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Animal tissues are innervated by sensory neurons that respond 
with increasing discharge frequency to stimuli that have the 
potential to cause tissue damage. In vertebrates these neurons 
are called primary afferent nociceptors (PANS); they have their 
cell bodies [dorsal root ganglion (DRG) neurons] in sensory 
ganglia and a central process that connects synaptically to sen- 
sory transmission neurons in the CNS. It is now clear that the 
PAN does more than simply relay information about intense 
thermal, mechanical, and chemical stimuli; rather, the PAN is 
subject to modulation at its central and peripheral terminals, 
has a peripheral neuroeffector function, and undergoes activity- 
dependent long-term changes. This expanded view of the func- 
tion of the PAN has resulted, in part, from a more comprehen- 
sive description of the peptides contained in PANS and of their 
functions. This article focuses on the role of neuropeptides in 
PAN function. 

Activation and sensitization of primary afferent 
nociceptors 
Activation 
Activation of the PAN at its peripheral terminal requires intense 
mechanical, thermal, or chemical stimulation. Although the 
concentration of many endogenous chemicals that can activate 
PANS (e.g., 5-HT, histamine, and hydrogen and potassium ions) 
increases in an area of tissue damage, among the peptides that 
do so, only bradykinin (BK) has been extensively studied (Ku- 
mazawa et al., 1991). Bradykinin is a nonapeptide (Arg-Pro- 
Pro-Gly-Phe-Ser-Pro-Phe-Arg) cleaved by enzymes (kalli- 
kreins) from certain proteins that circulate in the plasma. Kal- 
likreins are rapidly activated at sites of tissue injury, leading to 
the local production of large amounts of BK (Garrison, 1990). 
There are two known types of BK receptor (B, and B,). Acti- 
vation of PANS by BK is mimicked by B,- but not B,-type 
agonists and is selectively antagonized by B, antagonists (Dray 
and Perkins, 1988; Haley et al., 1989; Kumazawa et al., 199 1). 
Similarly, BK-induced pain in humans appears to be mediated 
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by the B,-type receptor (Whalley et al., 1989). BK-induced ac- 
tivation of PANS involves the generation of diacyl glycerol and 
activation of protein kinase C, leading to an increase in a sodium 
conductance (Dray et al., 1988; Burgess et al., 1989; but see 
Dunn and Rang, 1990). Although tachyphylaxis develops rap- 
idly when BK is repeatedly applied (Kumazawa et al., 1991), 
other inflammatory mediators can prolong BK activation of 
PANS (King et al., 1976; Kirchhoff et al., 1990; Lang et al., 
1990). 

Direct sensitization 

In contrast to the constant stimulus-response function for many 
sensory receptors, repeated noxious stimulation or tissue dam- 
age produces prolonged increases in PAN excitability. This phe- 
nomenon, termed sensitization, is manifested by an increase in 
spontaneous activity, a lowered threshold for activation, and 
increased and prolonged firing to a suprathreshold stimulus 
(Meyer and Campbell, 198 1; LaMotte et al., 1982, 1983). Sen- 
sitization of PANS contributes to hyperalgesia, which is defined 
as a lowered threshold for evoking behavioral indicators of pain 
in animals and the tenderness that is associated with inflam- 
mation in humans. 

Several endogenous peptides generated at a site of injury or 
inflammation can sensitize PANS directly. These include 
interleukin- 1 (IL-l), neutrophil-chemotactic peptides, and NGF- 
octapeptide (NGF-OP). Because of the clinical importance of 
hyperalgesia, the identity and mechanisms of action of hyper- 
algesic mediators is a major area of interest. The technique 
currently used to study direct sensitization involves cultured 
DRG neurons. These can be identified as probable nociceptors 
if they are depolarized by capsaicin (a nonpeptide pain-pro- 
ducing ingredient in chili peppers), which in vivo predominantly 
activates nociceptive small-diameter primary afferents (Helme 
et al., 1986; Jonsson et al., 1986; Saria et al., 1988; Lynn, 1990). 
Nonpeptide agents that directly sensitize PANS include pros- 
taglandin E,, prostaglandin I,, the lipoxygenase product of ar- 
achidonic acid, 8R, 1 SS-diHETE (Taiwo et al., 1987), adenosine 
[acting at an AZ-type receptor (Taiwo and Levine, 1990)], and 
5-HT [acting at a 5HT,, receptor (Taiwo and Levine, 1992)]. 
Prostaglandin E, has recently been shown to increase the calcium 
conductance and to stimulate the release of peptide transmitter 
from cultured DRG cells (Nicol et al., 1992). 

Indirect sensitization 

Both neural and non-neural cellular elements are required for 
a variety of peptide mediators to act upon PANS. Thus, in 
contrast to hyperalgesic prostaglandins (prostaglandin E, and 
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I,), which appear to sensitize PANS directly (Pitchford and Lev- 
ine, 1991), most hyperalgesic peptides act on cells other than 
the PANS; these cells (e.g., sympathetic postganglionic neurons 
and white blood cells), in turn, release a hyperalgesic agent that 
acts directly on the PAN. 

Bradykinin. Although BK activates PANS directly, BK-in- 
duced sensitization of PANS to mechanical stimuli is largely 
indirect and depends on prostaglandin synthesis (Lembeck et 
al., 1976; Gonzales et al., 1989; Kumazawa et al., 1991). BK 
hyperalgesia is blocked by the prostaglandin E, receptor antag- 
onist SC19220 (Taiwo and Levine, 1988). Furthermore, there 
is evidence that BK-induced hyperalgesia to mechanical stimuli 
depends on sympathetic postglanglionic neuron (SPGN) ter- 
minals; it is markedly attenuated by their chemical destruction 
with 6-hydroxydopamine (Levine et al., 1986~). BK-induced 
hyperalgesia is also blocked by mepacrine (a phospholipase A, 
antagonist), suggesting that BK-induced production of the di- 
rectly acting hyperalgesic agent prostaglandin E, is a phospho- 
lipase AZ-dependent activity (Taiwo et al., 1990). 

BK sensitizes PANS to thermal as well as mechanical stimuli 
in animals, and in humans produces thermal hyperalgesia (Raja 
et al., 1990). The duration of the sensitization to thermal stimuli 
is relatively brief (Koltzenburg et al., 1991; Kumazawa et al., 
199 1) and is blocked by prostaglandin synthesis inhibitors (Ku- 
mazawa et al., 1991). In contrast to BK-induced mechanical 
hyperalgesia, Koltzenburg et al. (199 1) reported that BK-in- 
duced sensitization to thermal stimuli is not attenuated by sur- 
gical sympathectomy. Although this suggests a direct BK effect 
on PANS, surgical sympathectomy is less complete than chem- 
ical sympathectomy produced by 6-hydroxydopamine (Fischer 
et al., 1964; Thoenen, 1972). 

Znterleukin- 1. IL- 1 refers to two polypeptides (IL- 1 a! and IL- 
l/3), classified as cytokines, that stimulate proliferation of and 
protein synthesis in a variety of cells (Dinarello, 1989). Cyto- 
kines are produced by leukocytes and other cells in response to 
infection, exposure to bacterial toxins, and inflammatory me- 
diators. IL-l@ is a potent hyperalgesic agent with a probable 
peripheral site of action (Ferreira et al., 1988). Interestingly, a 
tripeptide analog of IL- 10 acts as a peripherally acting analgesic. 
This tripeptide blocks hyperalgesia induced by both IL- l/3 and 
carrageenan, a proinflammatory plant polysaccharide. Since IL 1 
induces E-type prostaglandin production in non-neuronal cells 
(Dayer et al., 1986), it is not surprising that the prostaglandin 
synthesis inhibitor indomethacin inhibits IL- 1 p hyperalgesia. 

Chemotactic peptides. There are two major pathways of ar- 
achidonic acid metabolism: the cyclooxygenase pathway, which 
leads to the production of prostaglandins, and the lipoxygenase 
pathway, which produces leukotrienes (Lewis, 1989). Metabo- 
lites of both pathways sensitize nociceptors. Although these 
compounds are not peptides, studies of their actions have led 
to the discovery of a novel class of hyperalgesic peptides, name- 
ly, those that attract and activate white blood cells. 

Leukotriene B, (LTB,) sensitizes PANS and produces hyper- 
algesia in animals (Rackham and Ford-Hutchinson, 1983; Le- 
vine et al., 1984a, 1985b, 1986b; Martin et al., 1988; Madison 
et al., 1992), and produces a tender and indurated lesion after 
intradermal injection in humans (Soter et al., 1983; Lewis et 
al., 1984). LTB,-induced hyperalgesia is distinguished from that 
induced by prostaglandin E, and BK by its dependence on white 
blood cells and its independence of the SPGN and of the cyclo- 
oxygenation of arachidonic acid (Levine et al., 1984a, 198 5b). 
The hyperalgesic factor released by white blood cells in response 

to LTB, has been identified as 8R, 1 5%diHETE, another lipox- 
ygenase product (Levine et al., 1986b). The hyperalgesic pep- 
tides that activate white blood cells include formyl Met-Leu- 
Phe, a tripeptide generated during the degradation of bacterial 
cell wall proteins, and CSa, a fragment of the fifth component of 
the complement cascade. 

Nerve growth factor-derived octapeptide. Cleavage of the ami- 
no-terminal end of NGF produces an octapeptide (NGF-OP: 
Ser-Ser-Thr-His-Pro-Val-Phe-His; Burton et al., 1978). Since 
enzyme inhibition studies indicated structural relatedness of 
NGF-OP and BK, we examined NGF-OP in nociceptive tests. 
NGF-OP produces a behavioral hyperalgesia that is dose de- 
pendent (Taiwo et al., 1991). Like BK-induced hyperalgesia, 
sympathectomy or indomethacin pretreatment attenuates NGF- 
OP hyperalgesia. NGF-OP action, however, is distinct from that 
of BK. NGF-OP induces hyperalgesia only in the setting of tissue 
injury. Since NGF production is markedly increased after nerve 
injury (Heumann et al., 1987a), it is possible that NGF-OP 
contributes to the pain and hyperalgesia associated with nerve 
injury. NGF gene expression (Heumann et al., 1987b, Lindholm 
et al., 1987) can also be enhanced by IL-l, the hyperalgesic 
cytokine mentioned above. 

In summary, tissue damage or inflammation generate medi- 
ators, including peptides, that produce a prolonged lowering of 
the PAN threshold. Importantly, the lowering of PAN threshold 
depends on the presence of cells other than the PAN such as 
white blood cells and SPGNs. Thus, these cells must play a 
crucial role in the sensory transduction process. Analgesic and 
anti-inflammatory drugs such as aspirin and indomethacin block 
the generation of these mediators. The development of receptor 
blockers for these peptide mediators represents an important 
avenue for development of new analgesic agents. 

Modulation of the peripheral terminals of primary 
afferent nociceptors by opioids 
In addition to their well-characterized antinociceptive actions 
in the CNS (see below), opioids act in the periphery to modulate 
PAN function (Basbaum and Levine, 199 1). Opioid binding 
sites, synthesized in the DRG, are transported into the periph- 
eral, as well as the central, terminals of sensory neurons (Young 
et al., 1980; Laduron, 1984). Indeed, local injection of opioids 
into inflamed tissue reduces activity in PANS (Russell et al., 
1987). Behavioral studies demonstrated a naloxone-antagoniz- 
able analgesic effect of opioids directly injected into tissue that 
is injured or inflamed (i.e., hyperalgesic) (Ferreira and Naka- 
mura, 1979; Abbott, 1988; Levine and Taiwo, 1989; Stein et 
al., 1989) but not after injection into normal tissue (Hargreaves 
et al., 1987; Russell et al., 1987; Smith et al., 1988; Stein et al., 
1988, 1989). In a recent clinical trial using injection of opioids 
directly into the knee joint, Stein et al. (199 1) provided evidence 
that a peripheral action of opioids may relieve pain in patients 
following knee surgery. 

Of the three major classes of opioid receptor ligands (p, 6, K), 

cl-ligands appear to be the most potent of the peripherally acting 
agonists (Joris et al., 1987; Levine and Taiwo, 1989; Stein et 
al., 1989). p-Receptor-specific agonists appear to act on the 
terminals of the PAN (Taiwo and Levine, 199 la). Thus, intra- 
dermal injection of DAMGO, a r-opioid receptor-selective ag- 
onist, but neither the &selective ligand DPDPE nor the x-selec- 
tive ligand U50,488H, inhibits the hyperalgesia induced by 
prostaglandin E, (Levine and Taiwo, 1989). The analgesic effect 
of the peripherally administered r-ligand is prevented by per- 
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Figure 1. Sites of peptide action in 
peripheral pathways of pain and hy- 
peralgesia. The inflammatory peptide 
bradykinin (BK), cleaved from high- 
molecular-weight kininogen (ZZMK) 
circulating in the venules, can activate 
the primary afferent nociceptor (PAN) 
in a protein kinase C (PKC)- and Ca*+- 
dependent mechanism or sensitize the 
PAN through the production of PGE, 
in sympathetic postganglionic neurons 
(SPGN). Interleukin-la (IL-IO) also can 
sensitize the primary afferent through a 
similar mechanism. The chemotactic 
peptides C,, and jMLP activate the 
neutrophil, as does leukotriene B, 
(LTB,), and causes the release of the 
lipoxygenase product 8R,lSS-dHETE, 
which sensitizes the primary afferent 
directly. Primary afferent sensitization 
probably involves a stimulatory G-pro- 
tein (G,) and the CAMP second messen- 
ger system. Opioid ligands of the 6- and 
k-classes can inhibit this sensitization 
at the level ofthe SPGN, and the p-class 
opioid ligand can do so at the level of 
the PAN via an inhibitory G-protein 
Gi). 

tussis toxin, suggesting that the effect is mediated by G-protein- 
coupled inhibition of CAMP. K- and &ligands, which do not 
block prostaglandin E,-induced hyperalgesia, block BK-induced 
hyperalgesia (Taiwo and Levine, 199 1 b). Since K- and b-opioid 
receptors are located on SPGN terminals (Illes et al., 1980a,b, 
1985; Hughes, 1981; Wuster et al., 1981; Berzetei et al., 1987, 
1988), and since BK hyperalgesia depends on SPGN terminals, 
it is likely that 6- and K-ligands reduce the hyperalgesia through 
an action on the sympathetic terminals (see Fig. 1). 

Receptors on the peripheral terminals of nerves may, of course, 
respond to endogenous as well as exogenous opioids, including 
those arising in the pituitary, adrenal cortex, and/or local in- 
flammatory cells, specifically lymphocytes, which synthesize 
(Zurawski et al., 1986; Rosen et al., 1989) and release (Smith 
et al., 1986; Kavelaars et al., 1989) opioid peptides (Stein et al., 
1990). 

Figure 1 schematically illustrates our current understanding 
of the peripheral sites and mechanisms of action of peptides in 
pain and hyperalgesia. 

Peptides in primary afferent nociceptors 
Distribution of peptides in dorsal root ganglion neurons 
The list of peptides found in primary afferents is large and 
growing. The most extensively studied primary afferent neu- 
ropeptide is substance P (SP), an undecapeptide that is present 
in about 20% of DRG neurons. SP is a member of a family of 
peptides, the tachykinins or neurokinins, which have a common 
C-terminal amino acid sequence. Despite intensive study, it has 
not been shown that the release of SP, or for that matter of any 
individual peptide, is correlated with the activity of a single 
physiologically defined class of primary afferents. Thus, al- 
though SP is present in some PANS (Leah et al., 1985; Cameron 
et al., 1988; Plenderleith et al., 1990), it is not restricted to 
nociceptors. In fact, the identification of a specific peptide with 
a specific physiological class of sensory receptor is unlikely in 
view of the coexistence, in various combinations, of up to four 
peptides in single DRG neurons (Cameron et al., 1988). For 
example, up to 80% of SP-containing DRG neurons in the cat 

cocontain calcitonin gene-related peptide (CGRP, Garry et al., 
1989); the fraction may be even higher in the rat (Wiesenfeld- 
Hallin et al., 1984). Almost 26% of the SP-containing neurons 
also contain somatostatin (SOM); 34% of the SOM neurons 
contain SP and 22% of the SOM-containing neurons also contain 
CGRP. Furthermore, the pattern of peptide content is devel- 
opmentally regulated (Hammond and Ruda, 199 l), and the 
coexistence pattern differs considerably among species. Thus, 
SOM and SP appear not to coexist in the rat (Tuchscherer and 
Seybold, 1985). Furthermore, a significant fraction of small- 
diameter DRG neurons contain neither SP nor SOM. 

Although the complement of neuropeptides in primary affer- 
ent neurons does not correlate well with cutaneous sensory mo- 
dality (Wall and Fitzgerald, 1982; Leah et al., 1985; see below), 
it may be related to the type of tissue innervated (Green and 
Dockray, 1987; McMahon and Gibson, 1987; Molander et al., 
1987; Ositelu et al., 1987; O’Brien et al., 1989). In general, DRG 
neurons that innervate visceral targets are enriched in SP and 
CGRP compared to those innervating the skin. For example, 
of the population of DRG neurons that innervates the rat stom- 
ach antrum, up to 85% contain CGRP and up to 60% contain 
SP (Green and Dockray, 1988); this compares to 15% and 1096, 
respectively, for DRG neurons that innervate the skin. When 
cutaneous nerves are cut and forced to reinnervate stomach 
antrum, the levels of SP and CGRP in the reinnervating DRG 
neurons increase significantly (Horgan and Van der Kooy, 1992). 

Plasticity in primary aferent nociceptors 

The concentrations of peptides in DRG neurons change after 
tissue injury or nerve damage. For example, hindlimb injection 
of formalin, which evokes a characteristic but short-lived pain 
syndrome, is associated with a significant increase in the number 
of DRG neurons expressing preprotachykinin (PPT) mRNA 
(Noguchi et al., 1988). In adjuvant-induced arthritis, the con- 
centrations of SP and CGRP, but not SOM, are markedly in- 
creased in the DRG neurons that innervate the affected joints 
(Smith et al., 1992). On the other hand, Weihe et al. (1988) 
found little change in dorsal horn neurokinin immunoreactivity 
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in response to inflammation (despite dramatic increases in the 
levels ofdynorphin in second-order neurons of the dorsal horn). 
These changes in the DRG neurons outlast the pain behavior 
evoked by the same formalin stimulus. 

In contrast to inflammation, sciatic nerve section is associated 
with a decrease in the levels of PPT, CGRP, and SOM mRNA 
in DRG neurons (Noguchi et al., 1989, 1990); there is a cor- 
responding decrease in the level of peptide immunoreactivity 
in terminals in the dorsal horn (Barbut et al., 1981). On the 
other hand, the levels of the peptides galanin and vasoactive 
intestinal peptide increase in DRG neurons after peripheral nerve 
section (Hijkfelt et al., 1987; Noguchi et al., 1989). In part, this 
occurs in DRG neurons that previously expressed CGRP 
(Doughty et al., 1991). Neuropeptide Y mRNA and peptide, 
which are undetectable in DRG neurons of normal rats, rise 
to very high lcvcls in rats with partial nerve section (Wakisaka 
et al., 1991). Taken together, these results indicate that nerve 
injury can alter the phenotype of the PAN. 

Peripheral neuroefector function of primary afferent 
nociceptor peptides 

Peptides released from the peripheral terminals of PANS have 
potent biological activity. SP, the peptide studied most exten- 
sively in this regard, is released from the peripheral terminals 
of PANS when they are activated by noxious stimuli or by 
antidromic activation of the peripheral nerve (Bill et al., 1979; 
Brodin et al., 198 I; Moskowitz et al., 1984; White and Helmc, 
1985). Direct application of SP to peripheral tissues produces 
vasodilatation and increases vascular permeability (Lembcck 
and Holzer, 1979; Saria, 1984) attracts white blood cells (Helme 
and Andrews, 1985; Saito et al., 1986), activates the phagocytic 
function of neutrophils (Payan et al., 1984) and macrophages 
(Bar-Shavit et al., 1980; Hartung et al., 1986) increases pro- 
duction and release of inflammatory mediators (e.g., lysosomal 
enzymes and eicosanoids) from these cells (Hartung et al., 1986), 
and degranulates mast cells resulting in local release ofhistamine 
(Johnson and Erdos, 1973). SP also stimulates release of pros- 
taglandin E, and collagenase from cells in joints of patients with 
rheumatoid arthritis (Lots et al., 1987) and induces the release 
of IL-I, tumor necrosis factor a, and IL-6 from white blood 
cells (Lotz et al., 1988). This suggests a possible mechanism for 
the regulation of host defense responses by the nervous system. 

That SP released by PANS actively contributes to joint in- 
flammation is suggested by the observation that the destruction 
of PANS with capsaicin reduces the severity of experimental 
arthritis (Levine et al., 1986a). Furthermore, SP antagonists 
inhibit the neurogenic inflammation produced by PAN stimu- 
lation (Couture and Cuello, 1984) and the leakage of plasma 
induced by SP or by antidromic electrical stimulation of sensory 
nerves is completely inhibited by a selective antagonist of the 
NK, receptor (Garret et al., 1991; Lembeck et al., 1992), one 
of three neurokinin receptors (NK,, NK,, and NK,) that have 
been cloned and sequenced (Masu ct al., 1987; Yokota et al., 
1989; Shigemoto et al., 1990). These studies raised the possi- 
bility that neuropeptides released by primary afferents contrib- 
ute to the inflammatory response in a variety of diseases, in- 
cluding arthritis (Levine ct al., 1984b, 1985a), asthma (Barnes 
et al., 1991a,b), inflammatory bowel disease (Mantyh et al., 
1988, 1989, 1991), and migraine headache (Moskowitz et al., 
1984) and that neurokinin antagonists may be of clinical value 

Central terminals of primary aferent nociceptors: peptides as 
central neurotransmitters and neuromodulators 

Neurokinins as primary ajtirent nociceptor neurotransmitters. 
PAN-derived SP is concentrated in laminae I and II [the sub- 
stantia gelatinosa (SG)] of the spinal cord dorsal horn. These 
laminae contain nociresponsive neurons (HSkfelt et al., 1975) 
and, although iontophorcsis of SP onto these neurons excites 
them (Henry, 1976), these results were not generally accepted 
as showing that SP is a “neurotransmitter” of PANS. To the 
contrary, the demonstration that dorsal horn nociresponsive 
neurons can be activated even when the SP content of the dorsal 
horn is reduced (e.g., after sciatic nerve section) led to the sug- 
gestion that peptides released by primary afferents serve a poorly 
defined “neuromodulatory,” rather than neurotransmitter, 
function (Wall et al., I98 1). Even the recent demonstration that 
SP-immunoreactive terminals of undoubted primary afferent 
origin (Carbon et al., 1989; see below) make synaptic contact 
with physiologically dcbned nociresponsive neurons did not re- 
veal how SP contributes to the transmission of nociceptive in- 
put. 

A variety of new approaches, including the development of 
better methods to monitor the release of peptides in the spinal 
cord, the design of more selective peptide antagonists, and the 
refinement of ultrastructural double labcling techniques (which 
allow several amino acids and peptides to be examined simul- 
taneously in the same synaptic profile), have provided powerful 
evidence in favor of the hypothesis that SP is indeed a central 
ncurotransmitter of PANS. To implicate peptides in the trans- 
mission of nociceptive messages from PANS to second-order 
neurons requires the demonstration that they are released by 
pain-producing stimulation. In fact, the release of SP into the 
cerebrospinal fluid (CSF) of the cat can be evoked by peripheral 
nerve stimulation, but only at intensities that elicit pain-related 
responses, such as increased biood pressure and dilation of the 
pupils. Increased SP release is also produced by application of 
capsaicin to the skin, which preferentially activates PANS (Go 
and Yaksh, 1987). 

Although CSF levels of SP are presumed to result from over- 
flow secondary to release from the central terminals of PANS, 
recent evidence suggests an alternative source. Using antibody- 
coated glass microelectrodes, Duggan and Hendry (1986) eval- 
uatcd the spatial distribution of released peptide in spinal cord. 
They found that electrical stimulation of cutaneous nerves at 
intensities high enough to activate PANS evokes the release of 
SP in the SG andat the surface ofthe spinal cord. They suggested 
that the peptide detected in the CSF derives from the peripheral 
terminals of branches of SP-containing primary afferents that 
innervate the pia mater of the spinal cord, rather than from 
central terminals of PANS that synapse upon spinal cord neu- 
rons. 

The distance within the spinal cord over which neurokinins 
may act has also been studied by means of the antibody micro- 
probe technique. Noxious stimuli evoke the release of SP and 
neurokinin A (NKA; a neurokinin that co-occurs with SP and 
that is presumably coreleased from primary afferent terminals; 
see below). However. NKA persists in spinal tissue long after 
SP can no longer be detcctcd (Duggan et al., 1990; Hope et al., 
1990a,b). Furthermore, NKA can be detected at a considerable 
distance from its presumed site of release in the SC. Since SP, 
but not NKA, is rapidly degraded by neutral endopeptidase 

for their amelioration. 24. I 1 (enkcphalinase), it was proposed that the persistence and 
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diffusion of NKA after release is due to its slower degradation. 
These results raise the possibility that some peptides released 
from PANS can exert effects at a considerable distance from 
their site of release, an observation consistent with the presence 
of mismatches between the distribution of peptides and their 
respective binding sites (Herkenham, 1987; Kruger et al., 
1988a,b). 

As described above, the effects of neurokinins result from an 
action on at least three different receptors, NK,, NK,, and NK,. 
The NK, and NK, receptors are thought to be targeted by SP 
and NKA, respectively. Consistent with their putative contri- 
bution to nociceptive processing, NK, binding sites are densely 
concentrated in dorsal horn laminae I and II and along the 
medial half of the laminae III-X, as well as in the intermediolat- 
era1 cell column. NK, sites overlap considerably with the NK, 
sites; NK, sites are more restricted in their distribution, being 
densely concentrated in laminae I and II. 

The antibody-coated glass microelectrode was also used to 
address the nature of the stimuli that evoke peptide release. 
Kuraishi et al. (1988) had reported that SP was released by 
noxious mechanical, but not thermal, stimulation. Duggan and 
colleagues confirmed that, at the temperature used by Kuraishi 
et al. (<48.5”C), there is no SP release; however, noxious ther- 
mal stimuli did evoke the release of SP at temperatures above 
52°C (Duggan et al., 1988). Although the release of SP at the 
higher temperature may simply reflect an increased number of 
impulses invading the central terminal of thermally sensitive 
nociceptors, it is possible that the higher temperatures induce 
tissue damage with associated inflammation and that chemicals 
released as a consequence may secondarily activate a separate 
population of chemosensitive, SP-containing PANS that are not 
directly sensitive to thermal stimuli. Consistent with the idea 
that inflammatory mediators in the periphery also act as stimuli 
for central release of SP, Schaible et al. (1990) reported that 
inflammation of the knee joint evokes the release of SP in the 
cat spinal cord. 

Behavioral effects ofsubstance P. In addition to the anatomical 
studies of SP distribution in the dorsal horn and the demon- 
stration that it is released by noxious stimuli, the involvement 
of SP in the transmission of nociceptive messages by PANS is 
supported by the finding that nociceptive neurons of the dorsal 
horn are excited by local iontophoresis of SP (see below) and 
that lumbar intrathecal injection of SP, in both rats and mice, 
evokes a syndrome characterized by biting and scratching of the 
hindlimbs (Hylden and Wilcox, 198 1; Piercey et al., 198 1; Sey- 
bold et al., 1982). Based on the limited rostra1 spread of the 
peptide, Piercey et al. (198 1) concluded that these behavioral 
effects indicate pain and result from a spinal action. These effects 
are mimicked by the NK,-selective agonist septide, but not by 
the NK,-selective agonist senktide (Papir-Kricheli et al., 1987). 

Although some investigators have argued that these behaviors 
do not indicate pain (Bossut et al., 1988a,b; Frenk et al., 1988), 
other studies more directly link SP with pain behavior. For 
example, intraspinal injection of SP lowers the threshold for 
eliciting the thermal-evoked tail-flick reflex (Cridland and Hen- 
ry, 1988c), and antagonists of SP block the facilitation of the 
tail-flick response produced by a concurrent noxious stimulus 
(Cridland and Henry, 1988b). The selective nonpeptide NK, 
antagonist CP-96345 reduces the pain behavior produced by 
subcutaneous formalin (Yamamoto and Yaksh, 1991). Taken 
together, these results provide evidence that SP is a neurotrans- 
mitter of nociceptive PANS and that the intensity of the stim- 

ulus, its modality (Wiesenfeld-Hallin, 1986a,b, Ohno et al., 1988) 
and/or the degree to which the stimulus provokes inflammation 
are critical factors that determine the extent to which SP con- 
tributes to the transmission of nociceptive signals. 

Substance P actions on second-order neurons in spinal dorsal 
horn. Stimulation of dorsal roots in rat spinal cord in vitro 
produces an early, fast and a late, slow depolarization in dorsal 
horn neurons. The late, slow depolarization is blocked by an 
SP antagonist and cannot be demonstrated in spinal cords taken 
from rats in which C-fibers are destroyed by pretreatment with 
capsaicin (Urban and Randic, 1984). When SP is bath applied, 
dorsal horn neurons show a depolarization that is similar in 
time course to the late, slow depolarization evoked by dorsal 
root stimulation. Voltage-clamp studies show that this depo- 
larization is due largely to the activation of a time- and voltage- 
dependent inward Ca2+ current (Murase and Randic, 1984). The 
analysis of SP effects on ionic conductances is somewhat com- 
plicated, however, because SP also activates a Ca2+-activated 
voltage-sensitive K+ current (which would oppose the SP-acti- 
vated inward CaZ+ current) and a nonspecific cationic conduc- 
tance that would act synergistically with the CaZ+ current (Mu- 
rase et al., 1989). In vivo electrophysiologicial studies have shown 
that locally iontophoresed SP can produce an excitatory effect 
that is slow in onset, of long duration, and selective for dorsal 
horn neurons that respond to noxious stimulation (Henry, 1976; 
Salter and Henry, 199 1). A selective NK, antagonist, CP 96345, 
blocks responses of cat dorsal horn neurons to both noxious 
heat and iontophoretically applied SP (Radhakrishnan and Hen- 
ry, 199 1). Excitation of identified spinothalamic tract neurons 
by iontophoretically applied SP has also been demonstrated 
(Willcockson et al., 1984). Finally, using receptor-selective drugs, 
Fleetwood-Walker et al. (1990) found that both SP, acting via 
the NK, receptor, and NKA, acting via the NK, receptor, excite 
nociceptive dorsal horn neurons. 

Although SP has a predominantly excitatory effect at the syn- 
apse between PANS and dorsal horn nociceptive neurons, other 
in vivo experiments indicate that a subpopulation of dorsal horn 
neurons is inhibited by SP, acting via the NK, receptor (Fleet- 
wood-Walker et al., 1990). In fact, bath-applied SP evokes a 
hyperpolarizing response in about one-third of dorsal horn neu- 
rons (Murase and Randic, 1984). This hyperpolarization is abol- 
ished by either TTX or high-Mg*+, low-Ca2+ solutions, sug- 
gesting that it is an indirect effect produced through an action 
of SP on an intemeuron that synapses upon the recorded cell. 
A corollary of this observation is that some of the cells activated 
by SP inhibit other dorsal horn neurons. Since SP produces both 
direct excitation and indirect inhibition of dorsal horn nocicep- 
tive neurons, it is of interest that CNS injection of SP exerts 
both nociceptive and naloxone-reversible antinociceptive effects 
(Fredrickson et al., 1978). The antinociceptive effect may result 
from an SP-induced release of opioid peptides from dorsal horn 
intemeurons. Indeed, such release has been detected (Del Rio 
et al., 1983). More recently, however, Krumins et al. (1989) 
raised the possibility that the N-terminal fragment of SP might 
interact with opioid receptors and, in fact, demonstrated that 
SPl-9 and SPl-4, but not SP5- 11 (i.e., the C-terminus of SP), 
reduce the affinity and increase the binding capacity of the p-opi- 
oid ligand DAMGO in mouse brain and spinal cord. They also 
provided evidence that the naloxone-antagonizable “behavioral 
desensitization” produced by repeated injections of SP is a con- 
sequence of the breakdown of SP into (1) a pronociceptive C-ter- 
minal fragment and (2) a desensitizing N-terminal fragment that 
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exerts its effects through the p, opioid binding site (Larson, 1988; 
Igwe et al., 1990a,b). 

Multiple primary afferent nociceptor neurotransmitters and 
their interactions 
Among the many peptides that are located in DRG neurons, 
CGRP provides one of the best examples of a neuromodulator, 
in the sense of a compound that exerts only limited effects by 
itself, and yet dramatically potentiates the effects of other com- 
pounds (particularly SP). Unlike SP (Helke et al., 1982), CGRP- 
containing terminals in the dorsal horn appear to derive exclu- 
sively from DRG cells. Dorsal rhizotomy (Chung et al., 1988; 
Traub et al., 1989) virtually eliminates CGRP staining in the 
cord. Since neonatal capsaicin treatment destroys a large pro- 
portion of PANS, it is not surprising that it also significantly 
reduces the level of CGRP in the spinal cord (France-Cereceda 
et al., 1987; Hammond and Ruda, 1989). The CGRP-containing 
axons are largely unmyelinated or small-diameter myelinated 
and constitute almost 30% of the primary afferent axons of 
Lissauer’s tract, the major afferent input to the superficial lam- 
inae of the dorsal horn (McNeil1 et al., 1988). Unlike SP, which 
is distributed extensively in both dorsal and ventral horn, CGRP 
terminals are concentrated in dorsal horn laminae I and II and 
in the reticulated region of lamina V (Carlton et al., 1988). 
Electron microscopic studies have established a direct connec- 
tion between CGRP-containing primary afferents and second- 
order nociceptive spinothalamic tract neurons (Carlton et al., 
1990). Since SP and CGRP coexist in primary afferent dorsal 
horn terminals (Merighi et al., 1988; Fried et al., 1989; Plen- 
derleith et al., 1990), the fact that CGRP at spinal levels is found 
only in primary afferents means that there are some direct SP- 
containing PAN connections to dorsal horn neurons (Carlton 
et al., 1989). 

In the primate many CGRP-immunoreactive terminals con- 
tact one another. This indicates that primary afferent terminals 
make axoaxonic contact with each other. This arrangement may 
provide the anatomical substrate for a regulation by CGRP of 
amino acid release from PANS. In fact, there is evidence that 
both SP and CGRP can regulate the release of amino acid neu- 
rotransmitters from primary afferent fibers (Kangrga and Ran- 
die, 1990; Smullin et al., 1990). Paradoxically, neither CGRP 
nor neurokinin binding sites have been demonstrated on pri- 
mary afferent fibers [indeed, dorsal rhizotomy results in an in- 
crease in the numbers of such binding sites in the dorsal horn 
(Charlton and Helke, 1985)]. There is, in fact, an apparent mis- 
match in the distribution of CGRP-containing terminals and 
CGRP binding sites in the dorsal horn. Specifically, the binding 
sites are notably low in abundance in the SG (Kruger et al., 
1988a). 

Iontophoretically applied CGRP produces a slow-onset, long- 
lasting excitation of nociceptive dorsal horn neurons in vivo 
(Miletic and Tan, 1988). In vitro studies have demonstrated that 
CGRP produces a slow depolarization by a direct action on 
nociceptive dorsal horn cells (Ryu et al., 1988). Importantly, 
Biella et al. (199 1) demonstrated that concentrations of CGRP 
that alone have little or no consistent effect, markedly potentiate 
the excitatory effect of either SP or noxious stimulation on rat 
dorsal horn neurons in vivo. Furthermore, CGRP increases Ca2+ 
conductance in DRG cells (Ryu et al., 1988) and enhances the 
release of SP from spinal cord slices (Oku et al., 1987). 

Consistent with CGRP contributing to nociceptive processing 
in the dorsal horn, Morton and Hutchison (1990), using the 

antibody microprobe technique, found that noxious thermal, 
mechanical, or electrical stimulation evokes the release of CGRP 
in the superficial dorsal horn. Furthermore, direct application 
to the spinal cord of antisera to CGRP has an antinociceptive 
action (Kuraishi et al., 1988) and CGRP enhances the effects 
produced by SP (Wiesenfeld-Hallin et al., 1984). For example, 
coadministration of SP and CGRP significantly increases the 
excitability of a nociceptive flexion reflex in the rat (Woolf and 
Wiesenfeld-Hallin, 1986). Although the mechanism through 
which the interaction between SP and CGRP is produced is not 
clear, there is evidence that CGRP may retard the enzymatic 
degradation of SP (IX Greves et al., 1985). 

In addition to the interactions between peptides, there are 
also interactions between peptide and excitatory amino acid 
transmitters on dorsal horn neurons. Noxious stimulation evokes 
the release of glutamate and other amino acids that co-occur 
with the peptides in primary afferent terminals (Battaglia and 
Rustioni, 1988; De Biasi and Rustioni, 1988; Skilling et al., 
1988; Smullin et al., 1990). In vivo, iontophoretically applied 
SP potentiates NMDA-induced responses in identified spino- 
thalamic tract neurons (Dougherty and Willis, 199 1). In whole- 
cell voltage-clamp studies of dissociated dorsal horn neurons, 
SP markedly potentiates an inward glutamate-gated current 
(Randic et al., 1990). This modulatory effect of SP on the actions 
of excitatory amino acid transmitters contributes to the wind- 
up phenomenon, the property of nociceptive dorsal horn 
neurons whereby repeated activation of PANS results in a pro- 
gressive increase in their discharge to each stimulus. This en- 
hancement of discharge is blocked by either an SP (Kellstein et 
al., 1990) or an NMDA (Dickenson and Sullivan, 1990) antag- 
onist. 

In summary (Fig. 2), the available evidence is consistent with 
a model in which SP and CGRP produce slow-onset, long- 
duration depolarizations that act synergistically to excite sec- 
ond-order nociceptive dorsal horn neurons, including identified 
spinothalamic tract neurons. In addition, there is a slow-onset, 
long-lasting potentiation of a glutamate-induced fast excitation. 
Since multiple neuromediators are released when PANS are ac- 
tive, a burst of activity in PANS should be sufficient to induce 
long-lasting activation of dorsal horn neurons. 

Other excitatory primary aferent nociceptor neuropeptides: 
cholecystokinin 
In some species cholecystokinin (CCK) is colocalized with SP 
and/or CGRP (Tuchscherer et al., 1987). Unfortunately, there 
is immunological cross-reactivity between CCK and CGRP, so 
the presence of CCK in primary afferents has been called into 
question (Duggan and Weihe, 199 1). CCK immunoreactivity is 
also present in dorsal horn neurons and in the terminals ofaxons 
descending from supraspinal regions. Iontophoresis of CCK ex- 
cites dorsal horn neurons in the rat (Jeftinija et al., 198 1; Kell- 
stein et al., 199 1); however, this effect is weak, inconsistent, and 
neither dose related nor blocked by CCK antagonists. A more 
consistent and provocative effect is for CCK to antagonize and 
CCK antagonists to potentiate opioid suppression of C-fiber 
activation of dorsal horn neurons (Kellstein et al., 199 1). These 
electrophysiological data are consistent with behavioral studies 
(e.g., Watkins et al., 1984) and with some clinical reports of an 
analgesic effect of CCK antagonists (see Baber et al., 1989, for 
review). The antianalgesic action of CCK was recently put into 
a behavioral context by Wiertelak et al. (1992). Whereas fear 
and stress (e.g., produced by painful shocks) activate an endog- 



The Journal of Neuroscience, June 1993, 13(6) 2279 

enous opioid-mediated analgesic effect, cues that signal safety 
from painful shocks reverse this antinociception as well as the 
antinociceptive effect of morphine. CCK antagonists block the 
reversal of both morphine and stress antinociception produced 
by such safety cues. 

Inhibitory neuropeptides in primary afferent nociceptors: 
somatostatin and galanin 

The classic view that primary afferents release only excitatory 
neurotransmitters is complicated not only by the finding that 
SP has both proalgesic and analgesic actions, but also by the 
evidence that SOM and galanin (GAL) (Randic et al., 1987) 
inhibit the firing of nociceptive-specific spinal cord neurons 
(Randic and Miletic, 1978; Miletic and Randic, 1982; Sand- 
kuhler et al., 1990). In vitro studies indicate that the SOM- 
induced inhibition of dorsal horn cells is associated with a hy- 
perpolarization of these neurons (Murase et al., 1982) which 
may be due to a G-protein-mediated reduction of Ca*+ con- 
ductance (Sah, 1990). Unfortunately, the lack of a specific an- 
tagonist makes it difficult to prove that the observed inhibition 
occurs under physiological conditions associated with SOM re- 
lease. 

GAL, which colocalizes with SP and CGRP in large numbers 
of primary afferent, capsaicin-sensitive C-fibers (Skofitsch and 
Jacobowitz, 1985; Klein et al., 1990), may also have an inhib- 
itory effect on nociceptive transmission. In some studies of ther- 
mal nociception, intrathecal GAL is reported to have an antino- 
ciceptive effect (Cridland and Henry, 1988a; Post et al., 1988) 
although it lowered the threshold for vocalization in mechanical 
tests at higher doses. Other studies reported that low doses of 
intrathecal GAL increase the excitability of the flexion reflex, 
while higher doses of GAL produce a prolonged depression of 
thermal nociceptive reflexes (Wiesenfeld-Hallin et al., 1988, 
1989, 1990). The higher doses also blocked the facilitatory effect 
of SP, CGRP, or conditioning stimulation of C-fibers (Xu et al., 
1989, 199 1). Thus GAL, like SP, appears to exert both pro- and 
antinociceptive effects. 

Modulation of primary afferent neurons at their 
central terminals 

Opioids applied directly to the spinal cord block behavioral 
responses to noxious stimulation in animals and produce pro- 
found antinociception in humans (see Yaksh et al., 1988, for 
review). Primary afferent terminals, local interneurons, and the 
dendrites of projection neurons whose somata lie in deeper lam- 
inae are present in the SG and are potential targets of opioids. 
Opioids both reduce transmitter release from primary afferents 
and directly inhibit dorsal horn neurons. Although either of 
these actions could contribute to spinal mechanisms of antinoci- 
ception, this article will focus on control of transmitter release 
from primary afferents. 

The central terminals of small-diameter primary afferents 
contain p, 6, and K opioid binding sites (LaMotte et al., 1976; 
Fields et al., 1980; Zajac et al., 1989; Gouarderes et al., 199 1). 
Studies of spinal cord slices clearly demonstrate that met-en- 
kephalin, acting presynaptically, can inhibit glutaminergic input 
to neurons in lamina I (Hori et al., 1992). Electrophysiological 
studies of cultured DRG neurons provide evidence for a direct 
opioid action on primary afferents. Opioids shorten the plateau 
of the action potential, which is mainly due to a Ca*+ current 
(Mudge et al., 1979). In mouse DRG neurons, K-opioid ligands 
block this voltage-dependent Ca*+ current. In contrast, p- and 
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Figure 2. Primary a&rents and peptide actions in the CNS. The PAN 
releases a variety of co-occurring neuropeptides (NKA, SP, CGRP) and 
excitatory amino acids [e.g., glutamate (GLU)]. These act at several 
postsynapticreceptors: the NK, and NK, tachykinin receptors, the CGRP 
receptor, and the NMDA and AMPA excitatory amino receptors. NKA 
may diffuse to act at a distance from its site of release. There is evidence 
that SP and CGRP also act at autoreceptors at neuropeptide-containing 
primary afferent terminals. In addition, opioid peptides act upon both 
pre- and postsynaptic P-, IS-, and K-OpiOid receptors to modulate trans- 
mitter release and the firing of second-order nociresponsive neurons. 

d-ligands increase K+ conductance, which secondarily shortens 
the Ca*+ current (Werz and MacDonald, 1983; MacDonald 
and Werz, 1986). If this reduction in inward Ca2+ current also 
occurs at the central terminals of adult DRG neurons, then 
transmitter release would be reduced. On the other hand, al- 
though Shen and Crain (1989) confirmed that micromolar con- 
centrations of opioids shorten the action potential of cultured 
DRG neurons, they found that nanomolar concentrations of p, 
6, or K ligands prolong the action potential. Since this action 
potential is, in large part, due to an inward Ca*+ current, its 
prolongation should increase transmitter release. We should point 
out, however, that in these in vitro studies, the DRG populations 
did not respond uniformly to opioids and probably included 
several different physiological classes of primary afferent neu- 
rons. 

It is generally accepted that opioids inhibit the release of SP 
from primary afferents in vitro (Jesse11 and Iversen, 1977; Mudge 
et al., 1979; Chang et al., 1989) and in vivo (Yaksh et al., 1980; 
Yonehara et al., 1986; Go and Yaksh, 1987; Aimone and Yaksh, 
1989). Although K+-evoked SP release could derive from in- 
trinsic dorsal horn neurons as well as primary afferents, the fact 
that the opioid-induced reduction of K+-evoked SP release is 
not observed in rats whose unmyelinated primary afferents are 
destroyed by neonatal treatment with capsaicin indicates that 
opioids do in fact inhibit SP release from PANS (Pohl et al., 
1989a). Furthermore, opioids also reduce K+- and capsaicin- 
evoked release of CGRP, which at spinal levels is derived almost 
completely from primary afferents (Pohl et al., 1989b). On the 
other hand, recent experiments have raised questions about the 
interpretation of studies of the modulation of neuropeptide re- 
lease that are based on sampling PAN neuropeptides in CSF. 
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Specifically, using the antibody microprobe technique in cat 
dorsal horn, Morton et al. (1990) failed to demonstrate inhi- 
bition by morphine of the noxious stimulation-evoked release 
of either SP (Morton et al., 1990), NKA (Lang et al., 199 l), or 
CGRP (Morton and Hutchison, 1990). 

To some extent these discrepant results may be due to si- 
multaneous action of opioids at different receptor sites. This 
issue has been addressed by the use of opioid receptor type- 
selective ligands. For example, in rat dorsal cord slices, selective 
b-ligands reduce capsaicin-evoked release of SP, but p-selective 
ligands significantly increase SP release (Pohl et al., 1989b). In 
these studies and in other in vivo work (Hirota et al., 1985), 
K-ligands had no effect on SP release. Moreover, in slices of 
trigeminal dorsal horn, Suarez-Rota et al. (1992) found a com- 
plex dose-response curve for morphine: inhibition of K+-evoked 
SP release at low nanomolar and at low micromolar concentra- 
tions, and enhancement of release at high nanomolar and at 
high micromolar doses. Using receptor-selective antagonists, 
they showed that the low-nanomolar inhibition and the high- 
nanomolar facilitation of SP release are p-effects; the low-mi- 
cromolar inhibition is primarily &mediated (see also Collin et 
al., 199 l), and the high-nanomolar morphine facilitation is a 
K-effect (Suarez-Rota and Maixner, 1992; H. Suarez-Rota and 
W. Maixner, unpublished observations). 

Finally, it is possible that the studies of the action of opioids 
at their peripheral terminals discussed above may be relevant 
to the actions of these drugs at the central terminals of PANS. 
Thus, opioids not only block transmitter release from the pe- 
ripheral terminals of primary afferents (Yaksh, 1988), but also 
increase nociceptive threshold through inhibition of the CAMP 
second messenger in peripheral tissues (Levine and Taiwo, 1989; 
Taiwo and Levine, 199 la). To what extent a comparable action 
contributes at the central terminals of PANS must be examined. 

In summary, each of the three major classes of opioid receptor 
may contribute to the opioid-induced modulation of transmis- 
sion of nociceptive information in the dorsal horn. There is 
reasonably good evidence that both CL- and 8-ligands act pre- 
synaptically to modulate peptide release from primary afferents, 
and postsynaptically to inhibit dorsal horn nociresponsive neu- 
rons directly, including identified projection cells. K-Ligands 
produce consistent and selective antinociceptive actions when 
applied to the SG, where the bulk of unmyelinated PANS ter- 
minate (Hope et al., 1990~). d-Ligands are active when applied 
to the surface of the cord and in lamina I, where myelinated 
PANS terminate. The contribution of K-ligands is unresolved 
since both antinociceptive and pronociceptive actions have been 
seen when it is applied to the cord in different ways (Fleetwood- 
Walker et al., 1988). 

Although it is clear that opioids can modulate the release of 
neuropeptides from PANS, the contribution of this effect to the 
modulation of nociceptive transmission in the dorsal horn is 
uncertain. p- and b-opioid agonists selectively inhibit the re- 
sponse of dorsal horn neurons to noxious stimulation when 
applied in the region of termination of PANS in superficial dorsal 
horn (Duggan and North, 1984; Fleetwood-Walker et al., 1988). 
While this effect could result from a reduction in transmitter 
release from PANS, postsynaptic actions on intrinsic dorsal horn 
neurons have also been demonstrated (Yoshimura and North, 
1983; Jeftinija, 1988; Hope et al., 1990~). 

If one accepts the likelihood that opioid modulation of the 
release of transmitter from the spinal terminals of PANS con- 
tributes to antinociception, it is natural to ask whether endog- 

enous opioid peptides could be involved in this control. In fact, 
there is a dense concentration of preproenkephalin-derived opioid 
peptides in terminals in the superficial dorsal horn. Although 
this distribution overlaps precisely the terminal fields of PANS, 
axoaxonic connections with enkephalin immunoreactivity onto 
PAN terminals have been looked for but not found (Glazer and 
Basbaum, 1984). 

Support for the concept that enkephalins are indeed involved 
in the control of transmitter release from PANS derives from 
studies of enzymes that inactivate enkephalins. A prime can- 
didate for inactivation of enkephalins is a neutral endopeptidase 
(NEP) that cleaves both met- and leu-enkephalin at the amide 
bond between glycine and phenylalanine. Immunocytochemical 
studies show a dense concentration of NEP immunoreactivity 
in the superficial dorsal horn, with its greatest density in the SG 
largely overlapping that of enkephalin and SP (Waksman et al., 
1986; Back and Gorenstein, 1989; Pollard et al., 1989). Im- 
portantly, application of an NEP inhibitor to the spinal cord 
produces antinociception in animals (Oshita et al., 1990) and 
inhibits nociceptive dorsal horn neurons (Dickenson et al., 1987) 
although it is not clear that these effects are due to an action on 
PAN terminals. 

Summary 
An expanding knowledge of neuropeptides and their function 
has led to a profound change in our view of how the PAN 
contributes to pain. In addition to their expected direct action 
on postsynaptic cells in the dorsal horn, neuropeptides can mod- 
ify transmitter release from nearby terminals of other PANS 
and/or diffuse to act on dorsal horn neurons at a considerable 
distance from their site of release (Fig. 2). Contrary to early 
expectations and despite the evidence that several neuropeptides 
excite central nociceptive neurons, there is no clear correspon- 
dence between neuropeptide content and physiologically defined 
classes of small-diameter primary afferents. There is, however, 
a tendency for populations of afferents innervating different or- 
gans to differ consistently in their peptide content. In fact, the 
peptide content of primary afferents is, in part, determined by 
specific factors in the tissues that they innervate. Furthermore, 
peptide content can change dramatically in response to certain 
prolonged stimuli or nerve damage. The lack of correspondence 
of peptide content and physiological response pattern, the plas- 
ticity of peptide content, its tissue specificity, and the possibility 
for action at a distance from the site of their release from central 
PAN terminals strongly suggest that PAN peptides have func- 
tions that are fundamentally different from those of the short- 
range actions of amino acid neurotransmitters that are also found 
in the PAN. Finally, nowhere is the plasticity of function of the 
PAN more evident than at its peripheral terminals. Long-term 
changes are produced in these terminals by a host of peptides 
that derive from a variety of cell types. The complexity of this 
transduction process is augmented by the activity-induced re- 
lease of peripherally active neuropeptides from the PAN itself. 

In addition to the variety of fundamental neurobiological is- 
sues that recent, studies of PANS have raised, they have also 
generated a great deal of clinical interest, in view of the role of 
the PAN in inflammation and its accessibility for study and for 
therapeutic intervention. 
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