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Network Analysis of Cortical Visual Pathways Mapped with PET 
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Brain metabolic mapping techniques, such as positron emis- 
sion tomography (PET), can provide information about the 
functional interactions within entire neural systems. With the 
large quantity of data that can accumulate from a mapping 
study, a network analysis, which makes sense of the com- 
plex interactions among neural elements, is necessary. A 
network analysis was performed on data obtained from a 
PET study that examined both the changes in regional ce- 
rebral blood flow (rCBF) and interregional correlations among 
human cortical areas during performance of an object vision 
(face matching) and spatial vision (dot-location matching) 
task. Brain areas for the network were selected based on 
regions showing significant rCBF or interregional correla- 
tions between tasks. Anterior temporal and frontal lobe 
regions were added to the network using a principal com- 
ponents analysis. Interactions among selected regions were 
quantified with structural equation modeling. In the structural 
equation models, connections between brain areas were 
based on known neuroanatomy and the interregional cor- 
relations were used to calculate path coefficients repre- 
senting the magnitude of the influence of each directional 
path. The combination of the anatomical network and inter- 
regional correlations created a functional network for each 
task. The functional network for the right hemisphere showed 
that in the object vision task, dominant path influences were 
among occipitotemporal areas, while in the spatial vision 
task, occipitoparietal interactions were stronger. The net- 
work for the spatial vision task also had a strong feedback 
path from area 46 to occipital cortex, an effect that was 
absent in the object vision task. There were strong inter- 
actions between dorsal and ventral pathways in both net- 
works. Functional networks for the left hemisphere did not 
differ between tasks. Networks for the interhemispheric 
interactions showed that the dominant pathway in the right 
hemisphere also had stronger effects on homologous left 
hemisphere areas and are consistent with a hypothesis that 
intrahemispheric interactions were greater in the right hemi- 
sphere in both tasks, and that these influences were trans- 
mitted callosally to the left hemisphere. 
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Neuroscience research has been greatly aided by advances in 
functional neuroimaging techniques for both human subjects, 
using positron emission tomography (PET), and nonhuman sub- 
jects, using 2-deoxyglucose autoradiography (2-DG). These 
techniques make it possible to obtain functional maps of many 
regions simultaneously in a single brain, affording a singular 
advantage over traditional neuroscience methods. The analysis 
of mapping data is typically restricted to the comparison of 
average regional activity between experimental conditions, 
treating each brain region as an independent element, yet neural 
function likely relies upon the interactions between these ele- 
ments (Luria, 1973; Damasio, 1989; Horwitz, 1989; Kosslyn 
and Intriligator, 1992). To make full use of mapping data, tech- 
niques that take into account the interactions between these 
elements are necessary. 

Correlational analysis of metabolic mapping data has been 
used to examine the functional associations between different 
areas of the brain (Clark et al., 1984; Horwitz et al., 1984, 1992a; 
Soncrant et al., 1986; Horwitz, 1989). This method assumes 
that brain areas functionally associated with one another during 
a particular condition will be strongly correlated, revealing func- 
tional interactions that are not obvious through simple exam- 
ination of differences in mean regional activity. However, in- 
terpretations can become complicated when one wants to extend 
the discussion of the data beyond pairwise covariance relation- 
ships. 

Recently, McIntosh and Gonzalez-Lima (199 I, 1992a, 1993) 
demonstrated how structural equation modeling (also known as 
path analysis; Bollen, 1989; Jiireskog and S&born, 1989) could 
be used to quantify simultaneously the interactions among many 
brain areas. This computational method allows for the assess- 
ment of changes in the functional associations of entire systems. 
It has traditionally been used in genetics and social sciences for 
testing hypotheses about causal influences (Loehlin, 1987). When 
applied to neural systems, structural equation modeling com- 
bines information about the anatomical pathways and the cor- 
relation coefficients of activity between brain regions to identify 
the functional pathways in a given experiment. The application 
of structural equation modeling to neural data assumes the pat- 
tern of correlations between brain areas is due to common in- 
fluences and/or direct anatomical connections between them. 
The anatomical network model of the system is constructed from 
the known anatomical linkages between brain regions. The cor- 
relations between areas are decomposed to assign numerical 
weights (path coefficients) to the anatomical connections, which 
results in the functional network model. The strengths and signs 
of these path coefficients are compared across experimental con- 
ditions and used to identify task-specific functional interactions 
within the same anatomical network. 

Structural equation modeling has been applied to 2-DG stud- 



656 McIntosh et al. * Network Analysis of Cortical Visual Pathways 

ies of the rat auditory and visual system. The first application 
of structural equation modeling to 2-DG data was from a study 
that examined auditory system activity during long-term ha- 
bituation of the acoustic startle reflex (McIntosh and Gonzalez- 
Lima, 199 1). The auditory system functional network suggested 
that the interactions between parallel auditory pathways in- 
crease as a function of experience with the acoustic stimulus. 
The subsequent application was based on the examination of 
the rat visual system 2-DG uptake in response to different stim- 
ulus conditions and arousal levels (McIntosh and Gonzalez- 
Lima, 1992a). Functional network models of the visual system 
suggested that corticofugal influences change depending on stim- 
ulus conditions, and that arousal can modify the interactions 
between the geniculostriate and tectocortical visual subsystems. 
Structural equation modeling has also been used to examine 
auditory system interactions in response to an acoustic stimulus 
trained as either a Pavlovian conditioned excitor or inhibitor 
(McIntosh and Gonzalez-Lima, 1993). The functional networks 
suggested that auditory system operations depend not only on 
the physical qualities of a stimulus, but also its acquired be- 
havioral significance. In all applications, relationships between 
regions were demonstrated that were not obvious from the anal- 
ysis of mean regional activity. 

The present study extended the application of structural equa- 
tion modeling to human neural systems mapped with PET using 
data from a regional cerebral blood flow (rCBF) study on object 
versus spatial vision (Haxby et al., 1991). It was noted that in 
humans, as in other primates (Ungerleider and Mishkin, 1982) 
object identification and spatial location are processed by two 
different cortical pathways. From the comparison of rCBF be- 
tween tasks, ventral cortical areas were involved more with 
object identification and dorsal areas more with spatial location. 
These observations were furthered by analysis of interregional 
correlations that showed large correlations among posterior ven- 
tral regions in object vision and large correlations among pos- 
terior dorsal regions in spatial vision (Horwitz et al., 1992a). 
Furthermore, significant correlations among these posterior cor- 
tical areas were found only in the right hemisphere, while mean 
changes in rCBF were bilateral. It was suggested that the bilateral 
activation may have resulted from transcallosal influences of 
the right hemisphere on the left. This hypothesis received some 
confirmation through simulation network modeling (Horwitz et 
al., 1992b). From these results, the aims of the present study 
were, first, to construct a functional network to account for the 
right hemisphere correlations. Then, this model was compared 
to a similar circuit in the left hemisphere. Finally, an interhemi- 
spheric model was constructed to determine if the pattern of 
interactions was consistent with the hypothesis ofa strong trans- 
callosal influence from the right hemisphere in both tasks. 

Part of this work has appeared in abstract form (McIntosh et 
al., 1993). 

Materials and Methods 
Network analysis, as we define it, is a technique that identifies neural 
systems that are the main functional group(s) in a given experiment and 
quantifies the interactions within these systems. First, the brain regions 
that define the system to be modeled are selected. This selection may 
be based on a system of interest (e.g., limbic system, auditory system) 
or by some preliminary covariance analysis where regions are grouped 
according to some common underlying dimensions (e.g., principal com- 
ponents analysis, factor analysis, discriminant analysis). For this anal- 
ysis and the structural equation models, the covariances are computed 
between subjects within the same task (for further discussion of sources 

of variability in brain imaging studies, see Horwitz et al., 1992b). After 
the regions are selected, directional connections between the brain areas 
are determined based on neuroanatomy, and specify the anatomical 
network. The anatomical network and the interregional correlations are 
then used to quantify the interactions with structural equation modeling. 
This defines the functional network. 

PET data 
Data were obtained from a previous PET study designed to examine 
rCBF patterns related to object versus spatial visual functions, details 
of which have been presented elsewhere (Haxby et al., 1991; Horwitz 
et al., 1992a) but are summarized here. Seventeen young adult right- 
handed males (aged 19-34 years) performed three visual tasks during 
PET. Object vision was examined using a face-matching task, where 
the subject indicated which of two choice faces corresponded to the face 
in the simultaneously presented sample. The response was indicated by 
pressing a button with the thumb on the side corresponding to the correct 
choice. A dot-location matching task was used to examine spatial vision, 
where the sample stimulus consisted of a dot in a square of which one 
side was a double line. The choice stimuli were rotated 90” or 180 
relative to the sample. The subject indicated which choice stimulus had 
the dot in the same location relative to the double line by pressing a 
button with the left or right thumb as in the face-matching task. The 
third task was a sensorimotor control task with three empty squares 
configured as in the other tasks. The subjects pressed the left and right 
buttons alternately in response to this stimulus. Six PET scans (Scan- 
ditronix PCl024-7B tomograph; Scanditronix, Uppsala, Sweden) were 
performed on each subject after a bolus injection of 30 mCi of H,150 
for each scan. Scanning sessions began and ended with the sensorimotor 
control task. Twelve of the 17 subjects performed each of the spatial 
vision and object vision tasks twice, and the order presentation of the 
tasks was counterbalanced. These tasks were performed only once by 
the other five subjects. 

PET images were analyzed using a region-of-interest (ROI) template 
(Azari et al., 1992; Grady et al., 1992; Horwitz et al., 1992a) resulting 
in a total of 87 ROIs (42 bilateral, 3 midline) for each subject. Values 
assigned to the ROIs represented the average rCBF across the two scans 
(or the single-run value in the case of the five subjects who performed 
the tasks once), transformed by dividing rCBF by the whole-brain CBF 
(Horwitz et al., 1992a). 

Selection of brain regions 
In the initial applications of structural equation modeling, brain regions 
were identified a priori based on neural systems of theoretical interest 
(i.e., auditory and visual; McIntosh and Gonzalez-Lima, 199 1, 1992a, 
1993). For the present study, brain regions were selected by objective 
criteria, including regions that showed significant changes in rCBF and 
in the patterns of interregional correlations between conditions (Horwitz 
et al., 1992a). To identify additional regions that would extend the 
cortical network, a principal components analysis (PCA) with varimax 
rotation was used (Harman, 1969; Stevens, 1992). The assumption 
behind this approach was that brain areas operating together as a net- 
work should be related along a common dimension and could be iden- 
tified using PCA. The PCA was done independently for each hemisphere 
and within each task since the interregional correlation analysis sug- 
gested that the relationships among cortical areas were different between 
tasks and between hemispheres (Horwitz et al., 1992a). 

In choosing regions for the model, the same brain areas were ulti- 
mately selected for both tasks. This allowed the functional interactions 
to be compared within the same anatomical network. Components that 
appeared to define a network were retained, which in practice usually 
includes only the first few components. Given the focus on the neo- 
cortical visual system, motor regions were excluded from the models. 

Structural equation models 
Theory. The algorithms used for structural equation modeling attempt 
to account for an observed pattern of correlations based on the causal 
structure of the system (Loehlin, 1987; Bollen, 1989; Jiireskog and Siir- 
born, 1989). For example, consider the simplified “neural system” pre- 
sented as a path diagram in Figure la. Brain areas A, B, C and D have 
particular anatomical connections given by the arrows, which provide 
the causal order of the system. The direct paths indicate that area A 
projects to B and C, area B to C, and areas B and C project to D. Using 
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path-tracing rules outlined by Wright for path analysis (as cited in Loeh- 
lin, 1987) the system can be represented by a set of path equations 
where the correlations between A, B, C, and D (Fig. lb) are expressed 
as the sum of the compound paths connecting the four regions as shown 
in Figure lc (residual influences have been omitted for simplicity). The 
values for v, w, x, y, and z can be obtained through algebraic substitution 
and represent the path coejicients for the influences between structures 
through the anatomical connections. 

An equivalent representation of the causal order of the system is by 
a set of structural equations rather than path equations (Fig. Id). These 
structural equations can be related to path equations through derivation 
by converting the correlations back to variances and covariances (for 
the mathematical proof, see Loehlin, 1987). Structural equations specify 
the components of the variance for each variable, while path equations 
specify the components of each correlation coefficient. For these equa- 
tions, A, B, C, and D represent known parameters and are the variances 
for each region. The unknown parameters to be solved are v, w, x, y, 
z, and each value for fi (residual influences). The solutions for the struc- 
tural equations are obtained in a similar fashion to multiple regression, 
but rather than solving for each equation independently, they are con- 
sidered simultaneously using matrix operations. 

Mathematically, the goal of structural equation modeling is to obtain 
a solution to a set of structural equations that minimizes the differences 
between the observed covariance relationships and those that are im- 
plied by the solution. The process begins by giving each unknown pa- 
rameter a starting value. These values are then used to start a series of 
successive “guesses” (iterations) for the parameters, given the correla- 
tions between variables. Using the “guesses,” structural equation mod- 
eling programs compute the implied covariances and compare the values 
with the original covariances. Adjustments in the parameters are made 
based on the deviation of the implied covariances from the original 
covariances (optimization). This data-fitting procedure is performed 
until the deviation lies within an acceptable range. 

The path coefficients are direct effects representing the influence of 
one brain region on another, controlling for the impact of other regions 
(Hayduk, 1987). Besides the direct effects, total effects can be examined. 
Total effects are the algebraic sum of direct and indirect effects (Loehlin, 
1987; Bollen, 1989). Indirect effects represent the impact of a region 
transmitted through indirect routes. In Figure 1, the total effects of A 
on C would be the sum of the direct effect (x) plus the indirect effects 
transmitted through B (VW). Evaluation of structural equation models 
in terms of total, direct, and indirect effects is referred to as effects 
decomposition (Hayduk, 1987). It is informative because it shows the 
total influence of an area or pathway and whether this influence is 
modified at any level of the system (McIntosh and Gonzalez-Lima, 
1991, 1992b). 

Modelconstruction. The directional paths that defined the connections 
between the regions ofthe network were based on known neuroanatomy. 
However, because brain regions typically are very highly interconnected, 
a compromise was reached between anatomical accuracy and the ability 
to interpret the model (McIntosh and Gonzalez-Lima, 1991, 1992b). 
Models that include all possible connections may be accurate, but not 
interpretable, whereas an excessively simplified model is of little utility. 
The other consideration in building the model was mathematical: if all 
connections were included there would have been too many unknown 
parameters relative to known quantities (correlations), making it im- 
possible to solve the structural equations (Hayduk, 1987; McIntosh and 
Gonzalez-Lima, 1992b). 

The path coefficients for the influences through the anatomical con- 
nections were then computed using LISREL (version 7, Scientific Software 
Inc.). The estimates for the path coefficients were initially obtained using 
two-stage least squares, and then, using these estimates as starting val- 
ues, iteratively modified using a maximum likelihood fit function (Jo- 
reskog and Sorbom, 1989). Minimization was done with steepest-decent 
iterations and fine-tuned by Davidon-Fletcher-Powell iterations (David- 
on, 1959; Fletcher and Powell, 1963; Jiireskog, 1973). Though this 
algorithm results in a reliable solution, solutions using different starting 
values were compared to ensure that the final solution was not a function 
of a local minimum. 

Structural equation modeling allows for influences not measured or 
not measurable to be incorporated in the model as residuals. In the 
present model the representation of residuals is with the variable PSI 
(C) in LISREL terminology. These residual influences are best thought of 
as including the combined influences of areas outside the model and 
the influence of a brain region upon itself (McIntosh and Gonzalez- 
Lima, 1992b). For each region a PSI variable was used to represent the 

STRUCTURALMODEL 

P X 

GAO 

I 

-c 

yLW J 
Z 

0 D 

CORRELATIONMATRIX 

A B C D 

A - 

B rb.B 
C 'AC ‘BC - 

D rm 'BD 'CD - 

PATHEQUATIONS STRUCTURALEQUATIONS 

rm=v A=VA 
rAC=x+(k’w) 

rm = W + (x-4 + (~4 

rBc=w+(vx) 

B=vA+tyB 

C=xA+wB+yq 

D=YB+zC+~D 

rBD=Y+(Wz)+(w) 

'CD=Z+(w)+("Y) 

Figure I. Representation of the basic processes involved in structural 
equation modeling/path analysis. Pane/ a is a path diagram of a “brain” 
with four areas (A, B, C, and D), and the anatomical connections between 
them are indicated by arrows. Structural equation modeling/path anal- 
ysis uses information about the anatomical connections (panel a) and 
the correlations of activity between regions (panel b) to determine the 
strength of influences through the connections. These influences are 
known as path coefficients (v, w, x, y, z). Pane/ c shows how the cor- 
relations between areas can be decomposed to solve for the path coef- 
ficients. The structural equations for the system presented in panel d 
express the variance in activity in each area as a function of the weighted 
variance of other brain areas and some residual influence (indicated by 
$). Residuals were not represented in the path diagram or equations for 
simplicity. As a network becomes more complicated, solutions for the 
path coefficients are more easily obtained with least-squares or iterative 
methods using structural equations (see Materials and Methods). 

influence of areas outside the model. In the present models, PSI was 
represented as a diagonal matrix so that residual influences were un- 
correlated with each other. 

Omnibus comparisons between tasks were done using the stacked 
model approach in LISREL (Jiireskog and S&born, 1989; McIntosh and 
Gonzalez-Lima, 1992a). Rather than estimating each model separately, 
the models were combined in a single program run. The process involved 
statistically comparing functional networks where path coefficients were 
constrained to be equal between conditions (null model) with those 
where the coefficients were allowed to differ (alternative model). Each 
model was assessed for its ability to reproduce the original correlation 
matrix through the x2 goodness-of-fit statistic. The x’ value is (N - 1) 
times the minimum value of the maximum-likelihood fit function, where 
N is the total sample size (Jdreskog, 1973). A statistically insignificant 
x2 goodness of fit indicates the model is able to reproduce the original 
correlation matrix reliably. I f  the x2 value for the null model was sig- 
nificantly larger than the alternative model (xzd,* test), then the coeffi- 
cients that were allowed to vary between conditions are statistically 
different. Generally, the x*~,~ test is used to determine if a modification 
to a model leads to a significant improvement in the fit of the model, 
and therefore the x2 value should be statistically significant. In the case 
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Table 1. Correlation matrix of normalized rCBF within each task 

17/18(r) 19v(r) 37(r) 21(r) 19d(r) 74 46(r) 17/18(l) 19v(l) 37(l) 21(l) 19d(l) 7(l) 46(l) 

Object vision task 
17/18(r) 1.00 
19v(r) 0.57 

3%) 0.24 

216) 0.12 

19d(r) 0.22 

769 0.38 

46(r) -0.15 

17/18(l) 0.59 

19v(l) 0.67 

37(l) 0.03 

21(l) -0.40 

19d(l) 0.15 

7(l) 0.38 

46(l) -0.05 

Spatial vision task 
17/18(r) 1 .oo 
19v(r) 0.27 

3%) 0.46 

21(r) 0.70 

19d(r) 0.31 
74 0.16 

46(r) -0.08 

17/18(l) 0.22 

19v(l) 0.40 

37(l) 0.60 

21(l) 0.05 

19d(l) 0.22 

7(l) 0.31 

46(l) -0.34 

1.00 

0.62 1 .oo 
0.49 0.34 1.00 
0.37 0.50 0.33 1.00 
0.35 -0.04 0.5 1 0.03 1 .oo 

-0.02 -0.09 0.16 -0.24 -0.11 1 .oo 

0.36 0.04 0.12 -0.04 0.17 -0.09 

0.32 -0.12 -0.13 -0.38 0.33 -0.23 

0.30 0.56 0.22 0.27 0.17 0.00 

0.31 0.45 0.39 0.16 0.00 -0.01 

-0.15 -0.14 0.06 0.41 0.31 -0.73 

0.23 0.15 0.39 0.08 0.25 -0.22 

-0.40 -0.48 -0.35 -0.56 -0.25 0.31 

1.00 
0.20 1 .oo 

0.25 0.58 1 .oo 
0.40 0.42 -0.01 1 .oo 
0.43 -0.18 -0.33 0.60 1.00 
0.51 -0.20 -0.33 0.59 0.70 1 .oo 

0.00 0.36 0.07 0.33 -0.18 -0.20 

0.09 0.40 0.47 -0.03 -0.02 -0.40 

0.18 0.59 0.82 0.00 -0.33 -0.5 1 
0.19 0.25 0.20 -0.33 -0.50 -0.17 

0.09 0.08 0.04 0.17 0.11 -0.29 

0.39 0.15 0.04 0.75 0.36 0.40 

-0.09 -0.67 -0.14 -0.61 -0.11 -0.23 

1 .oo 
0.55 

-0.03 

-0.30 

-0.05 

0.36 

0.24 

1 .oo 

0.20 

0.01 
-0.14 

0.35 

0.51 

-0.41 

1.00 
-0.16 1 .oo 
-0.54 0.53 1 .oo 

0.04 -0.04 -0.12 1.00 
0.29 -0.35 -0.29 -0.03 1 .oo 
0.12 -0.76 -0.48 -0.38 0.27 1.00 

1.00 
0.48 1.00 

-0.08 0.24 1 .oo 
0.23 0.27 -0.15 1 .oo 
0.02 0.07 -0.25 0.42 1.00 

-0.14 -0.06 -0.06 0.25 -0.19 1 .oo 

Matrix is divided into three sections by lines. The upper left corresponds to interregional correlations for the right hemisphere, the lower right portion corresponds to 
the left hemisphere correlations, and the lower left portion to interhemispheric correlations. Areas are in rows and columns where the letter in parentheses indicates 
right or left hemisphere (r or 1). Designations of regions are given in terms of Brodmann areas. 

of the present models, the modification was the removal of the between- 
group constraints on the path coefficient estimates. 

The within-hemisphere functional networks for each task were con- 
structed and compared. In the initial anatomical network it was decided 
that only the path coefficients for the feedforward connections from the 
occipital to the frontal lobe would be included. This minimized the 
number of unknown parameters to be estimated. A functional network 
accounting for the interhemispheric interactions was constructed in the 
final stage. For both intra- and interhemispheric functional networks, 
the influence of other connections (e.g., feedback connections) could be 
estimated if it significantly improved the fit of the model. The decision 
was based on modification indices of fixed coefficients (those that were 
not estimated in the initial run). Modification indices are computed 
from the partial derivatives of the fixed coefficients and give the expected 
improvement in the fit of the model if a coefficient were freed (Hayduk, 
1987; Jiireskog and Sorbom, 1989). The final decision of whether to 
free the coefficient was based both on this statistical index and the 
theoretical feasibility. 

Model interpretation. In a neural structural equation model, there is 
a temptation to interpret the sign of a path coefficient (positive or neg- 
ative) as a reflection of excitatory or inhibitory influences in the elec- 
trophysiological sense, but this may not be accurate (McIntosh and 
Gonzalez-Lima, 199 1). Instead, the path coefficients are interpreted in 
a manner similar to correlation or regression coefficients. A positive 
path coefficient means that a unit increase in the activity measure of 
one structure leads to a direct increase in the activity measure of struc- 
tures it projects to, proportional to the size ofthe coefficient. Conversely, 

a negative path coefficient means that an increase in the activity measure 
in one structure leads to a direct, proportional decrease in the activity 
measure of structures it projects to. Positive and negative path coeffi- 
cients, therefore, measure the sign of the covariance relationships be- 
tween components of the network. 

Differences in path coefficients represent changes in the functional 
interaction between regions and can be of two types. One is represented 
as a difference in the sign of an effect without a marked difference in 
absolute magnitude. A difference in sign of the covariance relationship 
may be assumed to reflect a reversal in the interactions (from positive 
to negative or vice versa) within that pathway. This may be interpreted 
as a qualitative difference in the nature of the interaction between regions. 
On the other hand, if the difference is in absolute magnitude, but not 
sign, this is interpreted as a change in the strength of the influences 
conveyed through that pathway. This may suggest a quantitative shift 
(increase or decrease) in the influence of a pathway or structure on the 
activity of a system. This dichotomous classification aids in interpre- 
tation, but it is usually the case that changes in both sign and magnitude 
occur. While an individual path coefficient provides an indication of 
how a particular region is influencing another, the overall pattern of 
interrelations can give a clearer picture of how the system is interacting 
across conditions. Models can be interpreted based on well-known an- 
atomical pathways (e.g., geniculostriate, septohippocampal) and wheth- 
er there are discontinuities along these pathways indicated by sign changes 
or large changes in magnitude (McIntosh and Gonzalez-Lima, 1992b). 
Differences in either of these suggest an overall change in the relative 
influence of that pathway. 
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Object Vision Spatial Vision 

Path Coefficients 

Positive Negative 

0.7 to 1.0 - - - -.7 to -1.0 

0.4 to 0.6 ______ -.4 to -3 
0.1 to 0.3 . . . . . . .._... -.I to -.3 

. . . . . . 0 

Fzgure 2. Graphic representation of 
the object vision (right) and spatial vi- 
sion (left) functional networks in the 
right hemisphere. The magnitude ofthe 
direct effect is proportional to the arrow 
width for each path. Values for the width 
gradient are given in the legend at the 
bottom. Positive path coefficients are 
represented as sohd black arrows, and 
negative as dashed arrows. Paths where 
the coefficient was at or near zero are 
depicted as a dotted line. The relative 
location of the brain region is some- 
what distorted to maintain figure clar- 
ity. 

Results 
were fixed at 0.35 based on partial derivatives and modification 
indices. There was no indication that these residual influences 

The regions that were ultimately selected, along with the in- 
terregional correlations, are presented in Table 1. Besides oc- 
cipital, occipitotemporal, and parietal cortical areas, ROIs from 
the anterior temporal and frontal lobe were chosen from the 
PCA. Since part of the purpose in constructing the models was 
to account for the different pattern of significant correlations 
seen in the two hemispheres (Horwitz et al., 1992a), it was 
decided that the anatomical network constructed for the right 
hemisphere would be used for the left. The table presents both 
within- and between-hemisphere correlations. The selected ROIs 
in occipital and temporal cortices likely corresponded to Brod- 
mann areas 17/l 8, ventral and dorsal area 19 (19~ and 19d) in 
the occipital lobe, occipitotemporal area 37, and anterior tem- 
poral area 2 1. The parietal lobe region was designated as area 
7, and the frontal lobe region as area 46. These designations 
were based on the approximated location of the template ROIs. 

The connections between these areas were based on the neu- 
roanatomy in nonhuman primates (Petrides and Pandya, 1988; 
Ungerleider et al., 1989; Pandya and Yeterian, 1990; Colby and 
Duhamel, 1991; Felleman and Van Essen, 1991; Knierim and 
Van Essen, 1992). To construct the anatomical network, we 
assumed homologies between areas 17/l 8 and VlN2, area 19 
and V4, area 37 and TEO, and area 21 and TE. It needs to be 
emphasized that these anatomical designations should be re- 
garded as tentative until they can be confirmed experimentally. 
Area 17/l 8 formed the start of the network that extended into 
areas 19v and 19d. Areas 37 and 2 1 were regions along a ventral 
pathway, and area 7 along the dorsal pathway. Both the dorsal 
and ventral pathways continued into frontal cortex ending in 
area 46. There were also connections between the dorsal and 
ventral pathways (area 37 to 7, area 7 to 21) that were added 
based on modification indices from the null hypothesis model 
[x~~,* (1) = 17.92, p < 0.01 for area 37 to 7; x*~,~ (1) = 24.80, 
p < 0.0 1 for area 7 to 2 l] and confirmed by anatomy (Pandya 
and Kuypers, 1969; Goldman-Rakic, 1988; Felleman and Van 
Essen, 199 1). The PSI value for area 17/ 18 was fixed at 1 .O since 
it had no paths to it in the model. PSIs for all other regions 

were significantly different between tasks or hemispheres. 

Right hemisphere structural equation model 

Figure 2 graphically represents the functional networks for the 
right hemisphere in the two conditions. The values are the path 
coefficients obtained from a standardized solution where the 
size of a coefficient could range, in absolute value, from zero to 
one (Jiireskog and S&born, 1989). The omnibus test suggested 
that these models were distinct from each other [xzd,# (11) = 
31.61,~ < 0.011. 

As predicted by the rCBF and correlation analyses, interac- 
tions along the ventral pathway from area 19v extending into 
the frontal lobe were stronger in the object vision functional 
network, while interactions along the dorsal pathway from area 
19d to the frontal lobe were relatively stronger in the spatial 
vision functional network. Among posterior areas, the differ- 
ences in path coefficients were mainly in magnitude. Occipi- 
totemporal interactions between area 19v and area 37 were 
stronger in the object vision network while the impact of area 
17/ 18 to 19d and the occipitoparietal influences from area 19d 
to area 7 were stronger in the spatial vision network. 

The anatomical model allowed for interactions between the 
dorsal and ventral pathways with connections from area 37 to 
area 7 and from area 7 to area 2 1. These interactions among 
the more anterior areas showed task-dependent differences in 
magnitude and sign. The temporoparietal influence of area 37 
on area 7 was relatively stronger in the spatial vision network, 
and the parietotemporal influence of area 7 on area 2 1 showed 
a difference in sign between the two functional networks, with 
a positive influence in the object vision network and a negative 
sign in the spatial vision network. The influence of the dorsal 
and ventral pathways on frontal cortex was similar in magnitude 
for the two tasks, but the origin of the positive and negative 
influences differed, implying that the qualitative nature of in- 
teractions with the frontal lobe was different. 

The other difference in the two functional networks was in 
the feedback path from area 46 to area 19~. This path was not 
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Table 2. Effects decomposition of interrelations between structures in the right hemisphere structural 
equation model 

17/18 19v 37 21 19d I 46 

Object vision 
17/18 - 

0 
19v 0.58 

0.58 
37 - 

0.36 

21 
0.12 

19d 0 
0.22 

I - 

-0.01 
46 - 

-0.03 

Spatial vision 
17/18 

0 
19v 0.32 

0.32 

37 
0.10 

21 - 
0.05 

19d 0.27 
0.32 

7 - 

0.19 

46 - 

0.17 

- 

0 

0 

0.62 
0.61 

0.21 

0.39 
0.39 

0.02 
- 

0.05 

0 

- 

0 

0.32 
0.31 

- 

0.7 

0.13 
0.22 

- 

0 

- 

0 

- 
0 
- 
0 
- 
0 
0.35 
0.32 

0 

-0.07 
-0.07 

- 

-0.16 

0 

- 

-0.24 

0 

0.55 
0.65 

0 

-0.58 
-0.56 

- 

-.43 

- 

0 

- 

0 
- 

0 

0 

- 

0.02 

0 

0.44 
0.45 

0 

- 

-.12 

0 

- 

0 

0 

- 

0 

-0.22 
-0.21 

- 

0 

0 
- 

0 

0 

0 

0.07 
0 

-0.41 
-0.40 

- 

0 

0 

- 

0 

0.52 
0.53 

0 

0 

-0.32 
0 

0 

- 

0.39 

0.12 

-0.12 
- 

- 

0 

- 

0.30 

0 

-0.23 
-0.17 

0 0 

0.82 - 

0.19 0 

0.25 0.51 
0.69 0.54 

0 
0.11 
0.10 
- 
0 

0 
- 
0 

0 
- 
0 

0 
0.56 
0.55 

0.18 

- 

0.11 

0 
- 
0 

0 
- 

Within each row, upper value is the direct effect and lower value is the total effect. Direct effects were obtained by 
maximum-likelihood estimation, and total effects are. the sum of direct and indirect influences. Rows list structures being 
affected and columns list the origin of the effect. Direct effects that were not estimated are indicated by a dash (-). Total 
effects less than 0.1 were set to zero. Region designation is as in Table 1. 

part of the initial anatomical network and was included based 
on a modification index in the spatial vision model. Its inclusion 
significantly decreased the overall x2 goodness of fit for the 
model [x*~,~ (2) = 11.92, p < 0.011. This path coefficient was 
strong in the spatial vision functional network but zero in object 
vision. We were unable to find evidence in the literature for a 
strong direct anatomical connection from area 46 to area 19, 
although there are numerous indirect routes that could mediate 
this connection (e.g., thalamus or limbic cortices, Felleman and 
Van Essen, 1991; area 8, Nakamura et al., 1993). We therefore 
consider this to represent a functional influence mediated through 
structures not included in the present model. The between-task 
difference in this influence suggests that, regardless of the in- 
tervening structures, feedback originating in the frontal lobe 
played a stronger role in spatial than in object vision. 

Effects decomposition for both functional networks are pre- 
sented in Table 2. Two regions showed between-task differences 
in total effects. The spatial vision functional network showed 
larger total effects from areas 37, 19d, 7, and 46 on area 19~. 
This was a result of the larger indirect effects from these areas 
through the feedback path from area 46. Consistent with the 
weaker influence of dorsal paths in the object vision functional 
network, the total effect of area 7 on area 46 (0.00) was smaller 

than its corresponding direct effect (-0.32). The indirect effect 
of area 7 on 46 (through area 2 1) was positive (0.23; indirect = 
total - direct), which reduced the negative direct effect. This 
did not occur in the spatial vision model. 

Left hemisphere structural equation model 

A graphic representation of the left hemisphere functional net- 
work is shown in Figure 3. The omnibus test suggested that path 
coefficients did not differ between tasks [x*~~~ (11) = 15.08, p > 
0. lo], so the estimates of the coefficients were collapsed across 
the two conditions. The figure represents what could be thought 
of as the average interaction for the two conditions. Coefficients 
in both ventral and dorsal pathways from area 19v were positive 
until the final path to area 46 from areas 21 and 7. The inter- 
action between the two streams was also negative, and the co- 
efficient for the feedback path from area 46 was zero. In some 
sense, this functional network seemed to be a blending of the 
features seen for each task in the right hemisphere network, but 
the magnitude of the effects was somewhat smaller. 

Interhemispheric structural equation model 
To construct a functional network accounting for the interac- 
tions between hemispheres, some simplifying restrictions were 



Path Coefficients 

Positive Negative 

- 0.7 to 1.0 - - - -.7 to -1.0 

0.4 to 0.6 111111 -.4 to -.6 

0.1 to 0.3 . .._________ -.I to -.3 

. . . . . . . 0 

Figure 3. Graphic representation of the left hemisphere functional 
network. The model did not differ between tasks, so the network rep- 
resents the average of the two conditions. The magnitude of the direct 
effect is proportional to the arrow width for each path. Values for the 
width gradient are as in Figure 2. 

made to limit the number of coefficients estimated. First, the 
initial model was constructed with the interhemispheric inter- 
actions, represented as reciprocal influences, limited to homol- 
ogous regions. The second restriction was to fix the coefficients 
for the intrahemispheric paths at the values from the previous 
analyses. These restrictions could be removed based on modi- 
fication indices. 

The final interhemispheric functional networks are presented 
in Figures 4 and 5. The omnibus comparison of the network 
suggested they were significantly different [xzdifl (17) = 6 1.74, p 
< 0.011. Additional paths from area 19d to area 7 and area 46 
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to area 37 were included based on the modification indices for 
the spatial vision model. These inclusions significantly im- 
proved fit of the model [for area 19d to area 7, xZdiff(2) = 13.86, 
p < 0.01; for area 46 to area 37, xzdiff (2) = 18.46, p < 0.011. 

The dorsal and ventral pathways showed strong interactions 
between hemispheres. In the object vision task (Fig. 4), the right 
hemisphere showed stronger positive influences from ventral 
regions onto left hemisphere areas, especially from areas 37 and 
2 1, whereas the left hemisphere showed weaker negative recip- 
rocal influences. Dorsal regions showed weak interactions with 
a slight left hemisphere bias. The interhemispheric relation be- 
tween dorsal and ventral pathways was reversed in the spatial 
vision functional network (Fig. 5). The dorsal areas showed 
greater interhemispheric interactions than ventral, with the right 
hemisphere having a larger influence on the left than the reverse. 
It was noteworthy that, unlike the more anterior areas, the in- 
terhemispheric interactions among area 17/l 8 were equal in 
magnitude both between hemispheres and between tasks. 

Effects decomposition revealed that differences between tasks 
in the total effects of left hemisphere regions were mainly in sign 
with the exception of area 46 (Table 3). Relative to the object 
vision functional network, the total effects in the spatial vision 
network of left area 46 on the contralateral hemisphere were 
higher for both ventral and dorsal cortical areas. For example, 
the total effect of left area 46 on right area 37 was -0.38 in the 
object vision network and -0.63 for the spatial vision network. 
For area 7 in the right hemisphere, the total effect of left area 
46 was 0.00 for the object vision network and 0.37 for the spatial 
vision network. Since the direct effects of area 46 did not differ 
between tasks, the relatively greater total effects were a function 
of indirect influences mediated by the larger intrahemispheric 
feedback influence from area 46 in the right hemisphere for the 
spatial vision network. Overall, then, frontal lobe influence, 
from both left and right hemispheres, was greater in the spatial 
vision network. The lack of strong intrahemispheric frontal lobe 
feedback may have prevented such effects in the object vision 
task. Total effects of other regions were consistent with their 
direct effects. 

Object Vision 

Figure 4. Graphic representation of 
the interhemispheric functional net- 
work for the object vision task. The 
within-hemisphere functional net- 
works (Figs. 2, 3) are depicted in the 
background in gray for comparison. The 
right hemisphere is on the left and left 
hemisphere on the right. The magni- 
tude of the direct effect is proportional 
to the arrow width for each path. Values 
for the width gradient are as in Figure 2. 



Table 3. Effects decomposition of interrelations between hemispheres in the interhemisphere structural equation model 

Right hemisphere on left Left hemisphere on right 

17/ 17/ 
18(r) 19v(r) 37(r) 2 1 (r) 19d(r) 76) 46(r) 18(l) 19v(l) 37(l) 21(l) 19d(l) 7(l) 46(l) 

Object vision 
17/18(r) 

19v(r) 

37(r) 

21(r) 

19d(r) 

7(r) 

4%) 

17/18(l) 

19v(l) 

37(l) 

210) 

19d(l) 

7(l) 

46(l) 

Spatial vision 
17/18(r) 

19v(r) 

37(r) 

21(r) 

19d(r) 

7(r) 

46(r) 

1 I/ 18(l) 

19v(l) 

37(l) 

210) 

19d(l) 

7(l) 

46(l) 

0.28 - 
0.31 0 
- 0.29 
0.24 0.27 

0?28 0?42 
- - 
0 0 

al8 &6 
- - 
0 0 

0 0 

0.11 - 
0.11 0 

0 0.02 
0 

0 &3 

0 0 

0 0 

0 0 

0 0 

0 0 
0 0 
0.73 
0.52 0 

i.19 
0.45 
0.46 

0 0 

0 0 

0 0 

0 0 
0 0 
0.29 
0.41 0 

0_15 0.19 0.19 

0 0 
- - 

-0.13 0 

Cl1 0 

0 
0 
- 
0 
- 
0 
0.29 
0.32 
0.09 
0 
- 

-0.17 

0 
- 
0 
- 
0 

-a16 
0.12 
0.13 
0.70 
0.80 

-0-38 

0 
0 
- 
- 
0.26 

0 
-0.15 
-0.16 

0 

- 

0 

0 

-Go 

0 
- 
0 
0.05 
0.11 
- 

-0.16 

0.28 
0.31 

Go 
- 
0 

0 

0 

0 

0 

0 

0 
0.15 
0 

0 

0 

0 
0.34 
0.34 

0.11 
0.11 

0 

0 

0 

0 
- 
0 

0 

0 

0 
-0.30 
-0.19 

0 
- 
0 

a10 
-0.27 
-0.30 

- 
0 

-0.18 
-0.17 

- 
-0.15 

0 

0 

0 

0 

0 
0.17 
0.16 

a13 

0 
- 
0 

0 
- 
0 

0 
- 
0 

-0.28 
-0.25 

-o_ll 

0 
- 
0 

0 

0 

0 
0.29 
0.25 

&5 

0 

-a10 
- 
0 

0 
- 
0 

o-16 
0.02 
0 

0 

0 
- 
0 

0 

0 

0?26 
-0.15 

0 

0 

-IT15 

-& 1 

- 

0 
0 
0 
- 
0.22 

0.31 
0.34 
0.28 
0.41 
- 
0.17 

- 
0 
- 
0 
- 
0 

0 
0.08 
0 
0.13 
0.13 

0 

0 0 
0 0 
Cl4 zz 
- - 
0.25 -0.11 

0 0 
0.42 - 
0.38 0 

0 -0.01 0 

0 0 

-Cl4 O-20 
- -0.67 
0.16 -0.63 

:20 -<42 

0 0 
-0.27 - 
-0.37 0.37 

0 0.08 0.36 

Within each row, upper value is the direct effect and lower value is the total effect. Rows list structures being affected and columns list origin of the effect. Effects within 
hemisphere have been omitted for clarity. Region designation is as in Table I. 
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Spatial Vision 

Discussion 

The results of this study demonstrate how structural equation 
modeling can be used with PET data to provide information 
about the functional relationships among different brain areas. 
Structural equation modeling extended the correlational anal- 
ysis by expressing these relationships in the context of direc- 
tional influences in an anatomical network. The functional net- 
works showed differences in the interactions of parallel cortical 
visual pathways in object and spatial vision and the interhemi- 
spheric interactions between these pathways. The networks in- 
cluded the influence of regions in the anterior temporal and 
frontal lobes that was not obvious by the traditional analysis of 
mean changes (i.e., these regions did not show a significant 
difference in rCBF in either task relative to the baseline control 
task). 

Most of the differences between the two tasks involved the 
interactions within the right hemisphere. The right hemisphere 
functional network for object vision (face matching) showed 
strong continuous positive interactions along ventral pathways 
extending into frontal cortex. Dorsal interactions were discon- 
tinuous with zero path coefficients from area 17/ 18 to 7 through 
19d. These dorsal pathways were more strongly involved in the 
spatial vision (dot-location matching) task and were continuous 
into frontal cortex. Coefficients within the ventral pathway were 
positive and continuous up to the final link from area 2 1 to 46, 
where the sign reversed to negative. The spatial vision functional 
network also had a strong feedback path coefficient from area 
46 to 19~. This path represented a functional influence possibly 
mediated through other regions that receive input from area 46 
and project to area 19. 

The right hemisphere functional networks are consistent with 
both the previous rCBF and correlational analyses, which showed 
that the ventral pathway was mainly involved in object iden- 
tification and the dorsal pathway was stronger in spatial location 
(Haxby et al., 199 1; Horwitz et al., 1992a). The network analysis 
quantified the directional interactions within and between path- 

Figure 5. Graphic representation of 
the interhemispheric functional net- 
work for the spatial vision task. The 
within-hemisphere functional net- 
works (Figs. 2, 3) are depicted in the 
background in gray for comparison. The 
right hemisphere is on the left and left 
hemisphere on the right. The magni- 
tude of the direct effect is proportional 
to the arrow width for each path. Values 
for the width gradient are as in Figure 2. 

ways in each task and demonstrated that the functional network 
extended beyond posterior cortical regions to include areas in 
the anterior temporal and frontal lobes. The involvement of the 
anterior temporal lobe in visual processing of objects has been 
noted in other PET rCBF studies using somewhat different stim- 
uli (Sergent et al., 1992). The frontal lobe involvement was 
stronger in the spatial vision model, as illustrated by the strong 
feedback path. This could reflect the different requirements for 
the two match-to-sample tasks; the dot-location matching task 
may have required more processing steps, such as mental ro- 
tation and serial comparisons (Horwitz et al., 1992a). 

Interactions between the dorsal and ventral pathways (from 
area 7 to 2 1, and from area 37 to 7) were present in the functional 
networks for both tasks, and showed differences in magnitude 
and sign between tasks. While the dorsal pathway was discon- 
tinuous in the object vision network, there was a strong positive 
direct effect from area 7 on the ventral pathway. This effect was 
strong, but negative, in the spatial vision network. Area 37 (in 
the ventral pathway) showed a strong influence on area 7 in the 
spatial vision network only. These interactions were not obvious 
in the correlation analysis. 

The functional networks show that while the strongest posi- 
tive interactions in each model may have preferentially been in 
one pathway, the parallel pathways were not functioning in- 
dependently. The qualitative differences in the influence of 
“nondominant” pathways (e.g., area 21 to 46 in spatial vision 
and area 7 to 46 in object vision) and in the interactions between 
pathways suggest that, in addition to increases and decreases in 
activity, part of normal brain function entails modulation of the 
covariance relationship among different brain regions. Strong 
interactions between parallel pathways have been a consistent 
finding in all structural equation models of brain imaging data 
performed thus far (McIntosh and Gonzalez-Lima, 199 1,1992a, 
1993) and emphasize that while a certain pathway or area may 
be critical for a particular function, operations in the intact brain 
involve interactions among many regions. Furthermore, neural 
networks based on the dorsal and ventral visual pathways have 
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shown that behaviorally feasible models are obtained by in- 
cluding strong interactions among parallel, but functionally dis- 
tinct, pathways (Otto et al., 1992; Tononi et al., 1992). 

In both interhemispheric functional networks, the dominant 
right hemisphere pathway also showed a stronger influence con- 
tralaterally. The object vision network showed larger path co- 
efficients among ventral areas from the right to the left hemi- 
sphere, while the spatial vision network had stronger coefficients 
among dorsal areas from the right to the left hemisphere. The 
correlational analysis of this data (Horwitz et al., 1992a) sug- 
gested that significant functional interactions occurred mainly 
in the right hemisphere, while the rCBF data suggested equal 
bilateral involvement. It was hypothesized that the reason for 
this discrepancy was that the right hemisphere was more in- 
volved in the tasks and the left hemisphere activations were due 
to the transcallosal influence of the right (Horwitz et al., 1992a). 
In support of this conjecture, dominant pathways in the right 
showed strong influences on the homologous left hemisphere 
areas in the structural equation models. This asymmetric rela- 
tionship would not have been deduced from simple examination 
of the interhemispheric correlation matrices presented in Table 
1, but was quantified by the structural equation models. These 
results demonstrate how structural equation modeling can be 
used to confirm hypotheses about underlying network interac- 
tions. 

Evaluation of structural equation modeling application 

The purpose of the present analysis was to ascertain whether 
interactions among neocortical visual areas differed between the 
object and spatial vision task. Objective criteria (mean rCBF 
differences, correlations, and PCA) were used to select brain 
areas, but other networks also may have been involved in these 
tasks (e.g., attentional networks). As with any multivariate sta- 
tistical analysis, however, the sample size limits the number of 
regions that can be simultaneously considered in an analysis. 
There are strategies for expanding structural equation models 
to include the interactions among smaller models (Hayduk, 
1987). This was demonstrated in the present analysis for the 
interhemispheric model where intrahemispheric path coeffi- 
cients were fixed at previously estimated values and the path 
coefficients for the interhemispheric interactions were freed. Such 
a strategy has also been employed in systems containing multiple 
reciprocal connections where path coefficients in one direction 
are estimated, then those estimates fixed and the estimates for 
the coefficients in the other direction determined (McIntosh and 
Gonzalez-Lima, 1992a). The reliability of estimates from this 
approach can be assessed by examination of the modification 
indices, which suggest whether the additions to base models 
change the original estimates ofthe path coefficients, or by doing 
the analysis in the reverse order and comparing the final solu- 
tions. 

Models can be built hierarchically on a statistical basis using 
the x~.,,~ test. Given a choice between many potential connec- 
tions, each could be evaluated for its statistical importance. The 
final model would contain those connections whose addition 
led to a significant improvement in the fit of the model. Con- 
straints on this hierarchical approach could be imposed based 
on the neuroanatomical connections for the brain areas in the 
network and would give the minimal number of functional inter- 

actions necessary to account for the interregional correlations. 
The maximum-likelihood estimates for the path coefficients are 
quite stable when new connections or structures are added to a 
model, but the stability of the final model will depend as much 
on the characteristics of the sample as it will on the algorithms 
for the structural equation models. The assumptions required 
for most inferential statistics need also be evaluated for struc- 
tural equation modeling. Ill-conditioned data sets (e.g., those 
showing heteroscedasticity, outliers, and multicolinearity) will 
decrease the certainty of the maximum-likelihood estimates, 
making it more difficult to make inferential conclusions. Non- 
linearities can pose difficulties in interpretation for the path 
coefficients if not detected, but nonlinear relationships can be 
incorporated into the models using approaches similar to a poly- 
nomial regression (Kenny and Judd, 1984). 

Historically, structural equation modeling has been a tool for 
testing hypotheses about causal structure. In its application to 
neuroscience, the causal structure is established by the anatomy, 
but the models based on these data should still have a strong 
theoretical base. Models derived entirely from the data are vul- 
nerable to sample-specific confounds and have been discouraged 
in applications of structural equation models to social science 
data (Freedman, 1987; MacCallum et al., 1992). Conversely, 
models based entirely on subjective decisions can lead to models 
that are not falsifiable. Analysis tools like structural equation 
modeling allow the researcher to combine objective and theo- 
retical criteria in a meaningful way to generate or test hypoth- 
eses. 

As PET has matured as a technique for neuroscience research, 
data analysis techniques have also become more sophisticated. 
With the unique data set that is available from brain imaging, 
an analysis that looks at interregional interactions has become 
necessary to make full use of the information. Researchers have 
used different forms of covariance analysis, such as principal 
components or factor analysis (McLaughlin et al., 1992; Friston 
et al., 1993; Lagreze et al., 1993) and multidimensional scaling 
(Goldenberg et al., 1989) to reveal the latent dimensions as- 
sumed to reflect the functional neural interactions (for some 
interesting extensions, see Moeller and Strother, 199 1; Sun and 
Mazoyer, 1991). These techniques show each brain area’s re- 
lation to the latent dimension. In this study, we used a PCA 
only as an initial step to help select brain regions that were 
functionally related to one another. Structural equation mod- 
eling allowed us to describe the nature of the functional rela- 
tionships by expressing them as directional influences. Covari- 
ante relationships are decomposed within the constraints of an 
anatomical network, revealing asymmetric functional relation- 
ships (as in the interhemispheric models) that could not be 
extracted from the other aforementioned covariance analyses. 
This makes structural equation modeling distinctly different from 
other forms ofdata quantification: structural equation modeling, 
as used with brain imaging data, constructs systems-level neural 
models; it does not simply describe the relationships found with 
the brain imaging data set (Horwitz and McIntosh, 1993). 
Therefore, structural equation modeling is not an exploratory 
method; rather, it is a hypothesis-generating and hypothesis- 
testing method. Finally, structural equation modeling should be 
useful in the examination of clinical populations, because one 
can now move from focusing on the pathology in single brain 
regions to evaluating how the cooperative interactions in brain 
networks are compromised by damage and disease. 
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