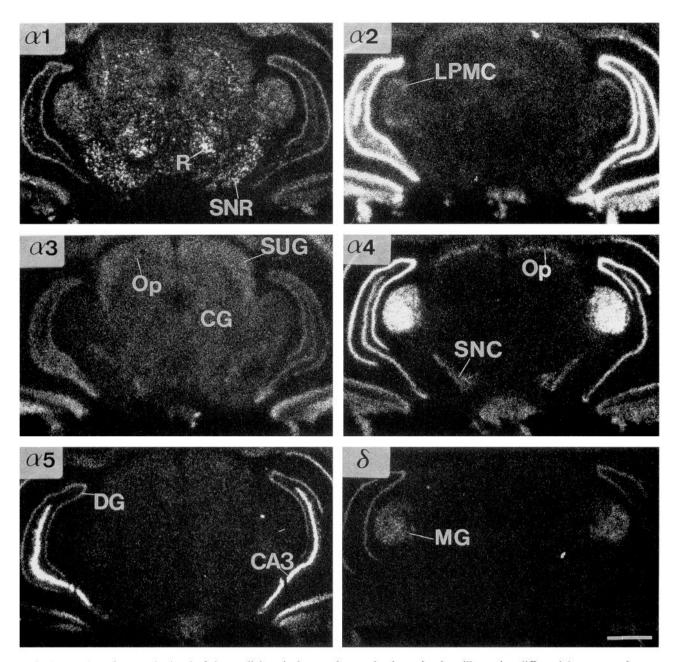


Figure 12. Coronal sections at the level of the medial geniculate nucleus and substantia nigra illustrating differential patterns of α_1 - α_5 and δ mRNAs. See Appendix for abbreviations. Scale bar, 1.6 mm.

Midbrain (colliculi, substantia nigra, red nucleus)

Throughout the general midbrain area, the most noticeable mRNAs are α_1 , α_3 , β_2 , β_3 , and γ_2 (Figs. 12, 13). However, the autoradiographic signals obtained with the α_1 , β_2 , and to some extent the γ_2 probes are very punctate, suggesting expression in large cells. The patterns obtained with the α_3 and β_3 probes are more uniform and diffuse (Figs. 12, 13). Some subunit mRNAs $(\alpha_6, \beta_1, \text{ and } \delta)$ are entirely absent from any midbrain structures examined, whereas others are generally absent but very prominent in certain nuclei, for example, α_4 in substantia nigra compacta (Fig. 12).

Substantia nigra

The substantia nigra pars reticulata contains high levels of α_1 (see also Hironaka et al., 1990) and β_2 mRNAs with γ_1 and γ_2

transcripts also present (Figs. 12, 13). The substantia nigra pars compacta contains α_3 , α_4 , β_3 , and γ_2 mRNAs (Figs. 12, 13).

Red nucleus

The red nucleus (see also Hironaka et al., 1990, for α_1) expresses the same GABA_A receptor subunit genes as that of the substantia nigra reticulata, that is, α_1 , β_2 , and γ_2 mRNAs, with only borderline to zero degrees of expression for the others (Figs. 12, 13).

Superior colliculus

All levels of the superior colliculus contain α_1 , β_2 , and γ_2 mRNAs, although deeper layers contain larger amounts (Figs. 12, 13). In contrast, the α_2 , α_3 , and α_5 transcripts are largely found in the superficial layer. The α_4 mRNA occurs mainly in the optic nerve layer. The β_1 mRNA is restricted to the optic layer, and the β_3

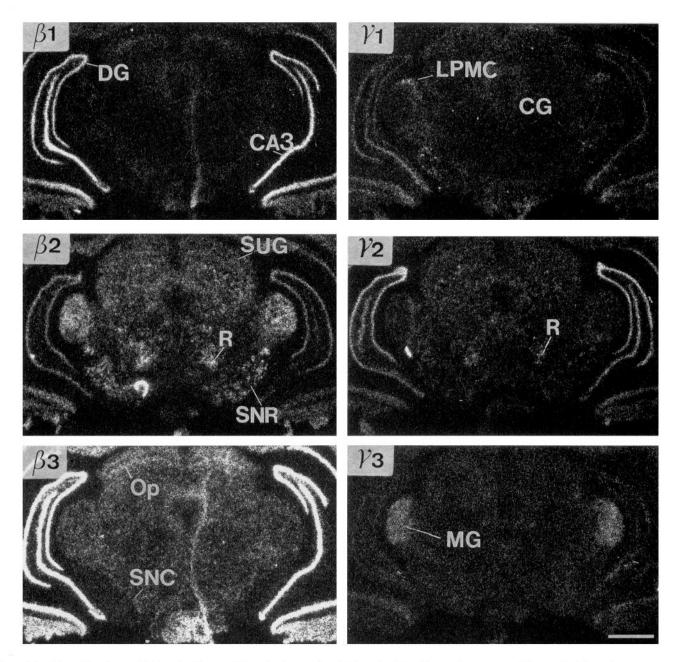


Figure 13. Coronal sections at the level of the medial geniculate nucleus/substantia nigra illustrating patterns of β_1 - β_3 mRNAs and γ_1 - γ_3 mRNAs. See Appendix for abbreviations. Scale bar, 1.6 mm.

mRNA is more highly expressed throughout the superior colliculi.

Inferior colliculus

In the inferior colliculus (central nucleus), the main GABA_A receptor transcripts are α_1 , β_2 , and γ_2 (Figs. 1, 2, 11).

Discussion

In this study we have documented the regional brain distribution of 13 rat GABA_A receptor subunit mRNAs. Their expression patterns can be analyzed to deduce plausible *in vivo* subunit combinations that may constitute molecularly and functionally distinct receptor subtypes. In the following discussion, we list such combinations and endeavor to match these suggested sub-

types with previously published pharmacological characteristics in both brain membranes and engineered expression systems.

To derive plausible combinations, brain regions in which a limited subset of subunit genes was expressed were naturally more amenable than regions with highly complex expression patterns. For example, dentate granule cells pose an extreme problem, since they seem to contain every subunit mRNA with the exception of that encoding α_6 . Thus, either a large complexity of GABA_A receptors exists on one cell type or there are subpopulations of granule cells, each expressing particular subsets of receptors. Sophisticated multiple-labeling experiments with antibodies will be required to address this problem. However, there is evidence in favor of more than one GABA_A receptor on different parts of hippocampal neurons. GABA_A receptors on pyramidal cell soma differ from those on dendrites in terms

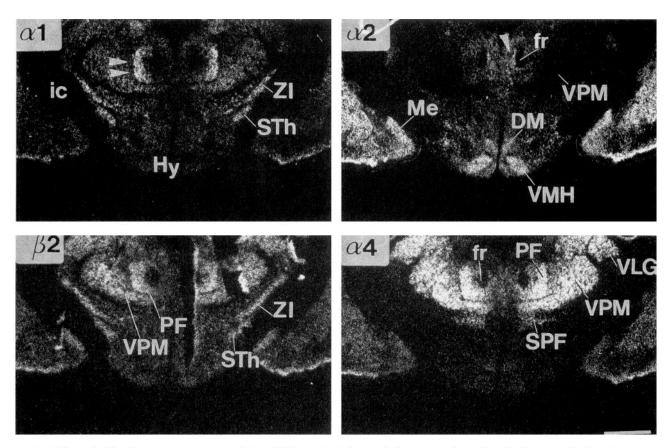


Figure 14. Differential distribution of α_1 , α_2 , α_4 , and β_2 mRNAs in the thalamus (enlargements from Figs. 9, 10). Arrowheads defined in text. See Appendix for abbreviations. Scale bar, 1.8 mm.

of agonist preference (Alger and Nicoll, 1982; Nicoll and Dutar,

Similarly, the neocortex seems refractory to analysis owing to the large repertoire of different cell populations. However, there are certain shared regional patterns of subunit mRNAs with regard to different laminae. For example, the α_2 , α_4 , and δ mRNAs appear higher in layers II and III, relative to other laminae (Table 1). The α_3 , α_5 , and β_1 transcripts are highest in layer VI relative to their abundance in other layers. Although the α_1 , β_2 , β_3 , and γ_2 mRNAs are in every layer, they appear highest in layers II/III and V/VI. These correlations may be significant. For the α_1 , α_2 , and α_3 subunits, the cortical polypeptide distribution correlates with the mRNA pattern (Zimprich et al., 1991), and the same mRNA pattern is observed in bovine cortex (Wisden et al., 1988). Moreover, these broad groupings of mRNAs are consistent with groupings in other brain regions (thalamus, colliculi, caudate nucleus). For example α_4 and δ mRNAs often codistribute, the α_5 and β_1 mRNA patterns look very similar, and the $\alpha_1\beta_2\gamma_2$ combination appears frequently (see below). This is suggestive of at least three cortical receptor subtypes containing $\alpha_4\delta$, $\alpha_5\beta_1$, and $\alpha_1\beta_2\gamma_2$. Other subunits, most obviously γ -variants, would presumably also be a part of these "cores."

Deduced GABA receptor subunit combinations

 $\alpha_1\beta_2(\gamma_2)$. The α_1 and β_2 mRNAs are most widely codistributed in the brain (Table 1). In addition, the γ_2 mRNA often colocalizes with this pair. In areas such as the central nucleus of the

inferior colliculi and the red nucleus, only α_1 , β_2 , and γ_2 mRNAs are found. This core combination is also found in mitral cells of the olfactory bulb and in cerebellar Purkinje cells (accompanying article, Laurie et al., 1992). In coexpression experiments, the $\alpha_1\beta_2\gamma_2$ receptor embodies the complete profile of "classical" GABA, electrophysiological responses (Sigel et al., 1990; Verdoorn et al., 1990). This subunit combination is also supported by immunoprecipitation studies (Benke et al., 1991a). However, it appears that other γ -variants can be used. For example, in the globus pallidus, both $\alpha_1\beta_2\gamma_1$ and $\alpha_1\beta_2\gamma_2$ combinations may occur. Some regions, such as the zona incerta, islands of Calleja, and the subthalamic nucleus, express very high levels of α_1 and β_2 mRNAs, with no other GABA_A receptor mRNAs present except for moderate levels of γ_2 mRNA.

 $\alpha_2\beta_3(\gamma_x)$, $\alpha_5\beta_1(\gamma_x)$. Another frequently occurring combination is that of α_2 and β_3 mRNAs. For example, in the nucleus accumbens, caudate nucleus, medial habenula, numerous amygdaloid nuclei, and in many hypothalamic nuclei, the $\alpha_2\beta_3$ pair occurs in combination with various \(\gamma \)-variant mRNAs. In the spinal cord, the $\alpha_2\beta_3$ -pair rule also seems to hold, with probable $\alpha_2\beta_3\gamma_2$ complexes occurring on motor neurons (Persohn et al., 1991; Wisden et al., 1991a). The α_2 and β_3 mRNAs also colocalize in the olfactory bulb granule cell layer (Laurie et al., 1992). It is interesting to note that the α_2 and β_3 together with α_5 and β_1 are the most abundant hippocampal mRNAs. The distribution and intensity of the α_s and β_1 probe hybridization signals appear to be identical throughout most of the brain (with the exception of the olfactory bulb), suggesting that they could well

be partners. Such an $\alpha_5\beta_1$ -containing receptor would occur mainly in the hippocampus. The properties of both $\alpha_5\beta_1\gamma_2$ and $\alpha_5\beta_2\gamma_2$ recombinant receptors have been studied in *Xenopus* oocytes and transfected kidney cells (Sigel et al., 1990; Puia et al., 1991), with receptors containing the β_1 subunit being less sensitive to diazepam potentiation of GABA responses (Sigel et al., 1990).

 $\alpha_1\alpha_4\beta_2\delta$ —thalamic receptors. This set of mRNAs is highly expressed in overlapping areas of the thalamus. With the exception of γ_3 mRNA in the medial geniculate nucleus, γ mRNAs are exiguous in thalamus. This data may be suggestive of an in vivo receptor complex containing α_2 , α_4 , β_2 , and δ -subunits of unknown stoichiometry. Such a receptor in the absence of a γ -subunit might be expected to bind GABA, ligands but not BZs (Pritchett et al., 1989a,b; Shivers et al., 1989), and indeed, the diencephalic distribution of high-affinity 3H-muscimol and ³HGABA_A sites (Palacios et al., 1981; Bowery et al., 1987; Olsen et al., 1990) strikingly resembles the distribution of the α_4 mRNA. For example, high-affinity ³H-muscimol sites are prevalent in thalamus and rare in the hypothalamus. Thalamic BZ sites as assessed by 3H-flunitrazepam binding are fivefold less abundant than ³H-muscimol sites (Olsen et al., 1990), suggesting that the majority of thalamic GABA_A receptors do not bind BZs (Unnerstall et al., 1981). The δ -subunit is probably present in a subset of the high-affinity muscimol binding receptors since it is present in a more limited number of thalamic nuclei than the α_1 , α_4 , and β_2 mRNAs. Thus, it is possible that many thalamic receptors may be $\alpha_1\alpha_4\beta_2$ receptors. In certain parts of the thalamus, such as the reticular nucleus, α3 mRNA appears to "replace" that of α_4 , a result consistent with immunocytochemical studies using α_3 -specific antibodies (Zimprich et al., 1991).

With regard to $\alpha_1\alpha_4\beta_2\delta$ receptors, the evidence for the occurrence of two different α -variants in the same complex is uncertain. An antibody specific for the α_1 subunit coprecipitates under nondenaturing conditions other photolabeled subunits in addition to that of α_1 (tagged by either ³H-flunitrazepam or ³HRo 15-4513), whereas only the labeled α_1 subunit is precipitated under denaturing conditions (Lüddens et al., 1991). On the other hand, other immunoprecipitation studies on bovine brain suggest that the α_1 and α_2 subunits are in largely distinct complexes (Duggan and Stephenson, 1990), in agreement with our *in situ* hybridization data. In *Xenopus* oocytes, addition of α_1 or α_3 to $\alpha_5\beta_1\gamma_2$ combinations made little difference to the receptor properties (Sigel et al., 1990).

Correlation of mRNA levels with protein levels

Our inferences of subunit combinations from differential mRNA distributions is critically dependent on the hypothesis that mRNA levels reflect protein levels. Unfortunately, there is currently no proof that this assumption holds. Additionally, the protein might be located in processes (dendrites, axon terminals) far from the soma where the mRNA resides. Nevertheless, the relative subunit mRNA abundances correlate well with the immunocytochemical results obtained with the small number of specific antibodies tested so far (Benke et al., 1991a,b; Zimprich et al., 1991). For example, using α_1 , α_2 , and α_3 subunit-specific antibodies on globus pallidus, an anti- α_1 -subunit antibody gives a very strong signal, α_2 is present in a small number of cells, and α_3 is absent (Zimprich et al., 1991). Of the three α -subunit antibodies, that of α_2 produces the most intense reaction in dentate gyrus (Zimprich et al., 1991), in line with our in situ hybridization results. The protein levels of the δ -subunit appear to follow mRNA levels and distribution faithfully (Shivers et al., 1989; Benke et al., 1991b). There are, however, some discrepancies with the γ_2 results. Some of the strongest γ_2 -immunoreactive labeling appeared in the islands of Calleja and in the substantia nigra (Benke et al., 1991a), areas that, although positive for γ_2 mRNA, are not the most marked areas of γ_2 mRNA abundance (Shivers et al., 1989; Malherbe et al., 1990b; present results). The hippocampus, while containing high levels of γ_2 mRNA (considerably higher than substantia nigra), contains only moderate levels of γ_2 immunoreactivity. Although arguments could be made regarding the relative specificites of immune sera, it is possible that some degree of distortion may be present in our inferences resulting from differences in mRNA turnover rates in different cell types.

GABA_A receptor mRNA distribution and pharmacology

The α -subunits. Expression studies on recombinant receptors show that it is the α -subunit class that confers major pharmacological differences with respect to BZs on the receptor complexes $\alpha_x \beta_y \gamma_z$. The $\alpha_1 \beta_2 \gamma_2$ complexes display BZ I-type binding, whereas $\alpha_2\beta_3\gamma_2$ and $\alpha_3\beta_1\gamma_2$ combinations display indistinguishable BZ II binding (Pritchett et al., 1989a). GABA, receptors containing the α_5 subunit also display a BZ II-like pharmacology (Pritchett and Seeburg, 1990), whereas those containing α_4 do not appear to bind BZ agonists (Wisden et al., 1991b). The brain areas expressing the highest level of α_1 mRNA, that is, olfactory bulb, medial septum (Wisden et al., 1991b), globus pallidus, zona incerta, central nucleus of the inferior colliculi, red nucleus, substantia nigra pars reticulata, and cerebellum are precisely those regions that are mainly of the BZ I type (Young et al., 1981; Niddam et al., 1987; Sieghart, 1989). These areas contain relatively low levels of mRNA for the other BZ agonist-binding α -subunit variants (α_2 , α_3 , α_5). One potential difficulty with the assignment of the $\alpha_1\beta_2\gamma_2$ combination as a BZ I subtype is that BZ I binding is enriched in cortical layer IV (Young et al., 1981; Niddam et al., 1987; Olsen et al., 1990), while the mRNAs are not. However, this could be due to spatial mismatches between receptor protein present in dendrites and mRNA in the soma.

Conversely, the spinal cord (Persohn et al., 1991; Wisden et al., 1991a), the nucleus accumbens, caudate nucleus, and parts of the amygdala have relatively little α_1 mRNA but express highly the α_2 and/or α_3 mRNAs. These areas contain predominantly BZ II sites (Young et al., 1981; Niddam et al., 1987). These data are concordant with *in vitro* expression binding data on the α -subunits. Additionally, areas that have mixed populations of BZ I and BZ II binding sites (e.g., cortex, hippocampus) have mixed populations of mRNAs encoding BZ agonist-binding subunits.

A puzzling observation is that, in receptor autoradiography, the GABA agonists 3 H-muscimol and 3 H-GABA fail to decorate hypothalamic and amygdaloid areas (Bowery et al., 1987; Olsen et al., 1990), even though in both of these regions α_2 and β_3 mRNAs are well expressed. It is possible that α_2/β_3 subunit-containing receptors have a high affinity for certain GABA antagonists, since the distribution of the GABA_A antagonist 3 H-SR-95531 matches the distribution of α_2 mRNA (Bristow and Martin, 1988; Olsen et al., 1990); its binding in cortex decreases from superficial to deep layers, and the highest density of binding is in the hippocampus and nucleus accumbens, with intermediate levels present in caudate nucleus. Low densities of sites are observed in thalamic nuclei, substantia nigra, and both layers of the cerebellum.

It appears that forebrain also contains an unusual type of GABA_A receptor, constructed in part from the α_4 subunit. The recombinant $(\alpha_4\beta_x\gamma_2)$ is characterized by ³H-Ro 15-4513 binding

not displaceable by diazepam (Wisden et al., 1991b). The properties of this $\alpha_4 \beta_x \gamma_2$ subtype are reminiscent of cerebellar α_6 subunit-containing GABA_A receptors (Lüddens et al., 1990). Although α_4 mRNA is abundant in many forebrain areas, Ro 15-4513 binding that is resistant to BZ agonist displacement does not seem very common except in the cerebellum (Sieghart et al., 1987; Turner et al., 1991). However, a low amount of diazepam-insensitive Ro 15-4513 binding has been detected in cortex, hippocampus, and striatum, although not in the thalamus (Turner et al., 1991). This may suggest that a fraction of the α_A subunits combines with γ -subunits in some brain regions (cortex, hippocampus, striatum), but not in other areas. For example, the thalamus is the principal region for α_4 gene expression, but because of the relative scarcity of γ -subunit mRNAs, thalamic α_4 containing receptors may exhibit binding of muscimol but not BZs (see below).

The β-subunits. In recombinant receptors assembled from α -, β -, and γ -subunits, the three β -subunits appear to be functionally interchangeable isoforms (Pritchett et al., 1989a; Ymer et al., 1989b), yet clearly their marked differential distributions of mRNAs (see also Lolait et al., 1989; Zhang et al., 1990; Laurie et al., 1992) would suggest some functional significance for β -variants. Recently, a fourth β cDNA variant has been isolated from avian brain cDNA libraries (Bateson et al., 1991b), but it is not at present clear if a rat β_4 homolog exists or whether it represents an avian idiosyncrasy. So far, the only differences reported for recombinant β -subunits (β_1 vs. β_2) are those of current amplitudes in receptors expressed in *Xenopus* oocytes (Sigel et al., 1990). This could simply be due to different efficiencies of protein expression in the oocyte system. However, other subtle differences may emerge if the cloned β -subunits are tested with their most likely in vivo partners. For example, it has been suggested that natural receptors containing β_2 and β_3 subunits differ in their affinity to GABA analogs and pentobarbital (Bureau and Olsen, 1990).

The γ -subunits. The γ -subunits are required for allosteric potentiation by BZs of α - and β -subunit-containing complexes (Pritchett et al., 1989b; Ymer et al., 1990; Herb et al., 1992). Of the three known members, the γ_2 mRNA is the most universal and abundant. It is also the most studied in terms of function (Pritchett et al., 1989a,b; Sigel et al., 1990; Verdoorn et al., 1990). Additional complexity has recently arisen in that the γ_2 mRNA exists in two splice versions, resulting from an exonic insertion into the cytoplasmic loop between transmembrane segments M3 and M4 (Whiting et al., 1990; Kofuji et al., 1991; Wafford et al., 1991). This splicing event is predicted to generate a γ_2 polypeptide with the addition of a target sequence for protein kinase C. As assessed by PCR analysis, the relative abundances of the γ_2 splice variants depend on the brain region (Whiting et al., 1990). However, our γ_2 probe would hybridize to both of these mRNA versions.

In certain limbic areas of the brain such as amygdala, hypothalamus, and septum, γ_2 mRNA appears to be replaced by considerable amounts of γ_1 mRNA. Thus, future compounds selective for γ_1 subunit-containing GABA_A receptors might be expected selectively to modulate neurons of affective circuits. The γ_3 subunit would appear to contribute to only a minority of CNS GABA_A receptors, as assessed by its low mRNA abundance. Yet other regions, for example, the tenia tecta and the thalamus, contain none or very little, respectively, of any of the known γ -subunit mRNAs, even though high levels of non- γ -subunit transcripts are detected in these regions. How the different γ -subunits affect the functional properties of the α - and

 β -subunits is a largely unexplored area, and many of the combinations we have suggested here have not yet been subjected to binding or electrophysiological analysis. However, different γ -subunits can differentially modulate responsiveness of α -subunits to BZs and related compounds (Ymer et al., 1990; Herb et al., 1992). Specifically, the γ_1 subunit confers positive modulation by β -carbolines and DMCM (6,7-dimethoxy-4-ethyl- β -carboline-3-carbolic acid methyl ester) on $\alpha_x \beta_1$ complexes (Puia et al., 1991), and the replacement of γ_2 with either γ_1 or γ_3 leads to a general lowering of the response to BZs. Consequently, the γ_2 subunit may not always be the appropriate γ -subunit to use when testing α -subunit pharmacology in vitro.

The δ -subunit. This subunit's role in GABA_{α} receptor function has remained an enigma. In a large number of regions (principally thalamic nuclei) it colocalizes with the α_1 , α_4 , and β_2 mRNAs, although its distribution is more restricted (see Fig. 11). These results suggest that in vitro experiments should be designed with recombinant receptors containing both α_4 and δ -subunits. As originally suggested for the δ -subunit alone (Shivers et al., 1989), $\alpha_1\alpha_4\beta\delta$ -containing receptors may have high affinity to muscimol but lack BZ binding sites. In the cerebellum, $\alpha_1\alpha_6\beta\delta$ -containing receptors would correspond to high-affinity muscimol sites in the granule cell layer (Laurie et al., 1992). Thus, δ -subunits may preferentially associate with α -subunits that do not bind BZ agonists.

Conclusions

A number of plausible GABA_A receptor combinations have been inferred based on mRNA distribution. Immunoprecipitation and immunocytochemical studies in addition to modern patchclamping methodology on brain slices (Edwards et al., 1989) could be used to test the validity of these predictions, using recombinant receptors as a reference. Although the original classification of BZ I and BZ II receptors could be criticized for being too reductionistic, it seems that a systematic comparison of GABA, receptor subunit distributions in the brain still enables this distinction to be maintained with qualifications. Thus, based on their patterns of gene expression and recombinant expression studies, we would propose that the $\alpha_1\beta_2\gamma_2$ receptors correspond to the BZ I subtype, and receptors containing $\alpha_2\beta_3\gamma_2$, $\alpha_3\beta_x\gamma_2$, and $\alpha_5\beta_1\gamma_2$ are three subtypes of BZ II receptor. Additional as yet unclassified subtypes of receptor would emerge if these subunits occur with the γ_1 or γ_3 subunits. The receptors containing α_4 and α_6 would diverge from the main family of BZ receptors because of their very restricted BZ ligand binding profile in vitro. Indeed, in some brain regions the α_4 subunit may contribute to BZ-insensitive GABA receptors because its mRNA fails to colocalize with that of any known γ -subunit.

The physiological significance of such GABA_A receptor complexity remains to be determined. Low-affinity receptors on presynaptic terminals could serve as autoreceptors mediating negative feedback of transmitter release. Additionally, different GABA_A receptor complexes could differ in mean channel open time or desensitization rate, with constraints of neuronal geometry dictating the type of desensitization rate or channel conductance that is required to produce a given hyperpolarization per unit time. Alternatively, neurons receiving a strong excitatory input may require GABA_A receptors of greater conductance and slower densensitization rates than neurons in which such input is less. Analogous situations for receptor diversity also extend to other ligand-gated ion channels in brain, most notably the neuronal nicotinic receptors (Wada et al., 1989; Morris et al., 1990), glycine receptors (Betz, 1991; Malosio et

al., 1991), and glutamate receptors (Bettler et al., 1990; Sommer et al., 1990; Monyer et al., 1991; Werner et al., 1991). Future experimental directions could involve homologous recombination experiments to see if it is possible to dissect out the function of the different receptor subtypes.

Appendix

List of anatomical abbreviations

anterior commissure, anterior aca

accumbens nucleus Acb

Агс arcuate hypothalamic nucleus ΑV anteroventral thalamic nucleus **BST** bed nucleus, stria terminalis CA1-4 fields 1-4 of Ammon's horn Cb cerebellum central amygdaloid nucleus

Ce CG central gray

CGD central gray, dorsal

Cl claustrum

centrolateral thalamic nucleus CL

CPu caudate putamen Ctx neocortex neocortex, layer 2 CtxII DA dorsal hypothalamic area

DB diagonal band DG dentate gyrus

DLG dorsal lateral geniculate thalamic nucleus

DM dorsomedial hypothalamus endopeduncular nucleus EP fr fasciculus retroflexus GP globus pallidus hypothalamus Hy internal capsule iç IC inferior colliculus ICj islands of Calleja IL infralimbic cortex

lateral amygdaloid nucleus La laterodorsal thalamic nucleus LD

LPMC lateral posterior thalamic nucleus, mediocaudal

LS lateral septum

MD mediodorsal thalamic nucleus Me medial amygdaloid nucleus medial geniculate nucleus MG MHb medial habenular nucleus **MPO** medial preoptic nucleus

olfactory bulb OB

Op optic nerve layer, superior colliculus

PF parafascicular thalamic nucleus

Pir piriform cortex

paraventricular thalamic nucleus PV

R red nucleus Rh rhomboid thalamic nucleus

reticular thalamic nucleus Rt SC superior colliculus **SNC** substantia nigra pars compacta

SNR substantia nigra pars reticulata SPF subparafascicular thalamic nucleus

STh subthalamic nucleus

SUG superficial gray layer, superior colliculus

triangular septal nucleus TS

tenia tecta

VLG ventral lateral geniculate nucleus **VMH** ventromedial hypothalamic nucleus VP ventral posterior thalamic nucleus **VPM** ventral posteromedial thalamic nucleus

zona incerta

References

Alger BE, Nicoll RA (1982) Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J Physiol (Lond) 328:125-141.

- Bateson AN, Harvey RJ, Wisden W, Glencorse TA, Hicks AA, Hunt SP, Barnard EA, Darlison MG (1991a) The chicken GABA, receptor α_1 subunit cDNA sequence and localization of the corresponding mRNA. Mol Brain Res 9:333-339.
- Bateson AN, Lasham A, Darlison MG (1991b) γ-Aminobutyric acid_A receptor heterogeneity is increased by alternative splicing of a novel β -subunit gene transcript. J Neurochem 56:1437–1440.
- Benke D, Mertens S, Trzeciak A, Gillessen D, Möhler H (1991a) GA-BA_A receptors display association of γ_2 subunit with α_1 - and $\beta_{2/3}$ subunits. J Biol Chem 266:4478-4483.
- Benke D, Mertens S, Trzeciak A, Gillessen D, Möhler H (1991b) Identification and immunohistochemical mapping of GABA, receptor subtypes containing the δ subunit in rat brain. FEBS Lett 283:145-
- Bettler B, Boulter J, Hermans-Borgmeyer I, O'Shea-Greenfield A, Deneris ES, Moll C, Borgmeyer U, Hollmann M, Heinemann S (1990) Cloning of a novel glutamate receptor subunit GluR 5: expression in the nervous system during development. Neuron 5: 583-595.
- Betz H (1991) Glycine receptors: heterogeneous and widespread expression in the mammalian brain. Trends Neurosci 14:458-461.
- Bleier R, Byne W (1985) Septum and hypothalamus. In: The rat nervous system, Vol 1 (Paxinos G, ed), pp 87-118. Sydney: Academic.
- Bowery NG (1989) GABA_B receptors and their significance in mammalian pharmacology. Trends Pharmacol Sci 10:401-407.
- Bowery NG, Hudson AL, Price GW (1987) GABA, and GABA, receptor site distribution in the rat central nervous system. Neuroscience 20:365-383.
- Bristow DR, Martin IL (1988) Light microscopic autoradiographic localization in rat brain of the binding sites for the GABA, receptor antagonist [3H] SR 95531: comparison with [3H] GABA distribution. Eur J Pharmacol 148:283-288.
- Bureau M, Olsen RW (1990) Multiple distinct subunits of the γ-aminobutyric acid-A receptor protein show different ligand-binding affinities. Mol Pharmacol 37:497-502.
- Cooper E, Couturier S, Ballivet M (1991) Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 350:235-238.
- Cutting GR, Luo L, O'Hara BF, Kasch LM, Montrose-Rafizadeh C, Donovan DM, Shimada S, Antonarakis SE, Guggino WB, Uhl GR, Kazazian HH (1991) Cloning of the GABA ρ_1 cDNA: a novel GA-BAA receptor subunit highly expressed in retina. Proc Natl Acad Sci USA 88:2673-2677.
- de Blas AL, Vitorica J, Friedrich P (1988) Localizaton of the GABA receptor in rat brain with a monoclonal antibody to the 57,000 M_{\odot} peptide of the GABA_A receptor/benzodiazepine receptor/Cl⁻ channel complex. J Neurosci 8:602-614.
- Duggan MJ, Stephenson FA (1990) Biochemical evidence for the existence of γ -aminobutyrate_A receptor isooligomers. J Biol Chem 265:
- Dutar P, Nicoll RA (1988) A physiological role for GABA_B receptors in the central nervous system. Nature 322:156-158.
- Edwards FA, Konnerth A, Sakmann B, Takahashi T (1989) A thin slice preparation for patch clamp recording from neurones in the mammalian central nervous system. Pfluegers Arch 414:600-612.
- Ewert M, Shivers BD, Lüddens H, Möhler H, Seeburg PH (1990) Subunit selectivity and epitope characterization of mAbs directed against the GABA_A/benzodiazepine receptor. J Cell Biol 110:2043-
- Ewert M, de Blas AL, Möhler H, Seeburg PH (1991) A prominent epitope on GABAA receptors is recognized by two different monoclonal antibodies. Brain Res, in press.
- Fuchs K, Möhler H, Sieghart W (1988) Various proteins from rat brain, specifically and irreversibly labelled by [3H]flunitrazepam, are distinct α subunits of the GABA-benzodiazepine receptor complex. Neurosci Lett 90:314-319.
- Garrett KM, Saito N, Duman RS, Abel MS, Ashton RA, Fujimori S, Beer B, Tallmann JF, Vitek MP, Blume AJ (1990) Differential expression of γ -aminobutyric acid_A receptor subunits. Mol Pharmacol
- Haefely W, Polc P (1986) Physiology of GABA enhancement by benzodiazepines and barbiturates. In: Benzodiazepine/GABA, receptors and chloride channels: structural and functional properties (Olsen RW, Venter JC, eds), pp 97-133. New York: Liss.
- Häring P, Stähli C, Schoch P, Takacs B, Staehelin T, Möhler H (1985) Monoclonal antibodies reveal structural homogeneity of γ -amino-

- butyric acid/benzodiazepine receptors in different brain areas. Proc Natl Acad Sci USA 82:4837-4841.
- Herb A, Wisden W, Lüddens H, Puia G, Vicini S, Seeburg PH (1992) A third γ subunit of the GABA_A receptor family. Proc Natl Acad Sci USA, in press.
- Hironaka T, Morita Y, Hagihira S, Tateno E, Kita H, Tohyama M (1990) Localization of GABA_A receptor α_1 subunit mRNA-containing neurons in the lower brainstem of the rat. Mol Brain Res 7:335-
- Jones EG (1985) The thalamus. New York: Plenum.
- Kato K (1990) Novel GABA, receptor α subunit is expressed only in cerebellar granule cells. J Mol Biol 214:619-624.
- Khrestchatisky M, MacLennan AJ, Chiang M-Y, Xu W, Jackson MB, Brecha N, Sternini C, Olsen RW, Tobin AJ (1989) A novel α subunit in rat brain GABA, receptors. Neuron 3:745-753. Khrestchatisky M, MacLennan AJ, Tillakaratne NJK, Chiang M-Y,
- Tobin AJ (1991) Sequence and regional distribution of the mRNA encoding the α_2 polypeptide of rat γ -aminobutyric acid, receptors. J Neurochem 56:1717-1722.
- Kofuji P, Wang JB, Moss SJ, Huganir RL, Burt DR (1991) Generation of two forms of the γ -aminobutyric acid, receptor γ_2 subunit in mice by alternative splicing. J Neurochem 56:713-715.
- Lambert JJ, Peters JA, Cottrell GA (1987) Actions of synthetic and endogenous steroids on the GABA, receptor. Trends Pharmacol Sci 8:224-227.
- Laurie DJ, Seeburg PH, Wisden W (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J Neurosci 12:1063-1076.
- Lolait SJ, O'Carroll AM, Kusano K, Mahan LC (1989) Pharmacological characterization and region specific expression in brain of the β_2 - and β_3 -subunit of the rat GABA_A receptor. FEBS Lett 258:17-21.
- Lüddens H, Wisden W (1991) Function and pharmacology of multiple
- GABA, receptor subunits. Trends Pharmacol Sci 12:49-51. Lüddens H, Pritchett DB, Köhler M, Killisch I, Keinänen K, Monyer H, Sprengel R, Seeburg PH (1990) Cerebellar GABA, receptor selective for a behavioural alcohol antagonist. Nature 346:648-651.
- Lüddens H, Killisch I, Seeburg PH (1991) More than one α variant may exist in a GABAA/benzodiazepine receptor complex. J Receptor Res 11:535-551.
- MacLennan AJ, Brecha N, Khrestchatisky M, Sternini C, Tillakaratne NJK, Chiang M-Y, Anderson K, Lai M, Tobin AJ (1991) Independent cellular and ontogenetic expression of mRNAs encoding three α polypeptides of the rat GABA_A receptor. Neuroscience 43:369–380.
- Malherbe P, Sigel E, Baur R, Pershon E, Richards JG, Möhler H (1990a) Functional expression sites of gene transcription of a novel α subunit of the GABA, receptor in rat brain. FEBS Lett 260:261-265.
- Malherbe P, Sigel E, Baur R, Pershon E, Richards JG, Möhler H (1990b) Functional characteristics and sites of gene expression of the α_1 , β_1 , γ_2 -isoform of the rat GABA_A receptor. J Neurosci 10:2330– 2337.
- Malosio M-L, Marqueze-Pouey B, Kuhse J, Betz H (1991) Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO J 10:2401-2409.
- Monyer H, Seeburg PH, Wisden W (1991) Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6:799-810.
- Morris BJ, Hicks AA, Wisden W, Darlison MG, Hunt SP, Barnard EA (1990) Distinct regional expression of nicotinic acetylcholine receptor genes in chick brain. Mol Brain Res 7:305-315.
- Nicoll RA, Dutar P (1989) Physiological roles of GABA, and GABA, receptors in synaptic transmission in the hippocampus. In: Allosteric modulation of amino acid receptors: therapeutic implications (Barnard EA, Costa E, eds), pp 195-205. New York: Raven.
- Niddam R, Dubois A, Scatton B, Arbilla S, Langer SZ (1987) Autoradiographic localization of [3H]zolpidem binding in the rat CNS. Comparison with the distribution of [3H]flunitrazepam binding sites. J Neurochem 49:890-899.
- Olsen RW, Tobin AJ (1990) Molecular biology of GABA, receptors. FASEB J 4:1469-1480.
- Olsen RW, McCabe RT, Wamsley JK (1990) GABA, receptor subtypes: Autoradiographic comparison of GABA, benzodiazepine, and convulsant binding sites in the rat central nervous system. J Chem Neuroanat 3:59-76.
- Palacios JM, Wamsley JK, Kuhar MJ (1981) High affinity GABA receptors—autoradiographic localization. Brain Res 222:285-307.

- Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2d ed. Sydney: Academic.
- Persohn E, Malherbe P, Richards JG (1991) In situ hybridization histochemistry reveals a diversity of GABA, receptor subunit mRNAs in neurons of the rat spinal cord and dorsal root ganglia. Neuroscience 42:497-507.
- Pritchett DB, Seeburg PH (1990) γ -Aminobutyric acid, receptor α_s subunit creates novel type II benzodazepine receptor pharmacology. J Neurochem 54:1802-1804.
- Pritchett DB, Lüddens H, Seeburg PH (1989a) Type I and type II GABA_A benzodiazepine receptors produced in transfected cells. Science 246:1389-1392.
- Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989b) Importance of a novel GABA receptor subunit for benzodiazepine pharmacology. Nature 338:582-
- Puia G, Santi M, Vicini S, Pritchett DB, Purdy RH, Paul SM, Seeburg PH, Costa E (1990) Neurosteroids act on recombinant human GA-BA_A receptors. Neuron 4:759-765.
- Puia G, Vicini S, Seeburg PH, Costa E (1991) Influence of recombinant γ -aminobutyric acid, receptor subunit composition on the action of allosteric modulators of γ -aminobutyric acid-gated Cl⁻ currents. Mol Pharmacol 39:691-696.
- Richards JG, Möhler H, Haefely W (1986) Mapping benzodiazepine receptors in the CNS by radiohistochemistry and immunohistochemistry. In: Neurohistochemistry: modern methods and applications (Panula P, Pairannta H, Soinita S, eds), pp 629-677. New York: Liss.
- Richards JG, Schoch P, Häring P, Takacs B, Möhler H (1987) Resolving GABA_A/benzodiazepine receptors: cellular and subcellular localization in the CNS with monoclonal antibodies. J Neurosci 7: 1866-1886.
- Seeburg PH, Wisden W, Verdoorn TA, Pritchett DB, Werner P, Herb A, Lüddens H, Sprengel R, Sakmann B (1990) The GABA receptor family: molecular and functional diversity. Cold Spring Harb Symp Ouant Biol 55:29-40.
- Séquier JM, Richards JG, Malherbe P, Price GW, Mathews S, Möhler H (1988) Mapping of brain areas containing RNA homologous to cDNAs encoding the α and β subunits of the rat GABA_A γ -aminobutyrate receptor. Proc Natl Acad Sci USA 85:7815-7819
- Shivers BD, Killisch I, Sprengel R, Sontheimer H, Köhler M, Schofield PR, Seeburg PH (1989) Two novel GABA, receptor subunits exist in distinct neuronal subpopulations. Neuron 3:327-337.
- Siegel RE (1988) The mRNAs encoding GABA, benzodiazepine receptor subunits are localized in different cell populations of the bovine cerebellum. Neuron 1:579-584.
- Sieghart W (1989) Multiplicity of GABA_A-benzodiazepine receptors. Trends Pharmacol Sci 10:407-411.
- Sieghart W, Eichinger A, Richards JG, Möhler H (1987) Photoaffinity labelling of benzodiazepine receptor proteins with the partial agonist [3H]Ro 15-4513: a biochemical and autoradiographic study. J Neurochem 48:46-52.
- Sigel E, Baur R, Trube G, Möhler H, Malherbe P (1990) The effect of subunit composition of rat brain GABA, receptors on channel function. Neuron 5:703-711.
- Sommer B, Kainänen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Köhler M, Takagi T, Sakmann B, Seeburg PH (1990) Flip and flop: a cell specific functional switch in glutamate operated channels of the CNS. Science 249:1580-1585.
- Turner DM, Sapp DW, Olsen RW (1991) The benzodiazepine/alcohol antagonist Ro 15-4513: binding to a GABA, receptor subtype that is insensitive to diazepam. J Pharmacol Exp Ther 257:1236-1242.
- Unnerstall JR, Kuhar MJ, Niehoff DL, Palacios JM (1981) Benzodiazepine receptors are coupled to a subpopulation of GABA receptors: evidence from a quantitative autoradiographic study. J Pharmacol Exp Ther 218:797-804.
- Unwin N (1989) The structure of ion channels in membranes of excitable cells. Neuron 3:665-676.
- Verdoorn TA, Draguhn A, Ymer S, Seeburg PH, Sakmann B (1990) Functional properties of recombinant GABA_A receptors depend upon subunit composition. Neuron 4:919-928.
- Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW (1989) Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284:314-335.

- Wafford KA, Burnett DM, Dunwiddie TV, Harris RA (1990) Genetic differences in the ethanol sensitivity of GABA_A receptors expressed in *Xenopus* oocytes. Science 249:291–293.
- Wafford KA, Burnett DM, Leidenheimer NJ, Burt DR, Wang JB, Kofuji P, Dunwiddie TV, Harris RA, Sikela JM (1991) Ethanol sensitivity of the GABA_A receptor expressed in *Xenopus* oocytes requires 8 amino acids contained in the γ_2 L subunit. Neuron 7:27–33.
- Werner P, Voigt M, Keinänen K, Wisden W, Seeberg PH (1991) Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 351:742-744.
- Whiting P, McKernan RM, Iversen LL (1990) Another mechanism for creating diversity in γ -aminobutyric type A receptors: RNA splicing directs expression of two forms of γ 2 subunit, one of which contains a protein kinase C phosphorylation site. Proc Natl Acad Sci USA 87:9966–9970.
- Wilson-Shaw D, Robinson M, Gambarana C, Siegel RE, Sikela JM (1991) A novel γ subunit of the GABA_A receptor identified using the polymerase chain reaction. FEBS Lett 284:211-215.
- Wisden W, Morris BJ, Darlison MG, Hunt SP, Barnard EA (1988) Distinct GABA_A receptor α subunit mRNAs show differentiated patterns of expression in bovine brain. Neuron 1:933–947.
- Wisden W, McNaughton LA, Darlison MG, Hunt SP, Barnard EA (1989a) Differential distribution of GABA_A receptor in bovine cerebellum—localization of α_2 mRNA in Bergmann glia layer. Neurosci Lett 106:7–12.
- Wisden W, Morris BJ, Darlison MG, Hunt SP, Barnard EA (1989b) Localization of $GABA_A$ receptor α subunit mRNAs in relation to receptor subtypes. Mol Brain Res 5:305-310.
- Wisden W, Gundlach AL, Barnard EA, Seeburg PH, Hunt SP (1991a) Distribution of GABA_A receptor subunit mRNAs in rat lumbar spinal cord. Mol Brain Res 10:179–183.

- Wisden W, Herb A, Wieland H, Keinänen K, Lüddens H, Seeburg PH (1991b) Cloning, pharmacological characteristics and expression pattern of the rat $GABA_A$ receptor $\alpha 4$ subunit. FEBS Lett 289:227–230.
- Wisden W, Morris BJ, Hunt SP (1991c) In situ hybridization with synthetic DNA probes. In: Molecular neurobiology—a practical approach, Vol 2 (Chad J, Wheal H, eds), pp 205–225. Oxford: Oxford UP/IRL.
- Ymer S, Draguhn A, Köhler M, Schofield PR, Seeburg PH (1989a) Sequence and expression of GABA_A receptor α_4 subunit. FEBS Lett 258:119-122.
- Ymer S, Schofield PR, Draguhn A, Werner P, Köhler M, Seeburg PH (1989b) GABA_A receptor β subunit heterogeneity: functional expression of cloned cDNAs. EMBO J 8:1665-1670.
- Ymer S, Draguhn A, Wisden W, Werner P, Keinänen K, Schofield PR, Sprengel R, Pritchett DB, Seeburg PH (1990) Structural and functional characterization of the γ₁ subunit of GABA_A/benzodiazepine receptors. EMBO J 9:3261–3267.
- Young WS III, Niehoff DL, Kuhar MJ, Beer B, Lippa AS (1981) Multiple benzodiazepine receptor localization by light microscopic radiohistochemistry. J Pharmacol Exp Ther 216:425-436.
- Young WS III, Mezey E, Siegel RE (1986) Quantitative in situ hybridization histochemistry reveals increased levels of corticotropin releasing factor mRNA after adrenalectomy in rats. Neurosci Lett 70: 198–203.
- Zhang JH, Sato M, Noguchi K, Tohyama M (1990) The differential expression patterns of the mRNAs encoding β subunits (β_1 , β_2 and β_3) of GABA_A receptors in the olfactory bulb and its related areas in the rat brain. Neurosci Lett 119:257-260.
- Zimprich F, Zezula J, Sieghart W, Lassmann H (1991) Immunohistochemical localization of the α_1 , α_2 and α_3 subunits of the GABA_A receptor in the rat brain. Neurosci Lett 127:125-128.