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Summary

N6-methyladenosine (m6A) RNA methylation, one of the most pivotal internal modifications of
RNA, is a conserved post-transcriptional mechanism to enrich and regulate genetic information
in eukaryotes. The scope and function of this modification in plants has been an intense focus of
study, especially in model plant systems. The characterization of plant m6A writers, erasers and
readers, as well as the elucidation of their functions, is currently one of the most fascinating

hotspots in plant biology research. The functional analysis of m6A in plants will be booming in

the foreseeable future, which could contribute to crop genetic improvement through
epitranscriptome manipulation. In this review, we systematically analysed and summarized
recent advances in the understanding of the structure and composition of plant m6A regulatory
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machinery, and the biological functions of m6A in plant growth, development and stress
response. Finally, our analysis showed that the evolutionary relationships between m6A
modification components were highly conserved across the plant kingdom.

Introduction

RNA molecules are essential components in all living organisms.
These molecules act as carriers to pass genetic information from
DNA to protein and as regulators of all kinds of biological
processes (Fu et al., 2014). RNA transcripts may undergo diverse
and complex chemical modifications to tailor their structure to a
particular molecular function. Indeed, more than one hundred
types of post-transcriptional modifications have been identified in
cellular RNA. These include modifications at the nascent pre-
mRNA stage, even before the splicing process occurs. The
importance of mRNA modifications in epigenetics has been
neglected over the past several decades due to the low
abundance of mRNA chemical modifications and limitations in
research methods to detect such modifications. Among the post-
transcriptional modifications, methylation of adenosine in the N6
position (M6A) is the most prevalent internal modification and
extensively present in rRNAs, mRNA, tRNAs, miRNA and long
non-coding RNA (Cantara et al., 2010; Wei et al., 1975, 2017). It
is noteworthy that, in eukaryotic cells, m6A accounts for up to
80% of all RNA methylation modifications and 50% of methy-
lated nucleotides in polyadenylated mRNA (Kierzek and Kierzek,
2003). m6A was first discovered in wheat (Triticum turgidum L.),
oat (Avena sativa L.) coleoptiles and maize (Zea mays L.)
approximately 40 years ago and subsequently widely identified
in viruses, flies, yeast, plants, human and other mammals
(Haugland and Cline, 1980; Jia et al., 2013; Kennedy and Lane,
1979; Nichols and Welder, 1981). In previous studies, the m6A
modification was believed to be ‘static’. However, after the
discovery of the first m6A RNA demethylase, fat mass and
obesity-associated protein (FTO), it became evident that RNA
modifications could be dynamic and reversible (Jia et al., 2011).
Subsequently, the idea of the ‘epitranscriptome’ was proposed
and gradually branched into a new research field (Hussain et al.,
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2013; Saletore et al., 2012). Since then, it has become increas-
ingly clear that m6A is indispensable for the regulation of gene
expression in living cells.

In mammals, there is a reported m6A modification rate of 0.1—
0.4%, which is equivalent to an average of one m6A site per
2,000 ribonucleotides. A slightly higher rate of 0.7-0.9% is
reported in the meiotic yeast Saccharomyces cerevisiae (Bodi
et al., 2010; Fu et al., 2014; Wei et al., 1975). Between 1 and 15
m6A sites per RNA molecule have been suggested in various
viruses, while Arabidopsis thaliana contains 0.5-0.7 sites per
1000 nucleotides or 0.7-1.0 sites per actively expressed transcript
(Luo et al., 2014; Zhao et al., 2017; Zhong et al., 2008).

In plants and other eukaryotes, m6A is generated by the
binding of m6A methyltransferase to a highly conserved consen-
sus sequence, RRACH (R = G or A; H: U>A>C) (Shen et al., 2016).
Interestingly, when the highly conserved GAC was mutated to
GAU, m6A was no longer methylated in Rous sarcoma virus
mRNA (Kane and Beemon, 1987). The frequency of m6A
modification is not evenly distributed within RNA, being partic-
ularly highly enriched in mature mRNAs. This modification is
always clustered in the stop codons and 3’untranslated regions
(UTRs), especially at the 3’-end of the coding sequence (CDS) and
the first quarter of the 3/-UTR (Dominissini et al., 2012, 2013; Ke
et al., 2015; Meyer et al., 2012; Schwartz et al., 2013, 2014). In
plants, m6A is similarly enriched in these regions, but also present
in the start codon (Slobodin et al., 2017). More than 60% of
m6A modifications are located in the start codon of chloroplast-
associated proteins and certain photosynthesis-related genes also
show an abundance of m6A sites, indicating that m6A may have
unigue functions associated with photosynthesis (Li et al., 2014b;
Luo et al., 2014). Studies mapping m6A report that this modi-
fication is also strongly enriched in the 5" UTR of human and other
mammals under various stress conditions (Lee et al., 2015; Meyer
and Jaffrey, 2017; Wang et al., 2015b; Zhou et al., 2015).
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Figure 1 A working model for the regulation of
MRNA stability and translation in Arabidopsis,
through the action of a network of m6A writer,
eraser and reader proteins. m6A
methyltransferases (writers) and demethylases
(erasers) lead to the dynamic patterning of m6A
modifications in MRNA. The m6A writer complex
includes the proteins MTA, MTB, FIP37, VIRILIZER
and HAKAI. The m6A modifications can be
removed by ALKBH9B and ALKBH10B proteins
within nucleus. The ECT2/3/4 and CPSF30
proteins serve as m6A readers, which bind
specifically to m6A sites (RRACH) and mediate
specific functions. The vital role of m6A
methylation in mMRNA metabolism, translation and
stability has been uncovered. The protein ECT2
regulates 3" UTR mRNA processing in the nucleus.
However, after ECT2 is exported to the cytoplasm
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Until now, most m6A studies focus on human and other
mammalian systems, while little research has been devoted to
exploring m6A in plants at the molecular level. Additionally, many
previous theories on m6A modifications in human and other
mammals have been challenged in plant systems. In this review,
we firstly identified m6A readers, writers and erasers in 22 plant
species to conclude the composition and structure of m6A
machinery in plants. Due to the high conservation of m6A
structural machinery in different species, we selected Arabidopsis
as a model to determine the homologous components in other
plant species, with the aim of revealing shared underlying
molecular mechanisms of m6A modification. Secondly, we
systematically reviewed the recent advances in the understanding
of the biological functions of m6A methylation in plants. Thirdly,
we explored the evolution of relationships between m6A methy-
lation compositions across the plant kingdom. The composition,
function and evolution of m6A in plants reviewed in this study will
contribute to better understand the functions of m6A, and also
help to reveal the complexity of RNA modification regulatory
mechanisms.

Ribosome Translating

|

Stability Trichome morphogenesis Stress response

The composition of the m6A regulatory
network: writers, erasers and readers

The m6A regulatory machinery is post-transcriptionally assembled
by a conserved set of proteins at the conserved consensus
sequence, RRACH. A number of proteins involved in the addition,
removal and identification of m6A have been reported, which are
categorized into three groups called writers, erasers and readers,
respectively, and include proteins such as MTA, MTB, ALKBH9B
and ECT2 (Figure 1) (Arribas-Hernandez et al., 2018; Fu et al.,
2014; Martinez-Pérez et al., 2017; Zhong et al., 2008). The m6A
writer complex recognizes the consensus motif RRACH (Ruzicka
et al., 2017). However, not all RRACH motifs are associated with
m6A modification, as the m6A level is much lower than the
abundance of RRACH motifs, indicating that the molecular
mechanism regulating m6A modification is not fully understood
(Liu and Pan, 2016). The Arabidopsis thaliana proteins ALKBH9B
and ALKBH10B function as m6A erasers (RNA demethylases) that
oxidatively reverse m6A methylation from single-stranded RNA
molecules (Duan et al., 2017; Martinez-Pérez et al., 2017). YTH
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domain proteins act as m6A readers. For instance, ECT2 is one of
the most important readers, which is significantly enriched in the
3’UTRs of target genes. It plays a vital role in the regulation of 3’
UTR processing in the nucleus and in controlling RNA stability in
the cytoplasm. When RNA molecules were exported from the
nucleus to the cytoplasm, ECT2 combined with transcripts that
are associated with trichome morphogenesis to controlling
trichome branching. ECT3 and ECT4 can bind to a specific site
on mo6A-modified cellular RNAs in the cytoplasm. ECT2/3/4
proteins are required in the timing and regulation of leaf
formation, and normal leaf morphology. In addition, during the
inhibition of translation initiation in Arabidopsis under heat stress,
ECT2 relocates to stress granules, suggesting that it may also
control mMRNA fate in the cytosol (Arribas-Hernandez et al., 2018;
Scutenaire et al., 2018; Wei et al., 2018). Finally, the turnover of
RNA in vivo generates N6-methylated AMP (N6-mAMP), which is
converted by the enzyme MAPDA to inosine monophosphate
(IMP) through a hydrolytic reaction (Figure 1) (Chen et al., 2018;
Lockhart, 2018a). We postulate that a better understanding of
the molecular mechanisms underlying m6A modification in
Arabidopsis will provide further insights into m6A processing in
plants, as well as other model systems.

mG6A writers

The first m6A methyltransferase identified in mammals was
named METTL3 and was cloned from the 200 kDa methylase
complex (Bokar et al., 1997). It is one member of the putative S-
adenosyl-L-methionine (SAM)-dependent methyltransferase fam-
ily that is highly conserved in plants and mammals (Meyer and
Jaffrey, 2017). Extensive research on m6A writers has been
conducted in flies, human and other mammals over the past few
years, with vital m6A methyltransferase components also being
characterized in Arabidopsis. MTA (METTL3 human homolog
protein) is one of the earliest discovered methyltransferases in
Arabidopsis. Subsequently, evolutionary analysis and experimen-
tal investigation suggested that the METTL14 protein was the
second most-active m6A methyltransferase enzyme in human to
catalyse m6A RNA methylation, being highly homologous to
METTL3 (Bujnicki et al., 2002; Liu et al., 2014). However, this
theory was overturned two years later when studies found that
METTL14 did not have methyltransferase activity. Rather,
METTL14 had a primary role in binding to RNA substrates in
mammalian cells, before enabling their interaction with METTL3
through a hydrogen bonding network to form a very stable anti-
parallel heterodimer (Sled? and Jinek, 2016; Wang et al., 2016a,
b). MTB (METTL14 human homolog protein) has been identified
in Arabidopsis, but its function remains unknown (Arribas-
Hernandez et al., 2018). Depletion of the pre-mRNA splicing
regulator, WTAP, can also lead to a significant decrease in m6A,
indicating that it is the third major binding partner of the
methylation complex. WTAP plays a vital role in initiating and
controlling the localization of foci within the nucleus that are
enriched with pre-mRNA splicing factors required for activity of
the METTL3-METTL14 complex (Liu et al., 2014; Ping et al.,
2014; Schwartz et al., 2014). FIP37 (WTAP human homolog
protein), an E3 ubiquitin ligase, was first identified in Arabidopsis
to interact with MTA. The fourth key component of the m6A
methylation complex, KIAA1429, was identified through knock-
out mutations to cause substantial loss of m6A in mammals
(Schwartz et al., 2014). Virilizer is the homologous protein in fly,
which catalyses m6A formation to control sex determination, and

is considered the fifth component of m6A writers (Hilfiker et al.,
1995; Kan et al., 2017). In Arabidopsis, VIRILIZER (KIAA1429
human homolog protein) and the E3 ubiquitin ligase HAKAI
(HAKAI human homolog protein) have been found as the fourth
and fifth key component, respectively (Bodi et al., 2012; Ruzicka
et al., 2017).

m6A writers are highly conserved. Thus, the protein compo-
nents in Arabidopsis can provide the sequence information
required to identify the orthologous genes in different plant
species. As much plant genome information is publically available,
a number of representative species were selected on which to
perform comparative genomics analysis, including six dicotyle-
donous species, six monocotyledon species, one pteridophyte
species, two moss species and seven algae species (detailed
information is listed in Table 1). The protein sequences for these
species were obtained from the Ensembl plants database
(http://plants.ensembl.org/index.html) and National Center for
Biotechnology Information (NCBI). Local protein databases were
constructed from these downloaded protein sequences and
subsequently used to search for candidate m6A writer compo-
nents, with the known Arabidopsis proteins atMTA, atMTB,
atFIP37, atVIRILIZER and atHAKAI used as a reference. The HMM
(hidden Markov model) profile for the MTA70 superfamily
(PFO5063), WTAP superfamily (PF17098) and virilizer motif
(PF15912) sequences was download from the PFAM database,
and the HMMER search tool was used to assess all plant species
protein sequences (Finn et al., 2006; Wheeler and Eddy, 2013).
As shown in Table 1, 159 putative m6A writer components were
identified using profile HMM searches and BLASTP, and the
sequence information is shown in Table S1. A total of 69 MTA,
MTB and MTC proteins were identified from all plants. AtMTA
proteins are mainly distributed in dividing tissues, especially there
production organs, apical meristems and newborn root. Inacti-
vation of AtMTA proteins prevents development, arresting plant
embryos at the globular stage, and eventually leads to embryo
lethality. m6A modification reduces the relative abundance of
MTA proteins in reproduction organs, shoot and lateral roots
meristems (Zhong et al., 2008). Interestingly, only one MTA was
discovered in barley and Micromonas pusilla. In these two species,
the MTB and MTC proteins may have adopted the specific
molecular role of the MTA protein. There is also limited functional
knowledge on the AtMTC protein, another m6A writer compo-
nent identified in this review.

Five ZmFIP37 and two TaFIP37 proteins were identified in maize
and wheat, respectively. Delayed endosperm and embryo devel-
opment, and subsequent embryonic lethality were observed on
knockout of fip37 in Arabidopsis (Vespa et al., 2004; Zhong et al.,
2008). Deletion of FIP37 was found to significantly reduce the m6A
modifications within the 3'UTR and stop codons with less effect on
m6A modifications within the 5'UTR. The function of FIP37 was
found to be distinct from WTAP in animals. WTAP localizes to
nuclear foci and affects the splicing of mRNA, while FIP37 is evenly
distributed within the nucleoplasm and it is not found to affect
RNA splicing (Bodi et al., 2012; Shen et al., 2016; Zhong et al.,
2008). The distribution of FIP37 is similar to MAT, in that both
proteins are highly expressed in apical meristems, young leaves and
floral organs. FIP37 knockout plants display cellular over-prolifera-
tion in shoot apical meristems, suggesting that m6A modification
is essential for regulating cell division in the meristem (Shen et al.,
2016). Consequently, we speculate that these FIP37s play an
indispensable role for maintaining appropriate proliferation of the
shoot meristem in plants (Yuan, 2017).
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mG6A erasers

In mammals, the first identified m6A demethylase, FTO (fat mass
and obesity-associated protein), was found to catalyse the
reversion of m6A to adenosine in a a-KG (a-ketoglutarate) and
Fe?*-dependent manner, suggesting that m6A is a reversible and
dynamic modification. However, recent research has reported
FTO as the eraser for m6Am (N6,20-O dimethyladenosine), not
mo6A itself. Mauer et al. found that the catalytic rate of FTO was
significantly increased when the substrate was m6Am compared
with m6A (Mauer et al., 2017). In addition, FTO showed a strong
preference for m6Am in consensus site analysis while it did not
have a preference for m6A (Jia et al., 2011; Meyer and Jaffrey,
2017). A second m6A demethylase, ALKBH5 (alkylation repair
homolog 5), is a homolog of FTO (Jia et al., 2013). A high
abundance of ALKBH5 in breast cancer cells correlates with a
decrease in the relative abundance of m6A (Zhang et al., 2016).
ALKBHS5 has catalytic activity when the substrate is m6A and no
catalytic activity for m6A, suggesting that ALKBH5 is a mRNA
m6A demethylase (Mauer et al., 2017).

Transcriptome-wide profiling has revealed that m6A modifi-
cation is also a dynamic process in Arabidopsis (Luo et al.,
2014). Several studies have confirmed that m6A can revert to
adenosine through the action of the m6A RNA demethylases
ALKBH9B and ALKBH10B (Duan et al., 2017, Martinez-Pérez
et al., 2017). AtALKBH9B localizes to cytoplasmic granules,
which contain siRNA bodies and can be directed to P bodies.
ALKBH9B and ALKBH10B belong to the AlkB family of Fe (ll)/
a-ketoglutarate-dependent dioxygenases, containing a highly
conserved clavaminate synthase-like domain. The HMM profile
of the clavaminate synthase-like domain (PF13532) sequences
was download, and the HMMER search tool was used to
identify orthologous genes in 22 plant species. In total, 293
homologs of the Escherichia coli AlkB family were been
identified in 22 plant species (Table S2). These studies have
uncovered the processing of m6A demethylation in Arabidopsis,
although the existence and function of demethylases in other
plant species remain unclear.

m6A Readers

To understand the molecular mechanism underlying m6A regu-
lation of gene expression, it is vital to elucidate how m6A readers
function. These reader proteins bind specifically to m6A-modified
cellular RNAs to implement the biological function of methylation
modifications. The two m6A readers, YTHDF2 and YTHDF3, were
discovered by RNA pulldown (Dominissini et al., 2012). Further
studies found that m6A readers contained either a YTH (YT512-B
Homology) domain or elF3 (eukaryotic initiation factor 3) (Wang
et al., 2014, 2015b; Xiao et al., 2016). YTH family members are
highly conserved and contain a YTH domain with an aromatic
cage for m6A recognition. These proteins are widely found in
humans, Drosophila, yeast and Arabidopsis (Li et al., 2014a;
Meyer and Jaffrey, 2017). Additionally, combining different méeA
reader proteins can result in distinct functions. For example,
YTHDF1 is usually localized to the cytoplasm but may interact
with elF3 in the nucleus to promote translation initiation and
protein synthesis (Wang et al.,, 2015b). The cytoplasmic protein
YTHDF2 has more than 3000 target RNAs containing m6A, which
can specifically recognize the conserved core motif G(m6A)C of
m6A in most mRNA and some non-coding RNAs. Interestingly,
YTHDF1 and YTHDF2 share common target mRNAs. YTHDF1
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promotes the efficient translation of target mRNAs, whereas
YTHDF2 recognizes these target transcripts and facilitates their
decay (Wang et al., 2015b). Furthermore, the m6A nuclear
binding protein YTHDC1 mediates mRNA splicing (Xiao et al.,
2016; Xu et al., 2015). YTHDC1 interacts with the precursor
mRNA splicing factor SRSF3 to promote m6A binding and inhibits
the binding between the splicing factor SRSF10 and m6A, leading
to the reversal of m6A modifications (Xiao et al., 2016; Zhao
et al., 2014). LncRNA XIST (X-inactive specific transcript) can
induce m6A methylation on XIST by binding the proteins RBM15
and RBM15B required to recruit methylase complexes. YTHDC1
binds to m6A sites to promote XIST-mediated transcript silencing
in the X chromosome gene (Patil et al., 2016). Consequently, the
discovery of this phenomenon stimulated much research effort to
determine the function of m6A readers.

In this study, a total of 278 m6A readers in 22 representative
plant species were identified by BLASTP and HMMER search
(PF04146) (Table S3). On the basis of sequence similarity, YTH
domain-containing proteins can be classified into two distinct
subfamilies: YTHDF and YTHDC (Patil et al., 2017; Scutenaire
et al., 2018). YTHDF subfamily proteins primarily bind all m6A
sites in MRNA, while YTHDC only binds certain nuclear-enriched
sites in MRNAs and non-coding RNAs (Meyer and Jaffrey, 2017,
Patil et al, 2017). In this study, the result of phylogenetic
analysis showed that 55 YTH proteins could be classified into
the YTHDC subfamily and 223 could be classified into the
YTHDF subfamily (Figure 2). In conclusion, the identification,
classification and characterization of these writers, erasers and
readers will help to establish m6A regulatory pathways in plant
biology.

Function of m6A in plants
The role of m6A in mMRNA processing

Arabidopsis is an ideal model organism in which to study m6A
RNA methylation due to the existence of a powerful gene
knockout database. Only a little study has started on the exact
mechanism and biological function of m6A modification or m6A-
related components in plants. Firstly, m6A has been revealed as
one of the most important RNA modifications, playing a vital role
in distinct steps of mRNA function, including mRNA degradation,
stability, translation and miRNA processing in multiple species
(Visvanathan and Somasundaram, 2018). For example, m6A
modifications in 3'UTR and 5'UTR regions are positively correlated
with gene expression, while m6A modifications in other regions
result in lower gene expression in Arabidopsis (Luo et al., 2014).
The ECT2 protein, as the YTHDF2 human homolog protein, not
only regulates 3'UTR processing in the nucleus but also plays a
critical role in promoting mRNA stability and controlling mRNA
fate in the cytoplasm by binding m6A modifications (Lockhart,
2018b). Recent studies have found that 5 UTR m6A modifica-
tions can affect protein translation. The first evidence for this
came from studies of response to heat shock stress, which results
in the redistribution of m6A, leading to increased méA in the 5’
UTR and the promotion of protein translation under stress (Meyer
et al., 2015). In METTL3 mutants, there is a specific reduction in
the translation of mRNAs containing méA modifications in the 5
UTR, but not in stop codons or 3’ UTR regions, further indicating
that 5" UTR m6A affects translation efficiency in cells (Meyer and
Jaffrey, 2017). In addition, the differential localization of m6A
modifications was found to result in distinct effects on translation
mechanism. For example, cap-binding factor elF4E is necessary
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Figure 2 Phylogenetic analysis of 278 YTH domain-containing proteins among 22 plant species (six dicotyledonous species, six monocotyledon species,
one pteridophyte species, two moss species and seven algae species).

for translation initiation. 3’ UTR m6A of mRNAs can recruit m6A function in plant development
‘reader’ YTHDF1 and facilitate cap-dependent translation, by
recruiting the 43S pre-initiation complex to the 5’ cap through an
association between elF4E, elF4G and elF3 (Wang et al., 2015b).
Nevertheless, 5'-UTR m6A in stress-responsive genes encourages
cap-independent translation through the direct binding of elfF3
and later recruitment of the 43S ribosomal complex, which does
not require elF4E (Meyer et al., 2015). Moreover, the m6A eraser
AtALKBH9B mediates mRNA silencing and decay processes (Chen
et al., 2018).

The m6A modification is considered to play a critical role in plant
embryonic development. The postembryonic expression level of
m6A writer components, including MTA, MTB, FIP37, VIRILIZER
and HAKAI, is reduced, resulting in the dramatic reduction of
m6A. Reduced expression and knockout of these m6A writers
produce distinct differentiation phenotypes, including an increase
in the number of trichome branches, defective leaf initiation, the
over-proliferation of vegetative shoot apical meristem and finally

© 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 17, 1194-1208



embryonic lethality (Bodi et al, 2012; Razicka et al., 2017).
Knockout of ECT2 protein increases trichome branching, sug-
gesting that ECT2 is essential for regulating trichome branch
development (Lockhart, 2018b; Scutenaire et al., 2018; Wei
et al., 2018). Knockout of ALKBH10B caused a delay in flowering
and also repressed vegetative growth, indicating that ALKBH10B-
mediated MRNA demethylation affected floral transition by
influencing the stability of mRNA transcripts (Duan et al.,
2017). Certain m6A-modified genes play indispensable roles in
regulating transcription factor activity in the callus, whereas other
m6A-modified genes are essential in plastid and thylakoid
function in leaves (Li et al, 2014b). In addition, N6-mAMP
deaminase (MAPDA) catabolizes N6-mAMP to IMP, which may be
linked to root development, as the knockout of MAPDA leads to
slightly reduced root growth (Chen et al., 2018).

m6A role in stresses response

Growing evidence suggests that m6A is also involved in regulat-
ing response to various abiotic and biotic stresses. Diverse cellular
stresses can result in a transcriptome-wide redistribution of m6A,
leading to an increase in the number of mMRNAs with 5" UTR m6A.
5" UTR m6A directs the binding of elfF3 in a cap-independent
manner to promote translation initiation of mammalian mRNAs
under heat stress, suggesting 5 UTR m6A is vital in response to
heat shock (Meyer et al., 2015). The m6A patterns are dynamic
and 5-30% of m6A peaks are altered under ultraviolet light, heat
shock or interferon-gamma, thereby influencing gene expression
and splicing (Dominissini et al., 2012). In plants, research has
uncovered the molecular mechanisms underlying m6A dynamics
in response to stress. ECT1 and ECT2 are found to specifically
interact with the stress response protein CIPK1 (Calcineurin B-
Like-Interacting Protein Kinase1) and play an important role in the
transmission of calcium signalling to the plant nucleus under
various external stimuli (Ok et al., 2005). Although ECT2 lacks the
YTH domain, it can strongly bind to cytosolic mRNA containing
m6A modifications in 3’ untranslated regions. This ECT2-
mediated recognition of a plant-specific m6A motif allows it to
relocate mRNA to stress granules under heat stress (Scutenaire
et al., 2018). It has also been confirmed that m6A levels are
increased under biotic stresses. The demethylation activity of
atALKBH9B decreased the level of m6A and may affect the
infectivity of AMV (alfalfa mosaic virus) by interacting with the
coat protein (CP). The m6A level in VRNAs of Arabidopsis was
increased on alkbh9b mutation, which negatively regulated virus
accumulation and systemic invasion (Martinez-Pérez et al., 2017).

Transcriptome-wide m6A mapping in differentiated callus and
leaf from rice identified 8138 and 14 253 mRNAs with m6A
modification, respectively (Li et al., 2014b). Such m6A sites are
highly conserved between healthy unstressed cells and cells
undergoing external stress, as well as between human and mouse
cells (Dominissini et al., 2012; Fu et al.,, 2014; Jia et al., 2013).
However, some m6A sites may also demonstrate species-specific,
cell-specific or stress-specific regulation (Meyer et al., 2012). For
example, there is tissue specificity for the m6A sites in rice callus
compared with leaves (Li et al., 2014b). Over 86% of transcripts
in the Arabidopsis chloroplast and mitochondria are m6A
methylated, with 64% and 79% of m6A methylated transcription
showing differential tissue expression across leaves, flowers and
roots (Wang et al., 2017). To understand the functional role of
site-specific m6A in mRNAs, it is necessary to determine m6A
modifications in various species, cells and under external stresses.
Furthermore, m6A modification appears a useful plant regulatory
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strategy to control gene expression, plant development and
physiological processes (Lockhart, 2018b; Roignant and Soller,
2017).

Evolution of m6A methylation components in
the plant kingdom

To understand the evolutionary history and relationship of m6A
modification components, the abundance of m6A writer com-
ponents in 22 representative plant species was analysed. The
results showed that the number of m6A writer components was
greater in higher plants than in lower plants, indicating that
higher plants may require a more precise adjustment of m6A
modifications to cope with complex and changing environments
(Table S1). It was notable that m6A methyltransferases were not
identified in Ectocarpus siliculosus. There was an absence of
VIRILIZER and HAKAI-related proteins from pteridophyte species
and algae species, except for Chlorella variabilis and Chlamy-
domona reinhardtii (Table 1). Chlamydomonas reinhardtii is a
unicellular green alga, and it evolved before the divergence of
land plants. Consequently, these results might indicate that
VIRILIZER and HAKAI underwent gene loss in these plant species.
We speculate that pteridophyta and most algae species may have
an alternative mechanism for m6A modification or another as of
yet unknown protein instead of the two essential m6A writer
components. However, there is little information available in
current literature about this field, and we hope that m6A in lower
plants will be extensively studied in the future. It is interesting that
among the species studied, the evolutionarily complex allo-
hexaploid wheat genome possessed the largest number of m6A
writer components. At present, little research has been devoted
to m6A writer components in plants. Identification of the m6A
methyltransferase complex components in plants will contribute
to the understanding of m6A function. To investigate the
evolutionary relationships among the m6A writer domains,
HMMER  (https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan)
was used to predict the conserved protein structural domains in
MTA, MTB, FIP37 and VIRILIZER. Details of the conserved domains
identified are shown in Figure 3. The majority of MTA members
possessed a SAM (S-adenosyl methionine) methyltransferase
binding domain, which was highly conserved in all species
studied, except for Chenopodium quinoa. Furthermore, the MTB
proteins in all species also contained a SAM methyltransferase
binding domain or SAM binding site named MTA70, which is the
domain responsible for methylation activity. All FIP37 proteins
contained a WTAP (Wilms’ tumour 1-associated protein) domain,
and VIRILIZER proteins contained a virilizer motif in all species. The
results showed that the protein sequences and domain structure
of m6A writer components were highly conserved in all plants
studied (Figure 3).

Angiosperm plants appear to have the most abundant num-
bers of AIkBH proteins, followed by pteridophyte species, and
lastly bryophyte species. The number of AIkBH proteins in algae
was particularly low when compared to that of other plant
species, except for Emiliania huxleyi. In particular, a total of 29
and 27 AIkBH proteins were identified in Triticum aestivum and
Chenopodium quinoa, respectively (Table S2). This main differ-
ence between the species studied was that genomes of land
plants have numerous AIkBH proteins, while algae may have only
a single copy. It would be important to further explore how the
AlkBH protein class expanded during the process of plant
evolution from lower unicellular organisms to higher flowering
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Figure 3 A comparison of functional domains in m6A writer proteins from various plant species. Schematic representation of the conserved domain
structures of the four methyltransferases proteins, including MTA, MTB, FIP37 and VIRILIZER. Structural alignment of plant species showed that the SAM
methyltransferase binding domain is at the C-terminal region in MTA, and the SAM domain or MTA70 is also at the C-terminal region in MTB. The WTAP
domain is located internally in all FIP37 homologs, and the virilizer motif is at the N-terminal region in all VIRILIZER homologs, respectively. Protein length is
shown at the right of each protein schematic, and the location of each domain is indicated at the start and end of each motif box.

plants. All plant AlkBH family members are highly similar to each replications (Kumar et al, 2008). Proteins were considered
other and have the clavaminate synthase-like domain. It is worth orthologous to Arabidopsis atALKBH9 and atALKBH10 if they
noting that Physcomitrella patens has one zinc finger motif and possessed a function similar to m6A demethylation (Figure S1-
Solanum lycopersicum has one leucine-rich domain, respectively, S3). For example, 12 ALKBH proteins were identified in rice, with
suggesting that they may also act as transcription factors to OIALKBH5B, OIALKBH6B and OIALKBH12B classed as potential
regulate gene expression (Figure 4). m6A erasers. In addition, 29 ALKBH proteins were identified in

m6A may retain certain conserved functions during evolution. wheat, with TaALKBH4B, TaALKBH6B and TaALKBH29B classed
Such orthologous proteins are generally known to perform as m6A erasers. All postulated m6A demethylases in 21 species
analogous biological functions and are widely distributed in are listed in Table 1. Currently, there are no m6A erasers
diverse species (Schlicker et al., 2006). Phylogenetic analysis is a identified in rice, although we found OsALKBH1 as a potential
rapid and relatively accurate method to identify orthologous member of this class (Liang et al., 2018). Aravind and colleagues
proteins (Bauwens et al., 2018; Jensen et al., 2018). Conse- hypothesize that EGL-9, as a homolog of AlkB, might be involved
quently, we constructed a phylogenetic tree for AIkBH proteins in RNA demethylation in plant RNA viruses (Aravind and Koonin,
based on sequence similarity using MEGA6.0 and the neighbour- 2001). The findings in this study may be useful to researchers
joining (NJ) method was adopted with 1000 bootstrap attempting to understand m6A mechanisms.
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Plants have more YTH domain proteins than other eukaryotes,
including yeast, human and other mammals (Meyer and Jaffrey,
2017). For instance, 13 YTH domain proteins named ECT1-12 and
CPSF30 were found in Arabidopsis, which is significantly higher
than that of the 5 YTH proteins identified in mammals (Meyer and
Jaffrey, 2017; Wei et al., 2018). The results showed that YTH
proteins were widespread in land plants. The number of YTH
proteins in angiosperm plants was particularly high, with 41, 30
and 29 YTH proteins found in Triticum aestivum, Chenopodium
quinoa and Gossypium hirsutum, respectively. Fewer YTH pro-
teins were identified in pteridophyta, bryophytes and algae
(Table S3), and their biological importance remains unknown. It is
worth noting that the YTH domain protein Mmi1 in fission yeast

(Schizosaccharomyces pombe) does not bind to m6A but can
recognize a specific nucleotide sequence, indicating that not all
YTH domain related to bind m6A (Wang et al., 2015a).
AtCPSF30 is a member of the plant polyadenylation complex,
which belongs to the YTHDC subfamily in Arabidopsis (Addepalli
and Hunt, 2007). All plant YTHDC subfamily proteins contain the
YTH domain or highly conserved zinc fingers (Figure 5). No
YTHDC protein was found in five algae studied (Cyanidioschyzon
merolae, Emiliania huxleyi, Volvox carteri, Ectocarpus siliculosus
and Chlamydomonas reinhardltii), suggesting no gene duplication
event of YTHDC occurred during the evolution process of most
algae. It is worth noting that two monocotyledons (Sorghum
bicolor and Hordeum vulgare) lack YTHDC proteins, while all
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dicotyledon, pteridophyta and bryophytes species have one or
more members. We presume that the YTHDC subfamily may have
been lost in the evolution of different monocotyledons species.
Some studies have reported that YTHDC1 is the dominant protein
to regulate alternative splicing in endogenous transcripts (Zhang
et al., 2010). Importantly, only YTHDC1 could bind to 76 m6A
sites on XIST mRNA, which plays the core role in silencing genes
in female cells. YTHDC1 would promote XIST function to induce
gene repression on the X chromosome (Patil et al., 2016). The
other reader protein, YTHDC2, increases the translation efficiency
of HIFTae mRNA through its helicase function (Tanabe et al.,
2016).

One main functional YTH domain was identified in the YTHDF
subfamily members of all plant species. It is highly conserved and
predominantly cytoplasmic (Figure 5). The YTH domain in wheat

is located at the N-terminal, suggesting that TaECT5 may bind
m6A in mRNA from the translatable pool and move to processing
bodies. In contrast, The YTH domain in Selaginella moellendortfi
and Oryza indica is located at the C-terminal, suggesting that
SMECT2 and OIECT1 selectively bind m6A (Wang et al., 2014).
All species contain at least one YTHDF subfamily member,
indicating that the common ancestor of plants may have
undergone gene duplication, with these duplicated copies further
evolving new features.

ECT2, ECT3 and ECT4 were confirmed as m6A readers in
Arabidopsis and can recognize m6A sites. Another protein
associated with the YTH domain is CPSF30 (30 kDa cleavage
and polyadenylation specificity factor 30) in Arabidopsis (Arribas-
Hernandez et al., 2018). CPSF30 localizes to the nucleus and
plays an important role in response to external stimuli by
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regulating the splicing of the 3’ end of mRNA involved in the
salicylic acid pathway of Arabidopsis (Bruggeman et al., 2014).
Proteins orthologous to ECT2/3/4 and CPSF30 of Arabidopsis
have been identified in 21 other species through the construction
of a phylogenetic tree (Figure S4-S7). 41 YTH proteins were
identified in wheat, with only eight proteins found as potential
m6A readers. 14 YTHs were identified in rice, with three proteins
found as potential m6A readers (Table 1). These orthologous
proteins are considered to have a function similar to their
orthologues in Arabidopsis, but it is still not clear whether these
proteins actually act as m6A readers in plants. In conclusion, m6A
modification components have been present within the plant
common ancestor since early plant evolution, and the protein
domains associated with each of these components were highly
conserved across algae, pteridophyta and angiosperm. Certain
protein  components appear to have been lost during the
evolutionary process. Further insight into the evolutionary rela-
tionship and duplicative expansion of m6A components between
lower and higher plants should provide a greater understanding
of their function.

Conclusion and future perspectives

In this study, we systematically reviewed the structure, compo-
sition, function and evolution of m6A regulatory machinery in
plants. Such sequence comparative investigations on these m6A
related components will aid in understanding the dynamic
processes of m6A modification, as well as its functional roles.
This research will further deepen our understanding of how m6A
exerts RNA epigenetic regulation in plants. Recently, more
efficient technology has been developed to detect m6A modifi-
cations and characterize m6A function. Two methods, MeRIP-Seq
and m6A-seq, combine highly specific m6A antibody
immunoblotting and high-throughput deep sequencing to effi-
ciently and accurately determine the methylated transcripts
(Dominissini et al., 2012; Meyer et al., 2012). In addition, the
newer m6A individual-nucleotide-resolution cross-linking and
immunoprecipitation (miCLIP) technique can easily and sensitively
detect m6A at single-nucleotide resolution (Linder et al., 2015).
In 2017, a chemical proteomics approach was developed, which
relies upon photo-cross-linking with  RNA probes containing
synthetic diazirine, to explore RNA—protein interactions controlled
by m6A (Arguello et al., 2017). The replacement of oxygen at the
4-position of deoxythymidine triphosphate with larger atoms
(sulphur and selenium) weakened the ability of m6A to base pair.
This silent modification could be detected in FTO through next-
generation sequencing. Using this method, two closely situated
m6A sites could be detected at single-nucleotide resolution (Hong
et al.,, 2018). Furthermore, the AthMethPre web server, an
integrated R application PEA, m6ASNP web server and m6AVar
database were developed to predict the target m6A modification
sites (Jiang et al., 2018; Xiang et al., 2016; Zhai et al., 2018).
Zhou developed a computational pipeline termed AutoCirc,
which identified thousands of cell-specific m6A modifications in
circRNAs (Zhou et al., 2017). These methods have enabled in-
depth studies of m6A methylation events and will be useful to
analyse the role of m6A in the binding of specific transcripts in
plants.

Despite such progress, further work is required to fully
understand m6A modification processes and function. Firstly,
the identity of m6A writers, erasers and readers should be
verified, which will aid in understanding how the methylation
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level on numerous types of RNA molecules is regulated in plant
species. Secondly, the expression pattern of m6A should be
carefully validated, as various m6A patterns were obtained from
different members of the same gene family, resulting in the
differential transport or translation of mRNA. Thirdly, although
knowledge on the function and molecular mechanism of m6A
modification in plants is gradually increasing, the majority of
studies are conducted in the model system Arabidopsis, while
little research effort is directed towards crops. It is currently
unknown how m6A modification regulates organ formation, cell
division, growth and development, as well as stress response in
crops, especially in the staple crops worldwide, including wheat,
barley and rice. Future studies on m6A modifications in crops
could provide valuable information for the further improvement
of seed yield and stress tolerance in crops.
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Figure S1 Orthologous protein of Arabidopsis atALKBH9 and
atALKBH10 were identified by phylogenetic analysis among
Micromonas pusilla, Emiliania huxleyi, Volvox carteri, Ectocarpus
siliculosus, Chlorella variabilis, Selaginella moellendorffi, and
Chlamydomonas reinhardltii.

Figure S2 Orthologous protein of Arabidopsis atALKBH9 and
atALKBH10 were identified by phylogenetic analysis among
Physcomitrella patens, Cicer arietinum, Solanum lycopersicum,
Vitis vinifera, Marchantia polymorpha, Brassica rapa and Cheno-
podium quinoa.

Figure S3 Orthologous protein of Arabidopsis atALKBH9 and
atALKBH10 were identified by phylogenetic analysis among Zea
mays, Triticum aestivum, Sorghum bicolor, Oryza indica and
Hordeum vulgare.

Figure S4 Orthologous protein of Arabidopsis ECT2, ECT3 and
ECT4 were identified by phylogenetic analysis among Zea mays,
Micromonas pusilla, Emiliania huxleyi, Volvox carteri, Gossypium
hirsutum, Ectocarpus siliculosus, Chlorella variabilis and Chlamy-
domonas reinhardtii.

Figure S5 Orthologous protein of Arabidopsis ECT2, ECT3 and
ECT4 were identified by phylogenetic analysis among Selaginella
moellendorffi, Physcomitrella patens, Cicer arietinum, Solanum
lycopersicum, Marchantia polymorpha and Brassica rapa.
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Figure S6 Orthologous protein of Arabidopsis ECT2, ECT3 and Table S1 Accession numbers, name codes and amino acid
ECT4 were identified by phylogenetic analysis among Vitis sequences of m6A writers from plant species.
vinifera, Chenopodium quinoa, Triticum aestivum and Sorghum Table S2 Accession numbers, name codes and amino acid
bicolor. sequences of m6A erasers from plant species.
Figure S7 Orthologous protein of Arabidopsis ECT2, ECT3 and Table S3 Accession numbers, name codes and amino acid
ECT4 were identified by phylogenetic analysis among Oryza sequences of m6A readers from plant species.

indica and Hordeum vulgare.

© 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 17, 1194-1208



