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Studies of cortical neurons in monkeys performing short- 
term memory tasks have shown that information about a 
stimulus can be maintained by persistent neuron firing for 
periods of many seconds after removal of the stimulus. The 
mechanism by which this sustained activity is initiated and 
maintained is unknown. In this article we present a spiking 
neural network model of short-term memory and use it to 
investigate the hypothesis that recurrent, or “re-entrant,” 
networks with constant connection strengths are sufficient 
to store graded information temporarily. The synaptic weights 
that enable the network to mimic the input-output charac- 
teristics of an active memory module are computed using 
an optimization procedure for recurrent networks with non- 
spiking neurons. This network is then transformed into one 
with spiking neurons by interpreting the continuous output 
values of the nonspiking model neurons as spiking proba- 
bilities. 

The behavior of the model neurons in this spiking network 
is compared with that of 179 single units previously recorded 
in monkey inferotemporal (IT) cortex during the performance 
of a short-term memory task. The spiking patterns of almost 
every model neuron are found to resemble closely those of 
IT neurons. About 40% of the IT neuron firing patterns are 
also found to be of the same types as those of model neu- 
rons. 

A property of the spiking model is that the neurons cannot 
maintain precise graded activity levels indefinitely, but even- 
tually relax to one of a few constant activities called fixed- 
point attractors. The noise introduced into the model by the 
randomness of spiking causes the network to jump between 
these attractors. This switching between attractor states 
generates spike trains with a characteristic statistical tem- 
poral structure. We found evidence for the same kind of 
structure in the spike trains from about half of the IT neurons 
in our test set. These results show that the behavior of many 
real cortical memory neurons is consistent with an active 
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storage mechanism based on recurrent activity in networks 
with fixed synaptic strengths. 

[Key words: short-term memory, neural network model, 
inferotemporal cortex, memory model, spiking model neu- 
rons, attractor dynamics] 

Animals have memories with retention times ranging from frac- 
tions of a second to a lifetime. Two different ways of maintaining 
information in memory have been proposed: one passive, or 
latent, and the other active. In passive storage, information 
about the item is maintained in modified values of physiological 
parameters such as synaptic strength. Neural activity is required 
only during loading and retrieval, but not for maintenance. In 
active storage, information is preserved by maintaining neural 
activity throughout the time it must be remembered. There is 
experimental evidence that both of these information storage 
strategies are used in higher animals. Latent information ap- 
parently can be stored in the brain indefinitely, but active in- 
formation can be maintained only for relatively short times, 
perhaps a few tens of seconds; thus, it is reasonable to refer to 
this kind of memory as activeshort-term memory. Little is known 
about the mechanism of active information storage. In the re- 
search described here we have investigated a possible mecha- 
nism for information storage in active short-term memory by 
using a spiking neural network model whose behavior can be 
directly compared to experimental findings. 

Lesion and brain cooling studies have identified several cor- 
tical areas that are required for short-term memory tasks, such 
as delayed match to sample or delayed response, but not required 
for versions of the same tasks without a delay. Areas devoted 
to specific modalities, such as the inferotemporal (IT) cortex for 
vision or posterior parietal for touch, are required only for tasks 
dealing with stimuli of those modalities. However, the prefron- 
tal cortex appears to be required for all memory tasks that 
involve a delayed motor response (Bauer and Fuster, 1976; 
Fuster, 1985, 1989; Fuster et al., 1985; Goldman-Rakic, 1987; 
Quintana et al., 1989). 

Recordings of single-unit activity in monkeys performing short- 
term memory tasks have been carried out for over two decades 
(Fuster and Alexander, 197 1; Fuster, 1973; Niki, 1974; Fuster 
and Jervey, 1982; Fuster et al., 1982; Quintana et al., 1988; 
Koch and Fuster, 1989; Funahashi et al., 1990). This work has 
demonstrated that many neurons in the areas required for short- 
term memory are associated with the memory task in some way. 
Three main criteria have been used to show that neurons are 
memory relevant. These are (1) systematically altered activity 
during the delay period, while information about a stimulus 
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must be retained in the absence of the stimulus, (2) failure of 
memory relevant neurons to respond to stimuli that need not 
be memorized, generally because of absence of reward expec- 
tation (Fuster, 1973, 1990) and (3) correlation between error 
on a memory task and response failure of memory-relevant 
neurons (Fuster, 1973). 

An example of sustained activity during delay periods of var- 
ious lengths in a delayed saccade task is shown in Figure 1A. 
The direction and magnitude of the saccade are the same for 
all trials shown, so the amplitude of firing is about the same for 
all delays. However, the response amplitude of this parietal 
neuron does depend on the direction and magnitude of the 
saccade, indicating that it is potentially capable of recording 
quantitative information about the task in its firing rate (Gnadt 
and Andersen, 1988). Neurons that show similar sustained firing 
patterns, associated with memory for specific modalities of in- 
formation, are found in several cortical areas, for example, in 
IT cortex for vision (Fuster and Jervey, 1981, 1982; Fuster, 
1990), posterior parietal cortex for touch (Koch and Fuster, 
1989; Zhou and Fuster, 1992) and auditory cortex (Gottlieb et 
al., 1989). 

Examples of failure to respond to stimulation when a memory 
task is not performed are shown in Figure 1, B and C. In Figure 
1 B, the animal performs an audition match-to-sample task only 
when a reward tube that delivers juice is in its mouth. The 
illustrated neuron shows a sustained response when a reward is 
anticipated and none when it is not, even though the same set 
of stimuli are presented. A frontal memory unit identified by 
its task sensitivity is shown in Figure 1C. Although the firing 
pattern of this neuron is contingent on the memory task, it is 
not a sustained activity unit. Rather, it fires briskly only during 
both the initial stimulus and final cue periods. This shows that 
other types of neurons, in addition to those with altered firing 
during the delay period, may be involved in the mechanism of 
information storage. A possible role for such neurons in the 
storage mechanism is suggested by the model described here. 

The fact that similar types of memory-relevant neurons are 
found in different cortical areas suggests that the same kind of 
generic neural circuit, or module, is used to store active infor- 
mation throughout the cortex. If this is the case, then while the 
origin and significance of the stored information may differ from 
one cortical region to another, the kind of circuity used to store 
it may be the same. In this article we describe a neural network 
model of a circuit that can serve as such an active memory 
module. 

Two broad classes of mechanisms have been frequently pro- 
posed to explain how neural firing is maintained during active 
short-term memory. In one, sustained firing is maintained by 
rapidly and temporarily changing synaptic strengths or other 
physiological parameters (Gottlieb et al., 1989). In the other, 
sustained firing depends only on neural activity recirculating in 
a network with fixed recurrent, that is, “re-entrant,” connections 
(Cowan, 1972; Dehaene and Changeux, 1989; Zipser, 1991). 
The model described here was designed to test the hypothesis 
that networks with fixed, recurrent connections are sufficient to 
account for the observed experimental data. 

In previous work (Zipser, 1991) it was shown that a simple 
model based on sustained activity in a neural network with fixed 
recurrent connections could account for part of the observed 
experimental data. This original model has some characteristic 
dynamical features, called fixed-point attractors, that should 
also be present in the dynamics of cortical activity if similar 
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Figure 1. A, Spike histograms of an intended movement cell in area 
LIP of the rhesus monkey. Each histogram includes responses from 8- 
10 trials. Trials are grouped and ordered according to increasing re- 
sponse delay times. The horizontal line below each histogram indicates 
the stimulus presentation. The arrow indicates the time at which the 
fixation spot was extinguished. Eye movements occurred from 150 to 
400 msec following offset of spot. Bin size = 50 msec. From Gnadt and 
Andersen (1988). B, Histogram showing the activity of a unit in the 
supratemporal gyrus of baboon auditory cortex during a tone matching 
task. Dark bars show the times of presentation of the first and second 
tones. Solid line is the task performance case, and dotted line, the no 
task case. From Gottlieb et al. (1989). C, Spike discharge histograms of 
a prefrontal unit during short-term memory performance. Bin size = 1 
sec. The short horizontal bar indicates stimulus presentation. Red, green, 
yellow, or blue presented during the stimulus period indicate memory 
task with reward. Violet presented during the stimulus period indicates 
no prospective reward (no task cue). The neuron in Cresponds primarily 
to the initial stimulus and the final cue, about 20 set later. From Yajeya 
et al. (1988) (figure from Zipser, 199 1). 

recirculating networks serve active memory there. Such attrac- 
tor dynamics had originally been predicted to play a role in 
short-term memory by Cowan (1972). The presence ofattractors 
would be expected to have significant effects on the spiking 
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patterns of cortical neurons in active memory circuits. However, 
because the original network used nonspiking model neurons, 
it could not be used to generate the spiking patterns needed to 
test for the effect of attractors. To overcome this difficulty, we 
have developed a more realistic, spiking version of the original 
model that enables us to compare predicted and observed spik- 
ing patterns. This provides a more valid test of whether the 
model is consistent with the experimental observations. 

The spiking model described in this article was derived from 
the original model using a simple transformation that converts 
a neural network made up of continuous-output neurons into 
one with spiking neurons. The spiking model can load and store 
information in the form of neural spiking activity without the 
need to change any synaptic strengths during the process. It 
provides detailed information about the dynamic activity pat- 
terns and spiking statistics to be expected from recurrent active 
storage networks. This information can be compared directly 
to data obtained from single-unit recordings made in monkeys 
engaged in short-term memory tasks. 

Here we first describe the original nonspiking neural network 
model and how it is transformed into a spiking model. We then 
examine the dynamic spiking patterns of model neurons and 
compare them to real single-unit data. Finally, we compare the 
statistical structure of long-term spiking patterns of real and 
model neurons to see if the real neurons have features indicative 
of fixed-point attractors. We find that the dynamic spiking pat- 
terns of many of the units in the model network closely resemble 
those of real neurons. Some real neurons also show spiking 
patterns that are predicted by the mechanism used in the model 
to load new information into memory. We also show that many 
real neurons involved in active memory do have spiking pat- 
terns indicative of the presence of fixed-point network attractors. 

The model described here deals only with the circuit module 
used for the actual storage of active short-term information. 
Many other important issues about short-term memory, such 
as the neuroanatomy involved, the origin and mode of gener- 
ation of the load signals, and the mechanism used to access 
stored information, are not addressed. 

Materials and Methods 
The present study uses a set of 179 single-unit discharge records obtained 
in a-previous study of the inferotemporal (IT) cortex of monkeys per- 
formina a visual delaved matching task (Fuster, 1990). Basically, the 
task re&ired the animal to retain features (color or shape) of compound 
stimuli, each stimulus consisting of a colored disk (2.5 cm diameter) 
with a gray geometric symbol in the middle. On each trial, and depending 
on the symbol in the stimulus, the animal had to memorize-for 10- 
20 set-either the symbol itself or the background color. Consequently, 
for correct performance of the task, each trial required attention to the 
symbol, in some trials also to the color, and short-term (10-20 set) 
memory of either symbol or color. 

The fully trained monkeys were surgically prepared for chronic mi- 
croelectrode recording following procedures authorized by the UCLA 
School of Medicine (Division of Animal Medicine) and according to 
animal use guidelines from the National Institutes of Health and the 
Society for Neuroscience. All surgical operations were conducted with 
the animal under general anesthesia with Nembutal (slow intravenous 
infusion, about 35 mg/kg). The surgery essentially involved the implant 
of microelectrode carrier pedestals and head fixation bolts in the skull. 
Antibiotics were systematically and topically administered for preven- 
tion of infection. Head restraint during performance was gradually in- 
troduced to avoid discomfort. Test sessions lasted ordinarily some 3 
hr, during which the animal consumed about 200 ml of liquid rein- 
forcement. 

The roving microelectrode used for extracellular unit recording during 
testing was made of platinum-iridium or Elgiloy and insulated with 

glass. Unit spike records were amplified and stored on computer disks. 
Only single-unit records, consisting of spike trains from isolated cells- 
judging from the voltage and shape of the spikes-are used in the data 
set studied here (see Fuster, 1990 for further details). 

For purposes of spike analysis, the task was divided into the following 
periods: (1) baseline period of 15 set preceding each trial; (2) stimulus 
presentation period, and (3) delay (10-20 set feature memorization 
period). Statistically significant differences were determined using t tests 
with 1% confidence limits unless otherwise noted in the text. 

All the models described in this article were simulated on general 
purpose digital computer workstations using programs especially written 
for this project. Details about the models are described in the following 
section. 

Models of Active Memory 

Artificial neural networks are being widely used to investigate 
the processing or computation carried out by networks of real 
neurons in various parts of the nervous system. The model 
neural units used in these networks are designed to approximate 
only the input-output properties of real neurons without at- 
tempting to simulate their inner workings. The outputs of these 
model neurons are generally represented by continuous values 
that can be compared to average spiking rates. These networks 
are simulated on digital computers to run in discrete time steps, 
rather than in continuous time. The process or computation 
carried out by a neural network is ultimately determined by the 
values of the synaptic weights that interconnect the neural units. 
These weights are generally chosen automatically by some op- 
timization, or training, procedure. This training procedure is 
just a mathematical technique to pick a best set of weights, and 
is not likely to resemble the way this process occurs biologically. 
In spite oftheir simplicity, models of this type can often simulate 
the average spiking behavior of neurons in biological systems 
quite realistically (Zipser and Andersen, 1988). In the case of 
recurrent networks, the dynamics of the model often simulate 
the experimentally observed dynamics. This makes it possible 
to generate models with a close functional homology to biolog- 
ical systems. Particularly realistic results have been obtained 
recently with recurrent network models of the dynamics of the 
vestibulo-ocular system (Arnold and Robinson, 1989; Anasta- 
sio, 1991). The general paradigm for making artificial neural 
network models of the nervous system is called neural system 
identification (Zipser, 1992). 

To model active short-term memory we tried to find the 
simplest network architecture that could account for the main 
features of the process. The available experimental data, par- 
ticularly the dependence of memory-related activity on reward 
expectation, suggest that loading information into active mem- 
ory is not an automatic consequence of the presence of a stim- 
ulus, but requires an additional, task-dependent loading signal. 
This implies that the simplest active memory module must have 
at least two inputs, one carrying the information to be stored 
and the other carrying a signal to indicate when that information 
should be loaded into storage. The information to be stored 
would, in general, be processed from an external stimulus and 
be specific for the modality of each cortical area. The load signal, 
on the other hand, is likely to be far less stimulus specific, and 
to be common to many memory modules in different cortical 
areas. 

A previous model by Zipser (199 1) has the required archi- 
tecture and was used as the basis for the spiking model described 
here. We first describe this model and how it was trained to 
implement the short-term memory task. Then we show how 
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trained versions of the original nonspiking model are converted 
to spiking models. 

The original nonspiking model 

The original model consists of a recurrent network with an 
information input, a load input, and one output. The information 
input carries a continuous value representing the information 
to be stored. The load input carries a binary signal that is kept 
at zero as long as information is to be held in memory and set 
to 1 .O only when new information is loaded. The output carries 
the value of the stored information buffered from changes on 
the information input line. 

The network consists of a set of recurrently connected model 
neurons, each of which can be represented schematically as 
follows: 

where the large triangle represents the soma, the line to the left 
represents the dendrite and synapses, with inputs distributed 
along its length, and the arrow to the right represents the axon 
or output. The inputs to this neuron from other neurons in the 
network on time cycle, t, are represented by a set of activities, 
y,(t), with values equal to the outputs of all the N units in the 
network. The model makes no assumption about the anatomical 
location of the various units in the network, but it is reasonable 
to assume that at least some ofthem are located near one another 
in the same cortical area. The external input sources to the 
network are represented by zJt). In the active memory model 
there are two external inputs. One carries the information to be 
stored, and the other, the load signal indicating when to store 
new information. The strengths, or weights, of the connections 
between units in the network are represented by w,,, where i is 
the index of the postsynaptic unit and j is the index of the 
presynaptic unit. The weights of the connections for external 
inputs are represented by v,~. Each unit also has a bias, b, , which 
is roughly equivalent to the sum of the resting potential and any 
unchanging afferent activity. The output of the ith model unit 
in the network on time cycle t + 1 is given by 

where f (x) is the logistic function 

f(x) = i 
1 + e-x’ 

which ranges between 0 and 1 as x ranges from minus infinity 
to plus infinity. The logistic function is a sigmoid, which roughly 
captures the observation that real neuron firing rates cannot be 
less than zero and have some maximum value. 

The full network is presented schematically in the top panel 
of Figure 2. The schematic diagram shows all units intercon- 
nected and all receiving external inputs. It illustrates the poten- 
tial for interconnection before training. After training some 
weights may go to zero, so in the actual memory model not all 
possible connections are functionally present. Note that only 
one unit in the network carries the output value. The other units 
are called hidden units. They carry out the processes involved 
in the memory task, they are the model units whose properties 
are compared to real neurons. 

Slurt Term Memorv 

Figure 2. The structure of the model. Top, Input and recurrent 
nections. Bottom, Diagram of the training paradigm. 

The memory task the network was trained to do is illustrated 
in the lower panel of Figure 2. A gradient-descent, error cor- 
rection optimization algorithm for recurrent networks, called 
Backpropagation Through Time (Williams and Zipser, in press), 
was used to find weight values that would allow the network 
to implement the task. Networks were initialized with random 
weight values between - 1 .O and 1 .O. These values were adjusted 
by the optimization algorithm on each cycle of training until 
the network output matched the target required by the task to 
within an error of ?5%. The bias quantities, b,, were not ad- 
justed but fixed at -2.5 to guarantee that unstimulated units 
have low activities. On each step of training the network was 
given an Info-in input value chosen randomly between 0.0 and 
1.0 and a Load-in input value of 0.0 (off), except during ran- 
domly chosen cycles when the Load-in signal was set to 1 .O (on) 
to load a new value. The average time between load signals was 
four time steps. The output of the network (Memory-out) was 
trained to maintain the value of Info-in at the time the Load- 
in signal was on. Typically, 50,000 training cycles were required 
to reach the error criterion. Many instances of this model were 
trained with sizes ranging from 6 to 20 units. 

Zipser (1991) showed that hidden units in networks trained 
in this way exhibited many of the properties of cortical neurons 
relevant to short-term memory. We used these trained non- 
spiking networks as the basis for our spiking model in the man- 
ner described below. 
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Converting continuous models to spiking models 

The basic idea used to convert nonspiking models to spiking 
models was to interpret the continuous output of the nonspiking 
model neurons as spiking probabilities (Cowan, 1968; Amit, 
1990). This approach gets considerable justification from both 
early and recent studies of the statistics of cortical neuron firing 
(Fuster et al., 1965; Smith and Smith, 1965; Sejnowski, 1976; 
Softky and Koch, 1992; Snowden et al., 1992). Further sup- 
port is provided by a recent study of the spiking characteristics 
of some of the IT neurons used in this study (Littlewort et al., 
1992). 

Our goal in making spiking networks was to have them behave 
as much as possible like the trained continuous networks from 
which they derived, while at the same time incorporating enough 
realism to allow comparison with experimental data. Each in- 
dividual spiking neuron computes its probability of spiking in 
the same general way a continuous neuron computes its output 
value. Spiking neurons, however, produced output values of 1 
with this probability, and output values of 0 with 1 minus this 
probability. In this discrete-time model of spiking, each time 
step in which a spike occurs can be considered to be the com- 
bination of a single spike and the absolute dead time that follows 
it. 

The dynamic activity of a recurrent network cannot be main- 
tained by simply replacing each continuous unit with a spiking 
one. The binary valued outputs together with a low firing rate 
would completely disrupt the orderly function of the network. 
This problem was overcome by replacing each continuous unit 
in the original network with a pool of many spiking neurons. 
The average number of spikes produced by a pool is propor- 
tional to the output activity of the neuron it replaced. The prob- 
lem of maintaining recurrent activity with slowly spiking neu- 
rons is not limited to model networks but also arises in the 
nervous system (Amit, 1990). The spiking network consists of 
the same number of pools of spiking units as the original network 
had nonspiking units. Each member of a pool was connected to 
neurons in other pools the same way as the neuron it replaced, 
but with the weights appropriately scaled to take into account 
the number of units in each pool. There are no connections 
between units in a pool. The spiking behavior of the individual 
neurons in these pools is assumed to be comparable to that of 
single neurons in the brain. 

The equation governing the behavior of the spiking unit is 

y,(t + 1) = 1 

with probability sf z w&y,(t) + 2 vlkzk(t) + bi , 
I k 

y,(t + 1) = 0 

with probability 1 - sf 2 w:,y,(t) + 2 v,kzk(t) + b, , 
j k 

O<s<l. 

The scale factor s serves to keep the spiking rate of the model 
neurons low and comparable to that of real neurons. The re- 
current weight values used in the spiking model, w’~,, are those 
of the continuous model divided by ns to compensate for both 
the n-fold increase in number of inputs and the scaling of the 
output by s. The range of the index i is now from 1 to nN, where 
N is the number of neurons in the continuous model and n is 
the size of each spiking pool. Note that the output of a neuron, 

y, now takes on only the values 0 or 1 with a probability given 
by the logistic function scaled by s. 

Neurons involved in short-term memory have a wide range 
of average firing rates, but none show persistent firing anywhere 
near their physically maximum rate. This maximum rate is 
sometimes observed when a neuron is accidentally injured. We 
simply use the scale factor, s, to allow simulated neurons op- 
erating near saturation to have the possibility of arbitrarily low 
spiking rates. This is of importance to the model because without 
s < 1 some model neurons would have firing probabilities near 
1, leading to unrealistic ceiling effects on spiking statistics. In 
our formulation, all neurons in the model use the same value 
of s. For values of s < 1 the spiking version of a model is no 
longer exactly homologous to the continuous version. The rea- 
son for this difference is subtle and has to do with changes in 
spiking variance introduced by removing the ceiling effects. In 
practice these effects are small enough that the spiking version 
still behaves essentially like the original model. 

Behavior of Short-Term Memory Model Networks 

In this section we describe and explain the behavior of the model 
itself. The next section compares the model with experiment. 
First, the firing patterns of model neurons for periods that ap- 
proximate those of short-term memory experiments are de- 
scribed. Then the long-time behavior of the network is analyzed 
to show the relaxation to fixed-point attractors and how it is 
affected by random spiking. Finally, we explain the general 
mechanism used by the model to load and store information. 

Short-term dynamic behavior 

The typical short-term memory experiment consists of an in- 
tertrial baseline period, a brief stimulus presentation, a delay 
during which information about the stimulus is remembered, 
and finally, another stimulus presentation to which the animal 
responds based on remembered information. Our model, how- 
ever, is concerned only with the loading and storage of infor- 
mation, and not with the specific modality of the information 
or how it is accessed and used to respond. We assume that our 
model represents a short-term memory module somewhere in 
the cortex. During simulated memory experiments it receives 
stimulus-relevant afferent information on its Info-in line and 
load signals during stimulus presentations on its Load-in line. 
During the intertrial interval and the delay period a fixed base- 
line value is held on the Info-in line. During stimulus periods 
a value to be stored, representing the effects of the stimulus on 
this particular module, is put on the Info-in line while the Load- 
in line is set to 1 .O. The load line is reset to 0.0 during the delay. 
The dynamic activation patterns of model neurons produced 
by this paradigm for one instance ofboth the original nonspiking 
and the spiking model are shown in Figure 3. (Fig. 3 shows a 
model instance called fl 1, which is used as an illustrative ex- 
ample throughout this article). A relatively short memory delay 
period, commensurate with those used in training, is used here. 
Each unit has its own characteristic activity pattern. The output 
unit has a moderately stable sustained activity reflecting the 
stored value. This shows that the network has learned to ap- 
proximate the memory task on which it was trained. The spec- 
trum of observed hidden unit activity patterns can be roughly 
divided into three major classes: units with sustained activity 
during the delay differing from baseline, that is, hidden units 1, 
2, and 5; units with major activity changes only during the 
stimulus period, that is, hidden units 3 and 6; and more complex 
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units that mix the previous two characteristics, that is, hidden 
unit 4. Note that unit 5 shows sustained inhibition. Other in- 
stances of the model generated in different training runs and 
starting with different sets of initial random weights all have 
hidden units with these three basic classes of activity patterns, 
but differing in detail. The role played by the different classes 
of hidden units in the mechanism of storage will be discussed 
later. 

Long-term dynamics and attractors 

When the delay period is greatly lengthened, the original, non- 
spiking network can no longer maintain its stored value, but 
relaxes to a stable state called a fixed-point attractor. This is a 
consequence of the fact that recurrent networks with the non- 
linear units used here cannot store arbitrary values indefinitely. 
Cowan (1972) demonstrated attractor dynamics for recurrent 
networks of nonlinear units, and suggested that the fixed-point 
attractors might play a role in short-term memory. Other kinds 
of attractor states such as limit cycles or chaos are theoretically 
possible, but all of the original networks displayed only fixed- 
point attractors. In the majority of cases there were two stable 
states for the network, with rare examples of one or three (Zipser, 
1991). 

In the stable state the outputs of all units in the nonspikiing 
network remain constant as long as there is no change on the 
external inputs. The stable state to which a network will finally 
settle is determined by a distinct input value that serves as a 

Figure 3. Temporal activity patterns 
of units in the continuous and spiking 
version of model instance fl 1. The con- 
tinuous network consisted of six hidden 
units and one output unit. It was trained 
to implement a system with the input- 
output characteristics described in Fig- 
ure 2 and the text. The bias weights are 
fixed at -2.5 in this model instance. 
Training was for 200,000 time steps with 
an average of four time steps between 
load pulses. The patterns for the con- 
tinuous version, on the left, were gen- 
erated by first setting the activities to 
their basal levels by loading in an Zfo- 
in value of 0.1 (the load signal is not 
shown). Then, a value of 1.0 is loaded 
in and held for nine time steps, during 
which time the input is held at 0.1. Then, 
with the input still at 0.1 the load signal 
is given again. The patterns for the spik- 
ing version on the right were generated 
in the same way. The spiking version 
has 160 neurons per pool and an s value 
of 0.3. The histograms were made by 
collecting the spikes from one neuron 
in each pool on 500 trials. The vertical 
axis is spikes per 100 trials per time 
step. 

kind of threshold; for inputs below this threshold the network 
moves in time to one attractor, and for inputs above it the 
network settles to the other. This is illustrated in Figure 4. Note 
that while sustained-activity hidden units 1, 2, and 4 go to high 
states for the above-threshold attractor, unit 5 goes to a low 
state. This situation is reversed for the below-threshold attrac- 
tor. The threshold value and low state for unit 5 are so close 
they are not resolved in Figure 4. Also note that the high and 
low attractor activity values reached by the sustained-activity 
units are not the extremes of their possible range, that is, 0.0 
and 1.0, and are quite different for each unit. Each instance of 
the model has its own characteristic threshold and settling time. 
These attractor states behave somewhat differently in the spiking 
model, and are critical for understanding the experimentally 
observed spiking statistics. 

Attractor dynamics of the spiking model 

The introduction of random spiking into the model creates a 
source of noise, and noise disrupts the stability of the fixed- 
point attractor states (Cowan, 1972; Zipser, 1991). After an 
initial period during which the stored value is approximately 
maintained, noisy networks do not stay permanently in a single 
attractor state but move, at random times, from one attractor 
to another, spending most of the time near an attractor, but a 
significant amount of time in transition as well. 

The movement between attractor states in the long-term dy- 
namics of a spiking model is shown in Figure 5. The memory 
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Figure 4. Attractor dynamics of the continuous version of model in- 
stance fl 1. The threshold for the model instance shown here is 0.595. 
When values above this threshold are loaded into the network, all units 
settle to their upper attractors; when values below the threshold are 
stored, they settle to their lower attractors. The figure shows graphs of 
the temporal activity patterns obtained for a pair of starting values just 
below and just above the threshold. The time course of activity in the 
network is displayed for 60 time steps between load signals. 

was loaded with a high value, after which the input was held 
constant for more than 1800 time steps while the activity of 
each unit was sampled every four steps. The total number of 
spikes produced by each pool on the sampled time steps is used 
as a measure of activity. Note that the activity of each pool 
starts off near its appropriate level for a high stored value, and 
then switches randomly, spending most of the time near one of 
its attractor values. Some time is also spent at intermediate 
values. The length of time spent near any attractor is quite 
variable, ranging from a few to nearly 100 steps. Note also that 
the behavior of all the sustained-activity units, for example, 1, 
2, 4, and 5, is highly correlated, indicating that the attractor 
states are features of the network as a whole and not assignable 
to individual units. 

How the model works 

The general strategy used by the model to load and retain in- 
formation can be determined by examination of the connection 
weights and the activity patterns of the units. By the end of 
training the output unit has become functionally a separate layer 
since all its weights from the input lines and all its feedback 
weights to the rest of the network have become nearly zero. 

Most of the other neural units in a model become either storage 
or gating units. Storage units sustain an activity representative 
of the stored value during the delay. The gating units have high 
activity during the stimulus periods and near-baseline activities 
otherwise. Storage units act as a group to maintain their sus- 
tained activity through shared recurrent feedback connections. 
The storage units are of two basic kinds, positive and negative. 
Outputs of the positive storage units monotonically increase as 
the stored value increases. Outputs of negative storage units 
decrease as the stored value increases. Both the positive and 
negative units feed back onto all other units of the same kind 
with excitatory weights, and onto units of the opposite kind with 
inhibitory weights. Once a value is established in the storage 
units, it tends to persist, at least for the effective storage time 
of the memory. However, each storage unit represents the stored 
value with its own characteristic activity level. The storage units 
receive inhibitory input from the Load-in and either excitatory 
or inhibitory input from the Info-in line. This seems to help in 
resetting the memory before a new value is stored. 

The gating units receive excitatory input from both the Load- 
in and the Info-in and project excitatory output to all the positive 
storage units and inhibitory output to all the negative storage 
units. This allows the gating units to pass a new memory value 
into the storage units on the time step after the Load-in signal 
goes back to zero. The gate units receive weak mixed recurrent 
connections that have little net affect. This means that during 
the delay they are dominated by the strong negative bias that 
all units have keeping their activities near their baseline. This 
tends to buffer the storage units from activity changes on the 
Load-in line. 

Some units are more complex than those described and seem 
to combine features of both storage and gating units. As we shall 
see, all major classes of units found in the model correspond to 
neurons found in the cortex. It is also interesting to note that, 
if negative storage units are left out, it should be possible to 
have model networks in which all the recurrent connections are 
excitatory. This actually seems to be the case, since one of us 
(B.K.) has successfully trained instances of the original model 
constrained to have only excitatory recurrent connections. One 
of the two input signals still has to be inhibitory, but nonetheless 
such a network obeys Dale’s law, that is, that the outputs of any 
given neuron are all of the same polarity. 

Model versus Experiment 

The validity of a model can be tested only by comparing its 
behavior to that of the real system in as many ways as possible. 
For practical reasons we are currently limited to comparing the 
behavior of single units in the model to single-unit firing patterns 
recorded from the brain, primarily from IT cortex in the case 
of this article. Two different aspects of these firing patterns are 
compared. First, the average firing patterns produced during 
real and simulated short-term memory tasks are compared to 
show that many real and model neurons have similar response 
properties. Then, certain statistical properties of firing during 
the intertrial baseline period are compared to show that real 
neurons behave as if they are in noisy networks with fixed-point 
attractors. 

The averagejring patterns of real and model neurons 

In this section we show that individual neurons in the spiking 
model behave like real neurons during short-term active mem- 
ory experiments. First, we compare the peristimulus histograms 
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recorded during short-term memory experiments typical of cor- 
tical neurons to simulated histograms from selected spiking 
model neurons. This demonstrates that many of the patterns of 
activity typical of cortical memory neurons are also found in 
model neurons. Then, we look more closely at the way real and 
model neurons respond to different stimulus properties. This 
comparison shows the detailed homology between the differ- 
ential response of real and model neurons. Finally, we deal with 
the question of what fraction of real and model neurons are 
actually comparable. This analysis shows that virtually all the 
model neurons have homologs among cortical neurons, and that 
a considerable fraction of the memory-relevant cortical neurons 
are accounted for by the model. 

Biological short-term memory experiments were simulated 
on trained networks by loading an information value, repre- 
senting the stimulus to be remembered, and holding it for the 
delay period by keeping the load signal at zero. During the delay 
period and during the intertrial intervals an Info-in value, dif- 
ferent from the stimulus, was used to represent the background 
input level present in the absence of a stimulus. To make the 
model and real peristimulus histograms comparable, certain 
parameters not determined by the model or known from the 
experimental data must be fixed. For example, we don’t know 
the constant that relates model time and real time, and we also 
have no way of measuring the actual level of the afferent signals 
being stored in real memory. Because these parameters must be 
chosen arbitrarily, only comparisons between the shapes of the 
activity patterns of real and model neurons are relevant. 

Examples of typical real and model firing patterns during 
active memory tasks are shown in Figure 6. Close examination 

Figure 5. Long-term temporal activ- 
ity patterns of the spiking version of 
instance fl 1. The model was run as in 
Figure 4, but after gating in a value of 
1 .O no further gating was done. The ac- 
tivity for about 1800 cycles is shown as 
total spikes per pool. The activity is 
sampled only every four cycles. 

of Figure 6 shows that several characteristic features of the mod- 
el’s activity patterns are found in the experimental data. For 
example, the sustained activity units in the model differ as to 
how they respond when the load signal is active. This difference 
is mirrored in the experimental units shown in Figure 6, A and 
B. Note that the real neuron in Figure 6B is inhibited during 
the periods when the initial and final stimuli are being presented. 
This corresponds directly to the model unit where the inhibition 
is caused by the reset process that occurs when new information 
is loaded into memory. Another feature found in both model 
units and real neurons is the tendency of the sustained activity 
to drift up or down during the delay period, as seen in Figure 
6, C and D. This has previously been attributed by one of us 
either to a decay of the stored information or to anticipation of 
the upcoming action (Fuster, 1984, 1989). In the case of the 
model these changes are due to the the network moving toward 
fixed-point attractors. 

A limitation of the kind of comparison shown in Figure 6 is 
that it is based on the response to only a single value of afferent 
stimulation. A more compelling comparison can be made if the 
differential responses of real and model neurons are compared. 
Many neurons in the IT data set used here showed differential 
responses to different stimuli, that is, red versus green, + versus 
o. Presumably this is the result of different values being stored 
to represent the different stimuli. The differential response of 
two kinds of model neurons, a storage unit and a gate unit, were 
compared with two corresponding IT neurons (see Fig. 74B). 
The peristimulus histograms of the real neurons are generated 
from all trials on which either red or green was the initial stim- 
ulus. The differential responses for the model neurons are gen- 
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Figure 6. Comparison of the temporal activity patterns of cortical 
neurons with hidden units from spiking model networks during real and 
simulated delay memory experiments. The experimental data have been 
copied from published sources using a Hewlett Packard ScanJet Plus. 
The histograms have been redrawn to the same physical size and format 
to facilitate comparison. The model data come from different units in 
five independently trained instances of the original continuous model 
to which the spiking network transformation was applied. The hori- 
zontal axis represents time, in seconds for the real neurons and in time 
steps for the model units. The vertical axis represents activity in spikes 
per second for the real neurons and spikes per 100 trials per time step 
for the model units. The spiking models all had 500 units per pool and 
an s value of 0.3. The horizontal bar is the time of presentation of the 
first stimulus in the case of the experimental data and indicates the 
period immediately after the offset of the first load in the case of the 
model. The arrow indicates the start of the cue ending the delay period 
in the experimental case and the offset of the final load in the case of 
the model. A is a neuron from posterior parietal area LIP during a delay 
saccade task, from Gnadt and Andersen (1988). B is an IT neuron during 
a visual delay match-to-sample task, from Fuster et al. (1985). C and 
F are frontal neurons in the principal sulcus during delay match-to- 
sample experiments, from Fuster (1984). D is a frontal neuron during 
a delay choice task experiment, from Quintana et al. (1989). E is a 
composite of 33 principal sulcus neurons that all have cue-period and 
delay-period activity in a delay saccade task, from Funahashi et al. 
(1990). 

erated by storing a high value to simulate the response to one 
color and a low to simulate the response to the other. Many 
trials are run, accumulating spikes from a single model neuron 
in a pool. These data are then used to generate high and low 
peristimulus histograms for comparison with the red versus 
green response of real neurons. 

The differential activity of IT23.27B, in Figure 7A, closely 
corresponds to that of storage-type hidden unit 2 of the model 
instance fl 1 shown in Figure 3. They are both strongly inhibited 
during all stimulus periods. During the delay, the red response 
of IT23.27B mimics the response of the model unit when a high. 
value is stored in memory, and its green response mimics the 
model unit’s low storage value response. The differential activity 
of IT23.40A, in Figure 7B, closely corresponds to that of gate 
unit 3, also from the model instance fll shown in Figure 3. 
Both IT23.40A and the model unit have above-baseline acti- 
vation only during the stimulus period. 

The kind of similarities between model and real neurons seen 
in Figure 7 are not rare observations. Similarities occur with 
some regularity in both the model and the brain. To quantify 
this evidence we compared the neuron types in a set of 179 
memory-relevant, single-unit recordings from IT with 48 hidden 
units from eight instances of the spiking model, all indepen- 
dently trained with the same parameters as instance fl 1, but 
with different random values of the starting weights. We tried 
to find objective tests to decide if two neurons were of the same 
type. Global comparisons of this kind are difficult because there 
are many different types of model and real neurons, and the 
behavior of both model and real neurons depends on the afferent 
value being stored. We used two approaches to this problem. 
One approach was to match model and real neurons on the basis 
of qualitative features, independent of any differential responses 
to stimuli. The other was to categorize real and model neurons 
on the basis of their differential responses. The first approach 
was applied only to units of the two types illustrated in Figure 
7. The second approach was used on all neurons with a signif- 
icant differential response to red and green. 

To find out how many real and model units matched the types 
illustrated in Figure 7, we chose criteria that would enable the 
computer to search for units that matched these two prototypes. 
The criteria used to identify model units of the same type as 
unit 2 of model instance fl 1 were the following: significant 
inhibition below baseline during the stimulus period, and a 
systematic increase in activity with stored value during the de- 
lay. The criteria used to find real units of the same type as 
IT23.27B were the same as for the model during the stimulus 
period. However, since we have no way of systematically vary- 
ing the afferent input to the real neurons, the constraint imposed 
on activity during the delay was that it changed at the start of 
the delay and moved monotonically toward the baseline, or 
remained constant during the delay. With these criteria, 17 (9.5%) 
of the real neurons and 15 (3 1%) of the model neurons were of 
the type of IT23.27B or unit 2, respectively. Only two of the 
real neurons had highly significant differential responses during 
the delay period. The rest had the same response during the 
delay to both red and green. Of these nondifferential units, nine 
were similar on both kinds of stimulation to either the red 
response or the green response of IT23.27B. The rest simply 
returned quickly to the baseline level as soon as the stimulus 
was removed and remained there for the rest of the delay. All 
of these observed delay responses found in the real neurons were 
consistent with them being of the same type as IT23.27B, as- 



suming an appropriate afferent value was present during stim- 
ulation. Some examples of units classified as of the same type 
as IT23.27B are shown in Figure 8A. 

The criteria used to identify model units of the same type as 
gate unit 3 of instance fl 1 were excitation in the stimulus period 
that increased systematically with the Info-in value, and near- 
baseline activation throughout the delay period. For neurons to 
be considered of the same type as IT23.40A, they had to have 
significantly above-baseline activation in the stimulus period, 
together with near-baseline activation throughout the delay pe- 
riod. With these selection criteria, 48 (27%) of the real and 9 
(19%) of the model units were of the same type as unit 3 of fl 1. 
Three examples are shown in Figure 8B. A significant differential 
response to red and green was found in 10 of the real neurons 
of the same type as IT23.40A. Together, the two different types 
of unit illustrated in Figure 8 represent 40% of the model units 
and 36.5% of the real neurons. 

Another approach we used for global matching of real and 
model units was based on their differential responses to afferent 
stimulation. This analysis was confined to the 50 real neurons 
that showed a significant differential response to red or green 
during either the first stimulus or the delay, and to the 44 model 
units that showed significant differential responses to high or 
low stimulation. Each unit was characterized as being above or 
below baseline during the stimulus, and above, below, or within 
10% of baseline during the delay period. Thus, for example, 
IT23.27B was classified as a “- +/- -” type because it was 
below baseline for both stimulus periods and above baseline for 
red and below it for green during the delays. IT23.40B was of 
type “+ O/+ 0” since it had greater-than-baseline responses in 
both the stimulus periods which were significantly different from 
each other, and was very near baseline during the delay periods. 
Note that this is only a qualitative categorization and is applied 
only to units that have significant differential responses. The 
order of the two parts of the categorization is irrelevant because 
we don’t know the afferent values coming from red or green 
stimulation; we only know their effects. If we knew the relative 
magnitudes of these values there might be many more types. 
Only trials on which red or green were paired with the “=” 

Figure 7. A and B, Differential response of real neurons and spiking 
model neurons. These histograms cover five time periods: (1) 15 set of 
prestimulus time in which the monkey is presumably alerted to the 
impending trial but has no information about the stimulus, (2) about 1 
set period during which one of two stimuli is presented, (3) an 18 set 
delay with no stimulus present, (4) the response period during which 
both stimuli are present, and (5) about 20 set of postresponse activity. 
The peristimulus histograms of the model neurons have the same five 
periods. A, RedExp and Green Exp show the response ofneuron IT23.27B 
to red and green initial stimuli, respectively; High Modeland Low Model 
show the response of unit 2 of model instance fl 1 with 50 units in each 
pool and s = 0.3 to gating in a high, 0.99, or a low, 0.0 1, initial stimulus, 
respectively. The model data were accumulated from a single unit on 
1000 trials. The jirst arrow indicates the time the stimulus went off in 
experimental cases and the time the load signal was turned off in model 
cases. The second arrow indicates the time the response cue came on 
in experimental cases and the time the load signal started for a second 
time in model cases. There was an 18 set period between the two arrows 
in the experiment and 53 cycles of model time in the model. The bin 
size for the experiment is 500 msec, and for the model it is two cycles. 
The load signal on time for the model was five cycles. B is the same, 
except that in it IT23.40A is compared to unit 3 of model instance fl 1, 
and the low value stored is 0.3. 
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Figure 8. A and B, Examples of units of the same type as IT23.27B 
and IT23.40A. A shows three examples of IT neurons that do not have 
red-green differential responses, but are otherwise of the same type as 
IT23.27B. B is the same, but here the neurons are of the same type as 
IT23.40A. 

symbol, indicating color to be relevant (Fuster, 1990) were used, 
because with our simple model we have no unambiguous way 
to simulate a condition in which two, possibly interacting, dif- 
ferential stimuli are present. Only the first 5 set of the delay 
were used for comparison because the tendency to decay back 
to the baseline for most of the delay period can mask significant 
differential responses. Of the 11 types considered, all 50 real 
neurons fell into 10 and the 44 differential model neurons fell 
into 7. All 7 of the model types were a subset of the 10 real 
neuron types. The data are shown in Table 1. Out of the 50 real 
differential response neurons, 41 were of types found in the 
model. 

Taken together, the data from both global matching proce- 
dures show that all the differential response patterns of model 
neurons can be matched, at least qualitatively, with real IT 
neurons, and that a significant fraction of the real neurons can 
be matched with model neurons. Since we have not attempted 
to match all nondifferential-response real neurons, the degree 
of matching may be underestimated. We would not expect all 
IT neurons to match model neurons since it is unlikely that the 
model accounts for all kinds of processing going on in IT cortex. 

Table 1. Spiking model and IT differential-response neurons of each 
type 

Type Number in model Number in IT 

+ o/+0 9 10 
f  -/+ - 0 5 
+ -l-/i- + 1 9 
- -,- - 0 2 
- i-k + 0 2 
+ -/+ + 10 7 
+ +/- + 2 4 
- +/- - 15 2 
+ -/- - 1 7 
+ +/- - 6 2 
Total 44 50 

All model and IT neurons were first tested for a significant difference between low 
and high or red-green response, respectively, in either the stimulus or the delay 
period. If there was a significant difference they were then classified into types on 
the basis of whether their responses were above, “+,” or below, “-,” baseline, 
except in one case where a class consisted of units with a delay response within 
10% of baseline, “0.” The “/” separates one stimulusdelay pair from the other, 
but the order is irrelevant since we don’t know for the IT neurons whether green 
or red gives the larger afferent signal. 

Looking for Attractors 
Fixed-point attractors are a characteristic feature of our model. 
If networks like those of the model are present in the cortex, 
then cortical neurons should also exhibit attractor dynamics. 
One way to get evidence for attractor dynamics in the cortex is 
to detect the characteristic temporal structure attractors impose 
on spike trains. This structure consists of time segments with 
discrete spiking probabilities corresponding to each of the at- 
tractors, together with segments with changing probabilities gen- 
erated while the neuron is moving between attractors. Detecting 
these segments in data from single neurons is difficult because 
the segments are of varying lengths, and interspike intervals of 
all sizes can occur in any given segment. Only the average spiking 
rate differs between segments. 

One way to visualize the structure imposed by network at- 
tractor dynamics is to look at the running average of the spiking 
rate. Figure 9 provides examples of actual spike trains and their 
running averages from the spiking model and real neurons that 
show the kind of temporal structure imposed by noisy attractor 
dynamics. The model data are taken from a network that has 
been running long enough that it is no longer affected by its 
starting state. According to our model, its firing should represent 
what is seen in single neurons contained in networks randomly 
switching between fixed-point attractors. The experimental data 
on IT neurons are taken from the 15 set intertrial baseline period 
and thus represent the “background” level of firing. Examina- 
tion of Figure 9 shows that there are segments of fast and slow 
firing that extend over significant periods of time in both model 
and real spike trains. In the model this structure is due to at- 
tractors. Since no memory task is being performed during the 
baseline period, it is reasonable to assume that the memory- 
relevant IT neurons are not being driven by afferent, stimulus- 
related signals or receiving-load signals. Thus, the major changes 
observed in their firing rates could be the result of internally 
generated processes such as those associated with attractor dy- 
namics. Direct examination of spike trains in this way shows 
the existence of structure in the real data that is similar to that 
found in the model. However, this technique is not compelling 
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because it requires subjective comparisons between very noisy 
signals. Stronger conclusions require techniques that are more 
objective and take all the available data into account in making 
comparisons. 

Multiple interval histograms 

One way to detect structure in spike trains is to use multiple- 
interval histograms (Gerstein and Mandlebrot, 1964; Tuckwell, 
1988). Adding together several interspike intervals tends to av- 
erage out the random lengths of the individual intervals and 
give a better measure of local spiking probabilities. The distri- 
bution of these multiple interval lengths will tend to have a 
mode for each discrete persistent spiking frequency. These mod- 
els will be visible only in favorable cases where the temporal 
persistence of discrete states is sufficiently long. Even when the 
individual modes are not visible, the existence oftemporal struc- 
ture can be detected in multiple-interval histograms by com- 
paring them to histograms of the same multiplicity made from 
randomly shuffled data. Randomly shuffling the order of spike 
intervals destroys all temporal structure. The effect of this on 
the shape of the shuffled distribution depends on the kind of 
structure present originally. For example, if the original spike 
train consists entirely of a long interval separated by a very short 
interval, then the shuffled distribution will be broader than the 
original because shuffling generates runs of short and long in- 
tervals that did not exist originally. This will lead to a shuffled 
distribution with a greater variance than the original distribu- 
tion. However, if the original train is rich in runs of fixed spiking 
probabilities, shuffling will narrow the distribution by destroy- 
ing long runs of pure high and low spiking rates. This will pro- 
duce a reduction in the variance of the shuffled compared to 
the unshuffled distribution. These considerations suggest that 
multiple-interval histograms could be used to detect attractor- 
like structure in spike trains. We have used this technique to 
compare model and experimental data. 

The properties of a multiple interval histogram depend on 
the number of consecutive intervals, m, used. If m is too small 
it cannot average out the effects of random interspike times and 
the distribution will not capture interesting temporal structure. 
If m is too large it will cover so much of the spike train that all 
interesting structure is averaged out. In practice our results were 
not very sensitive to the value of m. Significant differences be- 
tween the shuffled and unshuffled distributions, when present, 
persist over a wide range of m values. Many IT neurons show 
large significant differences between the original and the shuffled 
distributions that persist over ranges of m from eight to 32 
intervals. These effects are of the magnitude and kind expected 
from the effects of fixed-point attractors in the spiking model. 
An example is shown in Figure 10, where multiple-interval 
histograms are compared for a real IT neuron and unit 2 of 
model instance fl 1. In both cases the shuffled distribution is 
narrower, with fewer high- and low-frequency intervals and a 
lower variance. The unshuffled distributions show indications 
of more than one mode that disappear in the shuffled distri- 
butions. 

Are these variance shifts significant, and if so, how many 
neurons show them? If the shuffled and unshuffled distributions 
really have different variances, then the probability of finding 
a shuffled distribution with the same variance as the original 
unshuffled one should be very small. To test this we shuffled 
each spike train 100 times and found the mean and SD of the 
100 resulting variances. We then measured the difference be- 

IT25105A trial 3 
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Figure 9. Spike train and running average from a real and a model 
neuron. The running average is generated by summing all the spikes in 
a fixed-width time window and plotting this number for each millisec- 
ond or cycle. The bin size is 600 msec for the real neurons, 80 cycles 
for the model. The scale of the spike train is too coarse to resolve 
individual spikes closer than about 30 msec. 

tween the variance of the unshuffled distribution and the mean 
of the 100 shuffled distributions in units ofthe SD of the variance 
of the shuffled distributions, The SD is a convenient measure 
of this difference because it is time-scale invariant and gives an 
indication of both the significance and magnitude of the differ- 
ence. 

We first looked for variance shifts in a selected sample of 20 
single-unit spike trains that had high firing rates, very short 
refractory periods, and “exponential”-like single-spike interval 
distributions. For the set of 20 selected neurons the average 
difference between the variances of the shuffled and unshuffled 
distributions was 25 SD for m = 8, 31 SD for m = 16, and 34 
SD for m = 32. The corresponding values for unit 2 of model 
instance fll are 38 SD for m = 8, 37 SD for m = 16, and 24 
SD for m = 32. These differences are very significant since the 
probability of finding so many SDS difference at random is 
vanishingly small. The effect is quite insensitive to m, at least 
over the range of 8-32 intervals. All the neurons in our sample 
of 20 had significant differences between shuffled and unshuffled 
distributions; the range was 7-77 SDS. 

We then measured the variance differences for all the neurons 
in our IT data set. Of the 179 neurons tested, the differences 
found between the variance of shuffled and unshuffled multiple- 
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Figure 10. Multiple-interval histograms. Multiple-interval distribu- 
tions are generated by summing the time for n spikes to occur after each 
spike, and then binning these times. Number of intervals summed = 
15 for IT25 1.05A and 12 for fl 1, The same procedure is applied to the 
original data and to shuffled data created by randomly reordering all 
interspike intervals. Because any given random shuffling can have some 
idiosyncratic features, the shuffled distributions are the average of 10 
randomizations. The unshuffled distributions are plotted using error 
bars centered on the number of intervals with lengths of two times the 
square root of the number of intervals. The shuffled distributions are 
plotted as points without error bars. The model and neuron plots have 
been scaled to have about the same overall size. The IT25 1.05A aanh 
has been smoothed by averaging three adjacent intervals at each-time 
point. 

interval distributions were less than 55 SDS for 43%, between 
5 and 10 SDS for 16%, and greater than 10 SDS for 41%. These 
data represent the largest difference found for m values of 8, 
16, and 32. Some examples of the the range of values obtained 
are given in Table 2. Note the uniformity over m values. Only 
three neurons out of 179 have differences between distributions 
that span the range of < 5 SDS to > 10 SDS as m goes from 8 
to 32. If we assume that neurons with more than 10 SDS dif- 
ference in the variance of shuffled and unshuffled distributions 
have extensive temporal structure in their spike trains, then 
these observations are consistent with the assumption that more 
than 40% of the neurons in IT are in networks with noisy fixed- 
point attractors. 

Discussion and Conclusions 

The spiking model investigated here uses very simple proba- 
bilistic neurons. These model neurons are “realistic” in the sense 

Table 2. Examples of differences in variance between shuffled and 
unshuffled multiple-interval distributions 

Neuron 
Multiple 
interval size V,,-VJSD 

IT19.03A 8 0.45 

16 0.42 

32 -0.16 

IT19.15A 8 12.6 

16 11.8 

32 10.2 

IT23.13A 8 35.0 

16 43.2 

32 55.5 

IT25.83B 8 51.8 

16 66.2 

32 11.0 
IT19.2lA 8 -0.06 

16 7.6 

32 16.0 

IT251.05A 8 38.4 

16 37.3 

32 24.0 

Unit 2 fl 1 8 38.2 

16 42.6 

32 44.4 

Vu is the variance of the unshuffled multiple-interval distribution. V, is the mean 
of the variances of 100 shuffled distributions. SD is standard deviation of the 100 
shuffled variances. 

that their output spiking statistics are similar to those observed 
in many IT neurons. We cannot say if their input-output char- 
acteristics are realistic because little is known about the in situ 
transfer statistics of neurons in the cortex (Softky and Koch, 
1992). No attempt is made to derive the behavior of the model 
neurons using basic knowledge about cellular properties; that 
is, it is a black box model of individual neurons. Model networks 
can show realistic behavior to the extent that their model neu- 
rons capture the important input-output statistics of neurons 
in the cortex. These networks are useful in analyzing brain func- 
tion because the major features of phenomena such as loading 
information into active memory and the structure imposed on 
spiking by attractors are likely to be fairly independent of the 
fine details of neuron function. In the cases analyzed here both 
the average temporal dynamics and the statistical properties of 
the model spike trains correspond to what was found in many 
real neurons thought to be involved in short-term active mem- 
ory. This demonstrates that the model is consistent with the 
experimental observations. While this qualifies the model as a 
possible way to account for the observed data, it does not rule 
out alternative mechanisms for active storage. For example, it 
might be possible to also construct a model that uses rapid 
weight changes to account for the experimental observations. 
To our knowledge no one has done this yet. An alternative 
explanation for the temporal structure found in the spike trains, 
which our model attributes to noisy attractors, is that the units 
in IT are being driven by visual input as the monkey looks 
around the dimly lit room when not being directly stimulated. 
One line of evidence against this hypothesis is the finding that 
IT discharge is not correlated with eye movements during either 
the baseline or memorization periods (Fuster and JeNey, 1982). 
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Perhaps the two aspects of the model with the most significant 
consequences are the global signal that is used to load new 
information into active memory and the statistical flipping be- 
tween spiking probabilities caused by the presence of fixed-point 
attractors. The model can shed relatively little light on the an- 
atomical origin of the load signal or the chemical nature of the 
transmitter involved. Both must be common to many memory 
circuits because it is highly unlikely that any single, small, un- 
reliable network could account for reliable memory behavior. 
It would be interesting if the transmitter mediating the load 
signal was associated with one of the neuromodulatory systems 
that innervate the cortex. Whether or not the hypothesized load 
signal exists, together with its anatomical location and mech- 
anism of generation, can ultimately be determined only by ad- 
ditional experimental studies. 

The results described here show that the spiking of many IT 
neurons is consistent with the notion that they belong to net- 
works with fixed-point attractors disturbed by spiking noise. 
This is of interest not only for the present model, but also 
because attractors in spiking networks have been hypothesized 
to play a role in the representation of entities in long-term mem- 
ory and in recall into active memory (Cowan, 1972; Amit, 1990). 
Long-term memory for discrete entities is hypothesized to be 
represented by the values of synaptic weights that determined 
the set of possible attractors. These networks have individual 
neurons with only two discrete firing probabilities. The networks 
have many attractor states, each with a different combination 
of neurons in the upper and lower state. Active short-term recall 
is implemented when the system settles into one of these at- 
tractors. This differs from our model, which is a storage mech- 
anism for graded values. These values are generally represented 
by the network not being in an attractor state and are lost after 
settling into attractors. However, all suggestions concerning the 
use of attractors require that they exist, so our findings may be 
relevant to other models as well. Currently there is not enough 
experimental information to tell whether the attractor states we 
have evidence for in IT are associated with graded storage as 
in our model, discrete recall, or both kinds of memory. 

Further confirmation of the validity of the model can come 
from multiunit recordings, which could demonstrate the pre- 
dicted correlations between the activity of neurons in the same 
recurrent memory network. In the course of the original exper- 
imental work (Fuster, 1990) some multiunit recordings were 
made, but were not included in the data set used in this study. 
We have examined some of these multiunit recordings and find 
that in several cases they have the same statistical patterns ex- 
pected of single units in attractor networks. While not enough 
detailed information is available from these multiunit record- 
ings to determine for sure that all units are in the same network, 
these observations suggest that it may eventually be possible to 
trace out the hypothesized recurrent networks in more detail 
using multiple-unit recording. 

The model described here consists of a neural network module 
designed to account for a specific body of well-established ex- 
perimental data about sustained firing observed in very simple 
short-term memory tasks. The model deals only with the issue 
of immediate active information storage and is not a complete 
model of short-term and working memory. Many important 
issues that have been addressed experimentally, such as mem- 
ories maintained across multiple rapid stimulus presentations, 
the mechanism of matching current and remembered stimuli 
(Miller et al., 199 l), and active recall of learned pattern stimuli 

(Sakai and Miyashita, 1991), are not addressed by our model. 
However, we can find nothing in the experimental findings on 
these issues that rules out the use of active storage modules of 
the type described here for information storage over short pe- 
riods of time. Indeed, the striking similarity between the spiking 
patterns predicted by the model and those found in IT neurons 
demonstrates that a mechanism based solely on recurrent con- 
nections that do not change rapidly can account for the data on 
sustained activity observed during short-term memory. This 
result in no way conflicts with the likelihood that there is also 
rapid synaptic weight change, for example, in the hippocampus, 
needed for the full range of short-term memory phenomena. 

It is important to note that this consistency between model 
and experiment was not directly designed into the model, but 
emerged indirectly from the process of optimizing a network of 
nonlinear neural-like units to implement a simple memory task. 
This result is another example of the power of applying the 
systems identification paradigm to neural networks for gener- 
ating models of nervous system function (Zipser, 1992). 
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