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Recent pharmacological data suggest that a receptor-re- 
ceptor interaction between adenosine A, and dopamine D, 
receptors in the brain underlies the behavioral effects of 
adenosine agonists and adenosine antagonists, such as caf- 
feine and theophylline. According to this interaction, stim- 
ulation of A, receptors inhibits and their blockade poten- 
tiates the effects of D, receptor stimulation. Furthermore, 
both A, and D, receptors are selectively colocalized on GA- 
BAergic striopallidal neurons. In this microdialysis investi- 
gation the effect of intrastriatal infusion of adenosine and 
dopamine agonists and antagonists alone or in combination 
was studied on the release of GABA from the terminals of 
the striopallidal neuron in awake, freely moving rats. We 
report that the GABAergic striopallidal neuron, which is a 
key component of the indirect striatal efferent pathway, is a 
main locus for AZ-D, interactions in the brain and possibly 
a main target for the central actions of adenosine agonists 
and antagonists. 

[Key words: adenosine A, receptor, dopamine D, receptor, 
GABA, striopallidal neuron, receptor-receptor interaction, 
methylxanthines] 

Behavioral and biochemical evidence suggests that a strong and 
specific interaction between adenosine A, and dopamine D, 
receptors exists in the brain. Behavioral data show that stim- 
ulation and blockade of the A, receptor inhibits and potentiates, 
respectively, D,-mediated locomotor activation in mice (Fen-e 
et al., 199 la,b) while stimulation of D, receptors counteracts 
the AZ-mediated cataleptic effect in rats (Fern? et al., 1991~). 
Biochemical data show that A, receptor stimulation decreases 
both the affinity of D, receptors for dopamine agonists (Ferre 
et al., 199 1 d) and D, transduction (Fern5 and Fuxe, 1992; Ferre 
et al., 1993) in rat striatal membrane preparations. Based on 
these pharmacological findings we postulated that this AZ-D, 
interaction represents a main mechanism underlying the central 
effects of adenosine agonists and antagonists (for review, see 
Ferre et al., 1992). 

The biochemical data showing an A,-D, interaction with 
membrane preparations of rat striatum strongly suggested the 
existence of a colocalization of A, and D, receptors on the same 
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striatal neuron (FerrC et al., 1991d). Both A, receptors and A, 
receptor mRNA expression are highly enriched in the striatum, 
nucleus accumbens, and olfactory tubercle (Jarvis and Williams, 
1989; Parkinson and Fredholm, 1990; Martinez-Mir et al., 199 1; 
Schiffmann et al., 199 1; Fink et al., 1992), areas also associated 
with high numbers of D, receptors (Boyson et al., 1986). Fur- 
thermore, A, receptor mRNA is selectively expressed in GA- 
BAergic striatal neurons also containing D, receptors (Schiff- 
mann et al., 1991; Fink et al., 1992). These GABA- and 
enkephalin-containing neurons (Gerfen et al., 1990; Le Moine 
et al., 1990) project to the globus pallidus constituting the “in- 
direct pathway,” one of the two major striatal efferent pathways 
(Alexander and Crutcher, 1990; Gerfen, 1992). Thus, we have 
recently postulated that the striopallidal GABAergic neuron is 
a main locus for AZ-D, interactions in the brain and is thus a 
primary site for the action of adenosine agonists and antagonists 
(Fe& et al., 1992). 

In the present in vivo microdialysis study, direct functional 
evidence is provided that an AZ-D, interaction plays a central 
role in the function of the striopallidal pathway in the awake, 
freely moving rat. One microdialysis probe was implanted in 
the striatum, the locus of the striopallidal neuronal bodies and 
of the hypothetical AZ-D, interaction, and a second probe was 
implanted in the ipsilateral globus pallidus, the locus of the 
striopallidal nerve terminals, which release the neurotransmitter 
GABA. By using this experimental preparation in awake, freely 
moving rats, the effect of the intrastriatal infusion of adenosine 
and dopamine agonists and antagonists alone or in combination 
was studied on the release of GABA from the terminals of the 
striopallidal neuron. 

Materials and Methods 
Animals. Male Sprague-Dawley rats (Alab, Stockholm) weighing 350- 
400 gm were used. Animals were maintained on a standard light-dark 
cycle and allowed free access to food and water. 

Surgery. During surgery the animals were mounted into a Kopf ste- 
reotaxic frame and body temperature was continuously maintained at 
37°C with a temperature controller (CMA 150, Carnegie Medicin, Stock- 
holm, Sweden). The animals were maintained under 1.5% halothane, 
98.5% air anesthesia (delivered at 1.4 liters/min). After exposure of the 
skull and drilling two burr holes, two microdialysis probes (Carnegie 
Medicin) were stereotaxically implanted: a large probe, with a 4.0 x 
0.5 mm membrane, was implanted into the neostriatum (coordinates 
from bregma: AP +0.7, L +3.0, DV -8.0) and a smaller probe, with 
a 2.0 x 0.5 mm membrane, was implanted into the ipsilateral globus 
pallidus (AP - 1.1, L + 3.1, DV - 7.75). The probes were perfused at a 
rate of 2‘pl/min with a modified Ringer solution (1.2 rn& CaCl,, 2.7 
mM KCl. 148 mM NaCl. and 0.85 mM M&l,) (Drew and Unaerstedt. 
199 1) throughout the implantation procedire-and dialysis exp&ment: 
The probes were permanently secured with methacrylic cement and two 
stainless steel screws that were implanted in the skull. 
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Figure 1. Effect of increasing doses of the intrastriatally infused do- 
pamine D, agonist pergolide and the adenosine A, agonist CGS 2 1680 
on GABA extracellular levels in the striatum and in the ipsilateral globus 
pallidus of awake, moving rats. The results are expressed as percentage 
of the three basal values measured prior to drug infusion (means + 
SEM, n = 5 or 6/group). Horizontal lines represent the length of time 
the different drug concentrations were infused. Basal striatal and pallidal 
GABA levels measured in 30 min perfusate fractions were, respectively, 
17.9 + 1.2nM(n= 18)and 11.8 + 1.1 nM(n= 16). 

Microdialysis procedure. The animals were allowed to recover for 48 
hr after probe implantation. To prevent induction of adaptive mecha- 
nisms, the experiments were performed in a random order on either 
the second or third day after surgery. On the day of the experiment the 
rat was placed in a modified activity bowl. The inlet tubing of the probe 
was connected to a liquid swivel and perfused with the modified Ringer 
solution at a flow rate of 2 pl/min. The striatal probe was used both to 
infuse dopamine and adenosine agonists and antagonists and to measure 
the extracellular concentrations of dopamine and GABA. The pallidal 
probe was used to measure GABA extracellular levels. Dialysates were 
collected every 30 min during the experiment. At the end of each ex- 
periment the animal was disconnected from the swivel, the inlet and 
outlet tubings were cut and sealed, and the animal was returned to its 
home cage. At the end of the study the rats were killed with an overdose 
of Mebumal (120 mg/kg i.p.; Nord Vacc, Stockholm, Sweden). The 
brain was removed from the skull and the position of the microdialysis 
probes was verified by sectioning in a cryostat and microscopic ex- 
amination. 

Dopamine and GABA analysis. Three and 10 microliters of each 
dialysate sample (60 ~1) were assayed for dopamine and GABA, re- 
spectively. Reverse-phase high-performance liquid chromatograhy 
(HPLC) with electrochemical detection was used to assay dopamine. 
The dopamine system consisted of a Sepstick microbore column (in- 

sample (30 min/sample) 

Figure 2. Counteraction of the effect of the intrastriatally infused do- 
pamine D, agonist pergolide ( 10ms M) (see also Fig. 4) on GABA extra- 
cellular levels in the ipsilateral globus pallidus when it was coinfused 
in the presence of the adenosine A, agonist CGS 2 1680 (1 Om5 M). CGS 
2 1680 alone was infused 90 min prior to coinfusion with pergolide. The 
results are expressed as percentage of the three basal values measured 
prior to drug infusion (means f  SEM, n = 4 or S/group). Horizontal 
lines represent the length of time the different drug combinations were 
infused. Basal pallidal GABA levels measured in 30 min perfusate frac- 
tions were 10.4 + 1.8 nM (n = 4). 

temal diameter = 1 mm; length = 10 cm; BAS, West Lafayette, IN) 
containing 3 pm ODS packing material, a Spectra Physics (SP) 8810 
precision isocratic pump, an on-line CMA 260 degasser (Carnegie Med- 
icin), an SP 4270 integrator, and a BAS LC 4B detector. The composition 
of the mobile phase for the dopamine system was 0.1 M NaH,PO,, 0.3 
mM EGTA, 1.35 mM sodium octane sulfonate acid, 4% acetonitrile, 
0.5% tetrahydrophurane, and 0.1 M acetic acid, pH 4.0. The flow rate 
of this mobile phase was 70 rllmin and was maintained under isocratic 
conditions. The limit of sensitivity for dopamine was 2 fmol/sample. 
The GABA assay employed in this study has been previously described 
in detail (Kehr and Ungerstedt, 1988). Briefly, the assay was based on 
precolumn derivatization with o-phthaldialdehydelt-butyl thiol reagent 
and separation by reverse-phase HPLC on a Nucleosil 3, C 18 column 
with electrochemical detection under isocratic conditions. The mobile 
phase for the GABA system was 0.15 M Na acetate, 1 mM EDTA, and 
50% acetonitrile, pH 5.4. The flow rate of this mobile phase was 0.8 
ml/min. The limit of sensitivity for GABA was 20 fmol/sample. 

Results 
The intrastriatal infusion of the dopamine D, agonist pergolide 
(Amt and Hyttel, 1984; Amt, 1985) did not change local striatal 
GABA extracellular levels but caused a significant decrease in 
GABA extracellular levels in the ipsilateral globus pallidus com- 
pared to controls (repeated-measures ANOVA: drug effect, p < 
0.00 1; drug effect x dose effect, p < 0.0 1). Post hoc comparisons 
(repeated-measures ANOVA with Newman-Keuls test) showed 
significant differences between the pergolide-treated group and 
the control group during the infusion of pergolide at lO-6 M (p 
< 0.01) and pergolide at 1O-5 M (p < 0.01) (Fig. 1). 

The intrastriatal infusion of the adenosine A, agonist CGS 
21680 (Jarvis et al., 1989; Lupica et al., 1990) did not produce 
any significant change in striatal or pallidal GABA extracellular 
levels compared to controls (repeated-measures ANOVA with 
Newman-Keuls test) (Fig. 1). However, CGS 21680 ( 1O-5 M) 
completely counteracted the effect of pergolide (1 O-5 M) on pal- 
lidal GABA extracellular levels when they were coinfused in the 
striatum. Basal pallidal GABA extracellular levels were not sta- 
tistically different from the GABA levels obtained following the 
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Figure 3. Effect of increasing doses of the intrastriatally infused aden- 
osine antagonist theophylline on dopamine extracellular levels in the 
striatum and on GABA extracellular levels in the ipsilateral globus 
pallidus of awake, moving rats. The results are expressed as percentage 
of the three basal values measured prior to drug infusion (means * 
SEM, n = 4 or S/group). Horizontal lines represent the length of time 
the different drug concentrations were infused. Basal striatal dopamine 
and pallidal GABA levels measured in 30 min perfusate fractions were 
3.0 ? 0.5 nM (n = 5) and 14.4 + 4.6 nM (n = 4), respectively. 

infusion of CGS 21680 or the infusion of CGS 21680 plus 
pergolide (repeated-measures ANOVA, no significant treatment 
effect) (Fig. 2). 

The intrastriatal infusion of the adenosine A,/A, antagonist 
theophylline (Jarvis et al., 1989) was associated with a dose- 
dependent increase in striatal dopamine extracellular levels (re- 
peated-measures ANOVA: dose effect, p < 0.0 1). Post hoc com- 
parisons (Newman-Keuls) showed that the effect of theophylline 
at 1 O-3 M was significantly greater than the effect of theophylline 
at 1O-4 M (p < 0.05) and that the effect of theophylline at lo-* 
M was significantly greater than the effect of theophylline at 1O-3 
M (p < 0.01) (Fig. 3). Furthermore, intrastriatal theophylline 
infusion dose dependently decreased pallidal GABA extracel- 
lular levels (repeated-measures ANOVA: dose effect, p < 0.01). 
Post hoc comparisons (Newman-Keuls) also showed that the 
effect of theophylline at lo-’ M and lo-* M was significantly 
greater than the effect of theophylline at 1O-4 M (p < 0.05 in 
both cases) (Fig. 3). 

The intrastriatal infusion of pergolide at 1O-5 M and that of 
pergolide at 1O-7 M plus theophylline at 1O-4 M caused a signiti- 
cant decrease in striatal dopamine extracellular levels (repeated- 
measures ANOVA: treatment effect, p < 0.0001; treatment x 
dose effect, p < 0.000 1). Post hoc comparisons (Newman-Keuls) 
showed that the effect of pergolide 1O-5 M was significantly 
greater than the effect of pergolide at lo-’ M plus theophylline 
at 1O-4 M (p < 0.05), and that the effect of pergolide at lo-’ M 

plus theophylline at 1O-4 M was significantly different from the 
control group (p < 0.01) (Fig. 4). Furthermore, the intrastriatal 
infusion of pergolide and pergolide plus theophylline caused a 
significant decrease in pallidal GABA extracellular levels (re- 
peated-measures ANOVA: drug effect, p < 0.0 1; drug effect x 
dose effect, p < 0.01). Post hoc comparisons (Newman-Keuls) 
showed that the effect of pergolide at 1 O-5 M was not significantly 
different than the effect of pergolide at lo-’ M plus theophylline 
at 1O-4 M, and that both effects were significantly different from 
the control group (p < 0.05 in both cases) (Fig. 4). 
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Figure 4. Effect of the intrastriatal coinfusion of the dopamine D, 
agonist pergolide (lo-’ M) with the adenosine antagonist theophylline 
( 1O-4 M) on dopamine extracellular levels in the striatum and on GABA 
extracellular levels in the ipsilateral globus pallidus of awake, moving 
rats. The effect of the intrastriatal administration of a maximal dose of 
pergolide ( 10m5 M) and a control group were used for comparisons. The 
results are expressed as percentage of the three basal values prior to 
drug infusion (means + SEM, n = 4-6/group). Horizontallines represent 
the length of time the different drug combinations were infused. Basal 
striatal dopamine and pallidal GABA levels measured in 30 min per- 
fusate fractions were 3.0 + 0.5 nM (n = 14) and 12.3 + 2.4 nM (n = 
13), respectively. 

Discussion 
The infusion of the dopamine D, agonist pergolide (Arm and 
Hyttel, 1984; Amt, 1985) in the striatum caused a strong de- 
crease (up to 50%) in the GABA extracellular levels of the ip- 
silateral globus pallidus without changing striatal GABA levels. 
With higher levels of calcium into the perfusion medium, a 
pergolide-induced decrease in striatal GABA levels can also be 
found (Drew and Ungerstedt, 1991; Fuxe et al., 1992). The 
striatal infusion of the A, agonist CGS 2 1680 (Jarvis et al., 1989; 
Lupica et al., 1990) did not alter either striatal or pallidal GABA 
levels. However, when the A, agonist was coinfused with the 
D, agonist pergolide it completely counteracted the effect of the 
D, agonist on pallidal GABA extracellular levels. 

Intrastt-iatal infusion of the A,/A, antagonist theophylline 
(Jarvis et al., 1989) was associated with a stronger inhibition 
(75%) of pallidal GABA levels compared with that for pergolide 
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(50%). However, the effects of striatal infusion of pergolide and 
theophylline on striatal dopamine levels were qualitatively dif- 
ferent: pergolide caused a decrease (up to 60%) and theophylline 
caused a strong increase (up to 400%) of striatal dopamine ex- 
tracellular levels. These results could be explained by a presyn- 
aptic effect of both drugs on dopamine terminals. D, and A, 
receptors have been shown to modulate, by different mecha- 
nisms, striatal dopamine release, the stimulation of either re- 
ceptor causing inhibition and their blockade causing stimulation 
of dopamine release (Morgan and Vestal, 1989; Drew et al., 
1990; Cass and Zahniser, 199 1). 

Consequently, the decrease of pallidal GABA levels after the 
striatal infusion of theophylline could be explained by the stri- 
atal theophylline-induced dopamine release, which would stim- 
ulate D, receptors on the striopallidal neuron. In fact, theoph- 
ylline caused a similar but opposite stepwise dose effect in striatal 
dopamine and pallidal GABA extracellular levels. Nevertheless, 
a dose of theophylline (100 PM), which did not produce any 
change in striatal dopamine or pallidal GABA levels, caused a 
strong decrease (of about 50%) of pallidal GABA levels when 
coinfused with a dose of pergolide (100 nM), which was without 
effect on pallidal GABA levels. Furthermore, this drug com- 
bination was associated with a decrease in striatal dopamine 
levels, strongly indicating that the mechanism involved was an 
enhancement of postsynaptic D, receptor transduction due to 
blockade of A, receptors. Although the presynaptic effect of 
methylxanthines on the striatal dopamine terminals, that is, an 
increase in dopamine release, may contribute to the behavioral 
effects of these drugs, our data suggest that this mechanism of 
action is only in operation at higher doses. Systemic adminis- 
tration of an optimal dose of theophylline (20 mg/kg), which 
causes locomotor activation in the rat, is associated with an 
extracellular striatal concentration of between 50 PM and 90 PM 

(Fredholm et al., 1983; Stable et al., 1990). This is in the con- 
centration range most probably reached in the vicinity of the 
microdialysis probe following intrastriatal infusion of theoph- 
ylline at 100 KM (Stable et al., 1990). Thus, the locomotor ac- 
tivation associated with theophylline can be explained on the 
basis of the presently observed A,-D, interaction on the strio- 
pallidal neuron. 

These results strongly suggest that, through a postsynaptic A, 
receptor-D, receptor interaction, the striopallidal neuron is a 
main locus for the interaction between the neurotransmitter 
dopamine and the neuromodulator adenosine in the brain and, 
thus, a main target for adenosine agonists and antagonists. Fur- 
thermore, these results suggest that new therapeutic strategies, 
incorporating specific A, agonists and antagonists, could be use- 
ful in some basal ganglia disorders, like Parkinson’s disease and 
Huntington’s chorea, as there is considerable evidence showing 
that the impairment in the functioning of the striopallidal neu- 
ron plays a key role in mediating the symptoms of these dis- 
orders (Albin et al., 1989; DeLong, 1990). 
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