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Interpreting recent single-unit recordings of delay activities 
in delayed match-to-sample experiments in anterior ventral 
temporal (AVT) cortex of monkeys in terms of reverberation 
dynamics, we present a model neural network of quasi-re- 
alistic elements that reproduces the empirical results in great 
detail. Information about the contiguity of successive stimuli 
in the training sequence, representing the fact that training 
is done on a set of uncorrelated stimuli presented in a fixed 
temporal sequence, is embedded in the synaptic structure. 
The model reproduces quite accurately the correlations be- 
tween delay activity distributions corresponding to stimu-, 
lation with the uncorrelated stimuli used for training. It re- 
produces also the activity distributions of spike rates on 
sample cells as a function of the stimulating pattern. It is, in 
our view, the first time that a computational phenomenon, 
represented on the neurophysiological level, is reproduced 
in all its quantitative aspects. 

The model is then used to make predictions about further 
features of the physiology of such experiments. Those in- 
clude further properties of the correlations, features of se- 
lective cells as discriminators of stimuli provoking different 
delay activity distributions, and activity distributions among 
the neurons in a delay activity produced by a given pattern. 
The model has predictive implications also for the depen- 
dence of the delay activities on different training protocols. 

Finally, we discuss the perspectives of the interplay be- 
tween such models and neurophysiology as well as its lim- 
itations and possible extensions.. 

[Key words: reverberations, delay memory tasks, temporal 
correlations, inferotemporal cortex, neural network model, 
realistic neurons, cognitive neurophysiology, learning] 

The experiments of the Miyashita group (Miyashita, 1988; Mi- 
yashita and Chang, 1988; Sakai and Miyashita, 1991) on the 
delay activity in anterior ventral temporal (AVT) cortex of mon- 
keys trained to perform delayed matching-to-sample tasks have 
disclosed significant correlations in the internal representations 
of stimuli chosen to be uncorrelated, when those are presented 
during training in a fixed sequence. The experiments themselves 
have very significant implications both for the underestimated 
domain of neurophysiology-single-unit recording-as well as 
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for cognitive psychology (for a detailed discussion, see, e.g., 
Amit, 1992, 1993a,b). A detailed theoretical model for such 
experiments can much enhance their implications, as well as 
provide precise clues for tests and extensions. 

In the first experiment (Miyashita and Chang, 1988) the mon- 
key is trained to recognize and match pairs out of a set of visual 
patterns, with 16 set separating sample from match. One ob- 
serves selective enhancements of neural spike rates that persist 
for 16 set after the removal of the stimulus. This fact constitutes 
strong evidence for (nonergodic) attractor dynamics (defined 
below) in the corresponding neural module of some 1 mm2 of 
anterior ventral temporal cortex. I Persistent spike rate distri- 
butions in the absence of a driving stimulus must be maintained 
by local recurrent synaptic feedback. Indeed, the anatomy of 
cortex indicates (Braitenberg and Schuz, 199 1) that the level of 
local feedback in a column of 1 mm* is sufficiently high to be 
able to maintain stimulus-specific delay activities (for more de- 
tailed discussion of this point, see, e.g., Amit, 1992). In a neural 
network, a Hebbian assembly, attractor dynamics implies that 
when the network is stimulated by an afferent stimulus its dy- 
namics drive it, following the removal of the stimulus, to one 
of a restricted set of stable spike rate distributions. Each of these 
attractors has a basin of attraction that is the totality of stimuli 
leading the network to the same rate distribution. The set of 
attractors, Hebbian reverberations, is a property of the neural 
module. It is determined by the synaptic structure, formed in 
the learning process, which maintains the particular reverber- 
ation by means of the structured feedback. In this sense, each 
of the stable rate distributions is an internal representation of 
the set of stimuli leading to it. Similar concepts have also been 
recently introduced to account for activity distributions of neu- 
rons in the hippocampus of performing rats (McNaughton and 
Nadel, 1990). 

A second experiment (Miyashita, 1988) provides information 
about the structure of these internal representations, that is, 
about the different spike rate distributions during the delay. The 
visual stimuli were presented, during training, in a fixed se- 
quential order. It was then discovered that despite the facts that 
care was taken to ensure the absence of spatial correlations 
between the learned visual stimuli, and during testing stimuli 
were presented in a random order, the delay spike rate distri- 
butions displayed correlations. The reverberations correspond- 
ing to stimuli that had been nearer to each other in the training 

I Some ofthe concepts used in this presentation go by different names in different 
communities. The main sets of equivalences are as follows: delay activity - 
reverberation = attractor; stimulus = pattern; cell assembly - neural module = 
neural network. We will sometimes insert equivalent terminology in parentheses. 
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sequence had more highly correlated rate distributions. What 
the monkey’s brain seems to be doing during learning is con- 
verting the temporal correlations, represented by the fixed se- 
quential order, into spatial correlations between the correspond- 
ing internal representations (see also, e.g., Griniasty et al., 1992). 

The description of the dynamics of an attractor neural net- 
work (ANN) as a set of stable attractors maintained by a struc- 
tured (learned) feedback in the synaptic structure has been the 
central theme of the Hopfield program (Amit, 1989). While 
providing a very robust detailed description of associative mem- 
ory in neural networks, it suffers from two serious shortcomings 
when confronted quantitatively with the above-mentioned ex- 
periments. The first is that experiment exhibits wide rate dis- 
tributions in the delay activities, while the models have attrac- 
tors with very sharp rate distributions-neurons are either 
quiescent or close to saturation. The second is the fact that in 
the Hopfield model, when uncorrelated stimuli are embedded 
into the synaptic matrix, the resulting attractors are also un- 
correlated. 

Clearly, neural networks with discrete elements cannot re- 
produce wide rate distributions in attractors; but the simple 
extension of the neural elements to integrate-and-fire spiking 
units is sufficient to produce analog distributions of spike rates 
in delay activities as well as attractors with realistically low spike 
rates (Amit and Tsodyks, 1991a,b, 1992). This modification of 
the models had been carried out in the context of autoassociative 
networks, that is, networks whose reverberations are very close 
in structure to the memorized stimuli. As such, this modification 
does not deal with the second issue, that of the appearance of 
correlations in the attractors stimulated by uncorrelated stimuli. 
The reason for this automatic auto-associativity is the fact that 
synaptic modifications, due to a stimulus presented for learning, 
depend exclusively on the neural activity correlations in that 
stimulus. 

This problem was confronted in a recent study (Griniasty et 
al., 1992). It was found that attractor neural networks that also 
connect, in their synaptic structure, information about contig- 
uous stimuli (patterns) learned in a sequence have correlated 
delay activities (attractors, reverberations) even though the 
learned stimuli are uncorrelated. For simplicity, the context was 
narrowed to networks of discrete elements; hence, rate distri- 
butions could not be directly confron-ted with experiment. Yet 
the model presents several attractive features. 

(1) The delay activity distribution (an attractor) corresponding 
to a given learned stimulus (i.e., the delay activity provoked in 
the neural assembly by the presentation of that stimulus) is 
correlated with the delay activity corresponding to other stimuli 
until there is a separation of several patterns in the sequence of 
the learned patterns, despite the fact that the synaptic matrix 
connects only consecutive patterns (nearest neighbors) in the 
sequence. 

(2) The correlation distance of the attractors, and the ampli- 
tudes of the correlations are robust to the parameters of the 
model. 

(3) The fact that the empirical correlations of delay activities 
(attractors) can be reproduced theoretically by coupling only 
contiguous patterns in the learned sequence of stimuli concords 
nicely with naive scenarios of learning in the presence of at- 
tractors (Griniasty et al., 1992; Amit, 1993a). 

(4) The appearance of such correlations between the different 
delay activities is a transcription, during the learning process, 
of temporal correlations in the training information into spatial 

(activity distribution) correlations of the internal representa- 
tions of the different stimuli. In other words, this is an embryo 
of context sensitivity (see, e.g., Amit, 1993a). 

Given the potential of these experiments in establishing a 
direct bridge between cognitive neurophysiology and modeling, 
we have undertaken to bring the two modifications together: to 
combine a network of quasi-realistic neural elements and a syn- 
aptic matrix that allows information about contiguous stimuli, 
in a training sequence of fixed order, to be imprinted. In some 
sense it is an inquiry into the domain of validity and robustness 
of the surprising result found by Griniasty et al. (1992). On the 
other hand, it is the challenge of finding the characteristics that 
would bring the model to a level of quantitative detailed agree- 
ment with as much information as is given by the short accounts 
of the experiments. The mere interpretation of delay activities 
as dynamic attractors and of their correlations as attractor cor- 
relations produced by learning in the presence of attractors leads 
directly to cognitive and neurophysiological predictions (Gri- 
niasty et al., 1992; Amit, 1993a). The construction of the de- 
tailed model leads, as will be shown below, to new experimental 
predictions. 

Materials and Methods 
Overview 
We have considered a network of integrate-and-fire neurons operating 
in the presence of high levels of nonselective uncorrelated noise origi- 
nating in the global spontaneous activity. The neuron is represented by 
its current to spike rate transduction function, which includes the effect 
of noise due to spontaneous activity (see, e.g., Amit and Tsodyks, 
1991a,b). Such neurons are taken to represent the excitatory neurons 
of the network, the pyramidal cells. It is in the synaptic matrix con- 
necting these neurons that learning is manifested. The synaptic matrix, 
representing the training process, was constructed to represent the in- 
clusion of the information about the contiguity of patterns in the training 
sequence (Griniasti et al., 1992). Inhibition is taken to have fixed syn- 
apses and its role is to react in an inhibitory way, proportional to the 
mean level of activity in the excitatory network, so as to control the 
overall activity in the network. For comparison we have also studied a 
more traditional network that describes learning among all synapses, 
excitatory as well as inhibitory. Quite surprisingly, the results are es- 
sentially the same. 

The delay activities are investigated by presenting to the neural mod- 
ule (cell assembly) one of the uncorrelated stimuli as a set of afferent 
currents into a subset of the neurons. These currents are removed after 
a short time and the network is allowed to follow the dynamics as 
governed by the feedback represented in the synaptic matrix. Eventually, 
the network arrives at a stationary distribution of spike rates. This is 
the delay activity distribution corresponding to the stimulus which has 
excited the network. 

Below we describe the details of the model. It’s performance was 
simulated on a Spare 10 SUN station. The results of simulations were 
compared with the results of experiments of the Miyashita group (Mi- 
yashita, 1988; Miyashita and Chang, 1988; Sakai and Miyashita, 199 1). 

The excitatory network 
The network is composed of N excitatory neurons and an associated 
inhibitory network. The excitatory neuron i (i = 1,. . .,N) is characterized 
at time t by its incoming current Z,(t) and its firing rate V,(t). Its afferent 
current is composed of feedback from the other excitatory neurons, 
hyperpolarizing current from the inhibitory network -T,(t), and an 
occasional external current p(t) representing the stimulus. The dy- 
namics of the excitatory neurons are 

where J, is the efficacy of the synapse connecting the presynaptic neuron 
j to the postsynaptic neuron i. fis the mean coding level of the stimuli 
(the mean fraction of active neurons per pattern). The incoming current 



The Journal of Neuroscience, November 1994. 74(11) 6437 

Figure 1. a, Spike frequency versus mean afferent current of an inte- 
grate-and-fire neuron. b, Same as a with superimposed spontaneous 
random activity ofwidth 0.3% of saturation, used to model an excitatory 
element of the network. Zero current is spontaneous input only. Fre- 
quency axis in fraction of saturation frequency of the neuron. The pa- 
rameters in u are given in the text. 

into neuron i is converted into a spike rate via 

v, = doi), (2) 

where 4 is the current-to-rate transduction function for an excitatory 
neuron. The implemented network has N = 4000 excitatory neurons, 
a coding ratef= 0.0 I, and a current decay time constant T,,, = 10 msec. 
The transduction function of the neurons is shown in Figure 1. The 
figure represents the neuron’s spike frequency versus the incoming mean 
synaptic current over and above the mean contributed by the global 
afferent spontaneous activity. Thus, the zero point on the current axis 
is the point at which the neuron senses only the effect of spontaneous 
activity. The fact that the frequency is not zero at this point is due to 
the fluctuating nature of the afferent spontaneous current. 

Moreover, to the transduction function of the excitatory neurons we 
have added, by hand, a noisy component. In other words, for a given 
current input the frequency was calculated by adding to the frequency 
given by the smooth curve in Figure 1 a a random term leading to Figure 
lb. This extra component represents the fact that our model network 
has not been tuned enough to maintain autonomously a stable spon- 
taneous activity. The noise added to the transduction function maintains 
the spontaneous activity artificially. Without it, neurons whose activity 
is not enhanced by the stimulus tend to have zero spike rates. (We return 
to this question in the concluding section). Note that in the transduction 
function used here the rate goes to 1 for very large values of the afferent 
current. 

For this transduction function the neuronal response at Z = 0 is V - 
O.O05S, where S is the saturation frequency of a pyramidal cell. The 
stable rates, as indicated by the upper intersection of 4 with the straight 
line in Figure 1, are V - 0.06s. It would be V - 30 seccl if S = 500 
set-I (see, e.g., the Discussion). Underlying the derivation of 4 is an 
integrate-and-fire neuron with an absolute refractory period rARP = 2 
msec, an RC time constant for the depolarization T = 4rARP, the de- 
polarization threshold 0 = 2.04, the stationary depolarization due to 
spontaneous activity p = 2 (2% below threshold), and the remaining 
noise due to fluctuations in the spontaneous afferent d = 0.02 (half of 
the distance between the threshold and the depolarization due to the 
spontaneous activity) (Amit and Tsodyks, 199 la,b). We performed sim- 
ulations with different values of the parameters of the transduction 
function. In all cases the behavior of the network is similar. The only 
difference is in the absolute spike rates at which the selective neurons 
are active. 

The inhibitory response 
A separate inhibitory network is composed of N,,, inhibitory neurons. 
The inhibitory reaction is unstructured: every inhibitory neuron receives 
the same current from the excitatory neurons, and the entire inhibitory 
network becomes equivalent to a single inhibitory neuron characterized 
by its afferent current P’“(t) and its spike rate P. The dynamics of the 
synaptic current into every inhibitory neuron are given by 

with V, the activity of neuron i in the excitatory network, and 

v 0.05 

~/-1 
01 

0 0.1 0.2 Oi-3 0.4 0.5 0.6 

Figure 2. Spike rate versus synaptic current for the inhibitory neuron. 
It has a threshold fP = 0.05 in units of current and a slope A = 0.1. 
When the entire excitatory network operates at the imposed spontaneous 
rate level, the inhibitory neuron is 0.25 above threshold and has a 
frequency of 0.025 of saturation. 

pm = I, (4) 
where $ is the inhibitory current-to-rate transduction function. 

In other words, the inhibitory neuron is driven by a current propor- 
tional to the mean activity in the excitatory network. The inhibitory 
response is the same to every excitatory neuron: for all i, T, in Equation 
1 is given by 

The numerator in the coefficient is due to the replacement of N,nh in- 
hibitory neurons by a single one. The denominator is part of the nor- 
malization of the inhibitory-excitatory synaptic connection. 

Note that we are restricting the model to hyperpolarizing inhibition 
and no shunting. Equations 1, 3, and 5 together with the transduction 
functions 6 and $ describe the dynamics in full, once the synaptic matrix 
connecting the excitatory neurons, .Z,,, is given. 

The parameters we use are T,~,, = 2 msec, N,nh =fl= 40. The inhibitory 
transfer function was chosen to be threshold linear (Treves, 1990). We 
checked that taking different inhibitory response functions, such as an 
“integrate-and-fire” one, yields the same results. It appears quite es- 
sential that the integration time of the inhibitory neuron be shorter than 
the integration time of the excitatory neuron (see also, e.g., Amit et al., 
1991). The number of inhibitory neurons may seem low, given that 
typically there are 20% as many inhibitory neurons in the cortex as 
excitatory ones. But our inhibitory neuron is schematized to be con- 
nected to all excitatory neurons, while it should connect to 2-3% of 
them. When the connectivity is taken into account the number is actually 
slightly too high. This difference can be considered as a small resealing 
of the inhibitory-excitatory synaptic strengths. 

The learned synaptic matrix 
The synaptic matrix reflects the learning of a sequence of p binary 
patterns (stimuli) ({s: = 0, 1 }; i = 1,. . .,n; ZL = 1,. . .,p) with coding level 
f;  presented in a fixed order during the training session (Miyashita, 1988; 
Griniasti et al., 1992). The sequence is considered periodic; that is, 
pattern p + 1 is identical with pattern 1. The binary form of the stored 
memories is a symbolic indication of the neurons whose rates are (or 
are not) elevated by the stimulus. The actual rates actually maintained 
by the neurons in the network are analog (see, e.g., Amit and Fusi, 1993, 
for a discussion of this point of view). 

Learning in the network is envisaged to have occurred only between 
the excitatory units. The effect of inhibition is only to control general 
activity levels in the network. We model the synaptic matrix in a Will- 
shaw-like fashion (Willshaw et al., 1969); that is, the synaptic efficacies 
take only the values 0, 1, or a. The elements of the synaptic matrix J,, 
are taken to be J, = 1 if there exists at least one pattern P for which 
TJV = d = 1 (this is the original Willshaw nrescrintion): J,. = a if J,, = 0. 
by way of the Willshaw prescription, and therekxistsaileast one pair 
of consecutive patterns ZL, p + 1 for which fl = c+l = 1 or 7; = %+I = 
1; J,, = 0 otherwise. 
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The parameter a represents the strength with which the contiguity of 
two patterns in the learned sequence is imprinted during learning (see, 
e.g., Griniasti et al., 1992). In the simulation we used a = 0.5. We 
checked that their behavior was robust in an interval around this value. 

Here we have restricted ourselves to a synaptic matrix that is pre- 
scribed a priori. A matrix that performs in a similar way can be generated 
also by a quasi-realistic learning process. This process will be discussed 
in a forthcoming report (Brunel and Amit, 1994). A learning process 
that involves contiguous stimuli in a sequence was also considered by 
Fold& (199 l), but there the context does not include attractor dynam- 
ics, and consequently it would be hard to envisage how it could mix 
stimuli that are presented many seconds apart, as is the case in the 
experiments discussed here. 

Sources of noise in the network 
Fast noise on the excitatory gain function. As was explained earlier, this 
was added to correct for the fact that the spontaneous activity is not a 
stable mode of the system. Thus, at every integration step after the total 
synaptic current is computed, we generate a random number of Gaussian 
distribution with mean zero and width 0.3% of saturation spike rate, 
and add its absolute value to the frequency resulting from the gain 
function of Figure la, leading to Figure lb. It is the noisy spike rates 
that then reenter the dynamics. 

Inhomogeneity in inhibitory synapses. To mimic potential inhomo- 
getieities in the inhibitory response, without paying the price of slowing 
down very significantly the simulation, we have generated a fixed ran- 
dom number, IV,, fo; each excitatory neuron from a Gaussian law of 
mean 1 and width 0.2, and substituted the inhibitory response T, by 
TW, , where 7’ is given by Equation 5. 

Procedure 
The dynamics of the simulated network are fully described by Equations 
1, 2, 3, and 5. During the simulations, (1) the stimuli were presented 
to the network by injecting an external current of strength Hea’ = H = 
0.2, during a short period t,, into the set of neurons corresponding to 
one of the stimuli. (2) Then the external currents were stopped and the 
network flowed to the attractor. (3) Due to the presence of the dynamic 
noise mentioned above, the network does not reach a fixed point. The 
attractor is typified by the fact that the network dynamics make small 
fluctuations about a state in which a selective set of neurons have ele- 
vated frequencies. The arrival at such a state was detected by measuring 
the time-averaged mean activity in some specific populations of neu- 
rons. These populations are the neurons which are activated in any 
given stimulus p, and their mean activities are 

. N 

The correlation between the activity distributions in the two attractors 
P and v  is 

c*“=+&. 
The mean correlation between two attractors at distance k is defined as 

where p is the total number of memorized attractors. 
Kendal rank coejicients @XC). The KRCs are calculated indepen- 

dently for each recorded neuron. For a given neuron one computes 

uk = sign[(vu - p)(vv+k - p+k 
w I I, I )I> (11) 

with k (1 5 k 5 p/2) fixed, where V: is the mean activity of neuron i 
in attractor p. The KRC of neuron i at distance k is the mean value of 
the elements of the matrix uk; that is, 

R, = 2 z V” 
IO - 1) #<Y 

(12) 

(see, e.g., Snedecor and Cochran, 1969). The KRCs are then averaged 
over any given sample of recorded neurons. 

Results 
Performance of quasi-realistic models 
Here we report that the phenomenon of the conversion of tem- 
poral correlations (contiguity of stimuli in the training sequence) 
into spatial correlations of neural delay activity distributions in 
a cell assembly persists when the model network is composed 
of quasi-realistic neural elements. We have tested the structure 
of the delay activity distributions (attractors, reverberations) of 
a local neural module composed of integrate-and-fire neurons. 
We find that the reverberations are correlated over a finite range 
of neighbors in the training sequence, much as in the experiment 
of Miyashita (1988), and well beyond the nearest neighbors 
information embedded in the synaptic matrix. The network has 
been investigated both by simulation as well as by approximate 
analytical means. The results are quite consistent. The theoret- 
ical considerations are relegated to a forthcoming report (Brunel 
1994) so as not to burden unduly the present account. 

To obtain an intuition into the nature of the results, we start 
with a qualitative description of the functioning of the network. 
When the network is subject to a given external stimulus, a 
subset of neurons is activated. We refer to this subset as the 
pattern. The actual level of activation of these neurons is de- 
termined and maintained by the strength of the input. In an 
auto-associative network, this activation pattern is maintained 
by the feedback in the synaptic interaction, after the removal 
of the stimulus. It is the distribution of neurons driven by the 
stimulus which is maintained by the feedback. The rates are 
determined by the network’s dynamics (Amit and Tsodyks, 
199 la,b). As was mentioned above, this property of the au- 
toassociative model is due to the fact that the synaptic efficacies 
are enhanced only by the activity correlations of the correspond- 
ing pair of neurons in each learned pattern separately. 

m,(t) = f* $ ?:K(o. (6) 
I I 

When the time averages of all the m’s, over a moving window of 20 
msec, did no longer vary significantly, the dynamics were stopped. (4) 
Then we recorded the time-averaged activities of all the neurons in the 
excitatory network during the last time window. The statistical prop- 
erties of the delay activities were analyzed off line. 

Correlations between attractors-definitions 
Standard correlations. The delay activity of neuron i in the attractor 
provoked by stimulus fi is denoted by V:. We consider the distribution 
of mean rates V: in a sample S of N, neurons as a random variable. Its 
mean is 

its variance is 

(8) 

and the covariance of a pair of such random variables, corresponding 
to a given pair of attractors Jo and Y, is 

In the present model the synaptic efficacies are enhanced also 
by the activity correlations of pairs of neurons activated in two 
consecutive stimuli during training. The relative strength of the 
contributions to the synapses from the same pattern and from 
neighboring ones is a parameter a of the model (see Materials 
and Methods and Griniasty et al., 1992). Consequently, when 
a particular stimulus is presented for retrieval, following the 
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removal of the stimulus, neurons belonging to the successive 
and preceding patterns (i.e., those that would have been driven 
by the presentation of either of these two stimuli, and not by 
the present one) tend to get activated. It is the activity of the 
neurons directly stimulated, mediated by the cross-stimulus terms 
in the synaptic efficacies, which is exciting the neurons of the 
neighboring patterns. For some range of the parameter a, the 
indirectly activated neurons have a lower level of activity than 
the primary ones. This activation spreads from first neighbors 
in the training sequence to second neighbors, and so on, until 
the network reaches a stable attractor. The role of unstructured 
inhibition is to preclude the activation, at elevated frequencies, 
of neurons belonging to too many patterns. The qualitative form 
of the attractor would be like Figure 3. The spread of activation 
drops to spontaneous activity levels after a few neighbors in the 
sequence. 

In Figure 3 we plot the spike rate of neurons versus the serial 
position number (SPN) of the corresponding pattern in the train- 
ing sequence. If, for clarity of the argument, we ignore the pos- 
sibility that neurons may belong to two different patterns, then 
the SPN classifies a set of neurons in the network, and all those 
would have the indicated spike rate. Under this approximation, 
Figure 3 is a full description of the reverberation. The central 
peak is the activity of the neurons belonging to the stimulated 
pattern, the next lower activities are those of all neurons be- 
longing to the two nearest neighbor patterns, and so on. Different 
reverberations would be described by a similar figure, shifted 
to be centered around the stimulated pattern. A second attractor 
is indicated in Figure 3 as the dot-shaded cluster under the light 
line. It is chosen to be centered around a pattern not much 
removed in the sequence from the first, to emphasize the origin 
of attractor correlations in this type of attractors. 

In fact, given that the attractors are of this form, one can 
directly conclude that they will be correlated ifthe corresponding 
stimuli are not much removed from each other. Attractors whose 
rate distributions overlap have groups of active neurons in com- 
mon and hence are correlated. The correlations, which are di- 
rectly related to the area of the overlap, will decrease mono- 
tonically with the separation of the two stimuli, much like the 
experimental data (crosses) shown in Figure 5. Moreover, the 
experimental Figure 6b has a form similar to that of Figure 3. 
The correspondence between the two figures is the following: 
the experimental figure corresponds to the rate distribution on 
a single selective cell, but every selective cell belongs to at least 
one of the patterns. Hence, it will have the highest rate if it 
belongs to the stimulating pattern and lower rates, which can 
be read from Figure 3, as one moves away from the stimulating 
pattern in the sequence. These simple considerations capture 
quite well the results of the detailed simulations and of the 
analysis. 

The situation is somewhat more complicated when neurons 
belong to more than one of the uncorrelated patterns, as is 
observed in Figure 6a. Such occurrences are not too frequent 
when the fraction of neurons activated by each stimulus is low. 
We discuss rate distributions on such neurons below. 

Numerical experiments and results 

The uncorrelated patterns composing the sequence used for 
“training” were presented, one by one, as stimuli to the network. 
Each stimulus was presented as a set of external afferent currents 
that persist briefly (80 msec) and then are removed, allowing 
the neuronal module to find its natural pattern of delay activ- 
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Figure 3. Schematic structure of attractors (see text): spiking rate of 
neuron classes versus the serial position number (SPN) of pattern in 
the training sequence. Two reverberations are sketched, those evoked 
by stimuli 25 (heavy line) and 28 (light line, dot shaded). 

ities. Time in the simulation is physical neural time, introduced 
via the integration time constants (see, e.g., Materials and Meth- 
ods). The activities of all the neurons in the network in the delay 
period (the reverberating state, the attractor) were recorded and 
analyzed off line. We have dealt only with spike frequencies, 
both because the network dynamics had been set in these terms 
and because the attention of the experiment was on rates in 
single-unit recordings. 

The end of a run was called when the temporal average, over 
a window of 20 msec, of the average frequencies of neurons in 
the foreground of all the memorized patterns stopped varying. 
This would typically take place after 100-200 msec, as can be 
seen in Figure 4. We plot the rates of five neurons as a function 
of time, during and following the presentation of the stimulus. 
One can observe neurons that are driven by the stimulus and 
remain active in the delay period with a lower frequency. Others 
are driven and are inactive following the removal of the stim- 
ulus, and some neurons are inactive during stimulus presenta- 
tion and become active during the delay period. This type of 
behavior, corresponding to “error correction,” should be com- 
pared with Figure 3 of Sakai and Miyashita (1991) (see also 
Discussion in Amit, 1992). Note that the term “error correc- 
tion” is used here to indicate that the stimulus presented, at 
this phase in the task, is not identical to the one that was pre- 
sented during learning, but is still in the basin of attraction of 
the attractor that was created. In such cases a neuron may behave 
differently during stimulation and during the delay. Since we do 
not attribute any specific meaning to the detailed structure of 
the representations, we cannot properly speak about errors and 
error correction. 

At the end of each run we have single-unit recordings from 
all neurons in the network (rates in the delay period) corre- 
sponding to each of the attractors provoked by the correspond- 
ing stimulus. We then identify the “selective” units, that is, 
those units that have a rate significantly above the spontaneous 
rate in response to at least one stimulus. Among those, we select 
at random a sample of 50 neurons, similar in size to that selected 
in the experiment. These neurons are analyzed to produce the 
type of end products reported in the experiment of Miyashita 
(1988). The KRCs for this sample in the simulation (diamonds) 
and, for comparison, the corresponding experimental data 
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Figure 4. Spike frequency versus time 
of five neurons. Time indicated by ar- 
row is when stimulus is removed: a, 
driven by stimulus active in delay (fore- 
ground neuron of this stimulus); b, 
driven by stimulus and inactive in re- 
verberation (error corrected by network 
dynamics); c, not driven by stimulus 
and inactive in delay (background neu- 
ron for this pattern); d, not driven by 
stimulus and active in delay with rate 
as in a (error correction, foreground of 
stimulus); e, undriven by stimulus and 
active in delay (background of present- 
ed stimulus but foreground of stimulus 
nearby in the sequence). 
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(crosses) (Fig. 3c of Miyashita, 1988) are shown in Figure 5a. 
Next, a subsample is selected of those selective neurons for 
which the first KRC is significant (P 2 0.05) (see, e.g., Snedecor 
and Cochran, 1969; Miyashita, 1988). Those correspond to neu- 
rons with first neighbor KRCs greater than 0.2 and they com- 
prise about one-half of the neurons of the sample. Their KRCs 
are compared with the experimental results in Figure Sb. Note 
that the apparent discrepancy between the theoretical and ex- 
perimental results is not significant. It is due to the represen- 
tation of errors as standard errors. The two sets of data are 
consistent; that is, they are within the variance of each other. 

We do not know if the crossings of the experimental and 
theoretical curves in Figure 5 are significant. Our guess is that 
it is due to fluctuations and may appear also in plotting, on the 
same graph, the correlations for two different monkeys. 

We have also analyzed the spike rate distributions in the delay 
period in sample individual cells, corresponding to Figure 3, a 
and b, and Figure 1, c and e of Miyashita (1988). This was done 
in two ways. First, the rate distribution on individual neurons 
as a function of the serial position of the stimulus in the training 
sequence (SPN) was produced for two cells (see, e.g., Fig. 7). 
The two cells were chosen to give distributions similar to the 
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two cells chosen in the experiment (Fig. 6). We see in each that 
the cell represented on the left is one that participates in two 
stimuli and hence has two peaks. Participating in two stimuli 
implies, due to the correlations generated in the learning process, 
participation in the delay activities of neighboring stimuli in the 
sequence. This is expressed by the fact that the peaks have a 
finite width. 

Next we constructed the delay frequency histogram for a given 
cell when the network is stimulated by both learned patterns 
and unlearned ones. For the latter we have used stimuli uncor- 
related with any of the patterns coded into the synaptic matrix. 
These results are presented in Figure 9 for comparison with the 
experimental results reproduced in Figure 8. Both in the ex- 
periment and in the model all “new” stimuli leave the network 
with all neurons at spontaneous activity levels during the delay 
period. Most learned stimuli leave a given neuron indifferent 
(spontaneous activity). Only a few stimuli will produce elevated 
rates. The comparison is quite satisfactory. 

Additional information in model network 
KRC sensitivity to number of memories 
Certain features of the KRCs are peculiar to the special way in 
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Figure 5. KRCs versus separation in the training sequence. Symbols 
are average KRCs over cell sample. Error bars are SEs (rms/fi). n, 
number of neurons in sample. + , experiment; 0, simulation. a, Samples 
of selective neurons (experiment, 57 cells; simulation, 72 cells). b, Sub- 
sample of neurons with enhanced first neighbor KRCs (see text) (ex- 
periment, 28 cells; simulation, 25 cells). Experimental data are from 
Figure 3c of Miyashita (1988). 

which they are defined, and are not descriptive of the dynamics. 
In particular, the KRCs are very sensitive to the number of 
memorized stimuli, and the canonical correlations are not. In 
other words, the same neural assembly storing a high number 
of learned stimuli will have very similar structure of the cor- 
relations between the corresponding delay activities to those of 
an assembly storing a low number of memories, but very dif- 
ferent KRCs. Moreover, for the same network with the same 
synaptic structure, choosing samples of delay activity distri- 
butions of a different size leads to very different KRCs. 

This simple fact is predictive. In other words, our model 
indicates that the reverberations showing the degree of KRCs 
reported in the experiments should have a very high level of 
standard correlation coefficients. 

In Figure 10 we present an example of the dependence of the 
KRCs on the number of attractors used in the statistical analysis. 
To do this we have taken 20 of the delay activity distributions 
obtained in the simulation that produced Figure 5b. We use the 
same number of sample neurons. The behavior of the standard 
correlations versus SPN remains, of course, the same, since the 
attractors are unchanged. A detailed analysis of this difference 
will be presented in a forthcoming report (Brunel 1994). 

Standard correlations between reverberations 

It is quite significant that in order to reproduce the KRCs of 
Miyashita (1988) the reverberations have much higher corre- 
lation coefficients. In fact, the correlations of delay activities 
corresponding to successive stimuli in the training sequence can 
become as high as 0.89 (see, e.g., Fig. 1 l), compared with 0.2- 
0.3 for the corresponding KRCs. We have therefore checked 
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Figure 6. Average delay discharge rate versus serial position of the 
stimulus in two selective cells (experiment). Activity for learned images 
is reproduced from Figure 3, a and b, of Miyashita (1988). Note that 
the first cell participates in the clusters representing two different learned 
stimuli. 
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Figure 7. Average delay discharge rate versus serial position separation 
in two selective cells (simulation). 

that even at this high level of correlation, single-unit recordings 
of several randomly chosen, selective neurons can distinguish 
between the different attractors. In our view it is the conven- 
tional correlations between the different delay activities that 
determine the ability of the local module to communicate the 
results of its computation down the line. We therefore present 
these correlations as an item for further experimental confron- 
tation. 

For comparison with the KRCs discussed above, we present 
in Figure 11 the averaged standard correlations between attrac- 
tors, defined in Materials and Methods, versus serial position 
number for the same dynamical model and an identical set of 
memorized patterns. We find that the correlation coefficient of 
attractors corresponding to stimuli at separation 1 in the se- 
quence is as high as 0.89. This raises the issue of the distin- 
guishability of the two attractors based on single-unit recordings 
of a relatively small number of neurons. 

The answer can be read from Figure 7. Considering the single 
narrow peak in Figure 7b, one observes that the rates in the side 
columns of the peak are significantly lower than in the central 
column. Hence, in this case this neuron distinguishes between 
the different stimuli. This neuron belongs to the foreground 
group of only one of the pure, uncorrelated stimuli that provoke 
the activities represented by the high columns. It belongs to the 
foreground of the stimulus for which it gives the highest rate. 
It is also recruited into the attractors that are provoked by the 
neighboring stimuli. Neurons are sampled if they are selective, 
that is, if they manifest a high rate in response to at least one 
stimulus. Thus, typically, every selective neuron will distinguish 
between the different reverberations. 

There are two provisos, first, that the frequencies have to be 
averaged on a time scale long compared to the time scale of 
fluctuations of the spontaneous activity. But more important, 
one should try to keep away from situations such as the wide 
peak in Figure 7a. Note that the neuron represented in this figure 
cannot distinguish a few attractors near the center of the peak. 

h 

N 

Figure 8. Spike rate distribution of average firing rate in delay period 
for 97 learned (a) and new (b) pictures in a given cell (experiment). 
Reproduced from Figure 1, c and e, of Miyashita (1988). 
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Figure 9. Spike rate distribution of average firing rate in delay period 
for 100 learned (a) and new (b) stimuli in a given cell (simulation): 
number of stimuli N versus rate V, in units of saturation spike rate. Bin 
width is 0.005. 

The frequencies are too close. A closer look at this situation 
discloses that this peak is unusually wide, and the frequencies 
at its center are atypically high. Such neurons should be avoided 
as classifiers of reverberations! 

This may sound somewhat counterintuitive, since neurons 
responding strongly to stimuli are usually strong favorites; but 
Figure 7a makes the point quite clearly. What the wide peak 
represents is the merging of two or more narrow peaks. This 
can happen if a neuron happens to belong to the foreground of 
two of the uncorrelated stimuli that are neighbors in the training 
sequence, in contrast to the situation represented by the second, 
narrow, peak in this same figure. This peak implies that the 
same neuron belongs to the foreground of yet another pattern 
that is not close to the others in the training sequence, and hence 
causes no classification problems. 

Coming back to the wide peak, one observes that a neuron 
of this type will have especially high frequency and this fre- 
quency will be essentially equal for the two attractors, or the 
two driving stimuli. The second conclusion is rather obvious 
and is due to the symmetric life this neuron lives in both stimuli, 
during learning as well as during activation. It is the first part 
that needs some explaining. If a neuron belongs to the fore- 
ground of two stimuli, then it will tend to form excitatory syn- 
apses, during learning, with the neurons that belong to both 
foregrounds, once when the first stimulus is presented and once 
when the second is presented. If, moreover, those two stimuli 
are neighbors in the training sequence, the attractor provoked 
by any one of the two stimuli excites the neurons of both fore- 
grounds. Neurons that belong to both foregrounds receive ex- 
citatory input from the union of the two foregrounds. Conse- 
quently, they have high and equal frequencies. These conclusions 
are very weakly dependent on the particular model. Note also 
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Figure 10. Dependence of KRCs on number of reverberations used 
in the statistical analysis. a, High and low KRCs for 100 patterns. b, 
The same for 20 delay activityhistributions. Note that both types of 
KRCs start higher and fall off faster for smaller numbers of analvzed 
delay activity &stributions. The complete set of reverberations is ihen- 
tical in a and b. 
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Figure 1 I. Standard correlations versus SPN in the simulations. The 
delay activity distributions leading to these correlations are identical to 
those that led to the KRCs of Figure 5. Error bars are SDS, not SEs as 
in Figure 5. 

that this is yet another conclusion for confrontation between 
theory and experiment. 

Fortunately, these neurons are not very frequent for uncor- 
related stimuli of low coding rate, as are the ones both in the 
experiment and in the model. The probability that a neuron 
from the foreground of one stimulus participates in the fore- 
ground of another of p uncorrelated patterns of coding rate f 
may be as high as [l - (1 - f)p], but that a neuron in the 
foreground of a pattern participates in another one out of a 
small group of patterns, neighbors of the given pattern, has a 
probability of sf; where q is the number of relevant neighbors 
(4-5). Hence, a relatively small sample of selective neurons will 
produce neurons that do not have frequencies too high and that 
will distinguish among the neighboring reverberations. 

Spike rate distributions in delay activities 

In addition to the attractor correlations, we have also investi- 
gated the activity distribution among the neurons of the assem- 
bly in a given attractor, Figure 12. Those are not available in 
the published material and can serve as predictions about the 
biological reality in AVT. The spike rate distributions in delay 
activities, in a given attractor (Fig. 12), have a large fraction of 
the neurons at spontaneous activity levels. The rest have a rather 
wide distribution about the mean activity in the attractor. One 
finds a high peak about the spontaneous rate and a wide peak, 
including about 5-6% of the neurons, around the central fre- 
quency of neurons participating in the active group recruited 
from the foreground of stimuli mixed into the attractor. This 
would be yet another quantity worth measuring and comparing. 

Given the nature of the network, operating at the level of 
currents and spike rates, we could not, of course, reproduce the 
time structures of the spike trains, though there should be no 
special difficulty reducing the modeling level one storey down 
to have an actual representation of spike events (see, e.g., Amit 
et al., 1991). 

Finally, we have tested the network with “new” stimuli, that 
is, stimuli uncorrelated with any of the memories imprinted 
into the synaptic structure. For those stimuli the network goes 
into a state in which all neurons have activities below 0.0 1, that 
is, three times the width of the imposed spontaneous activity. 
We have then tested the same network with “new” stimuli in 
the absence of the imposed spontaneous activity. In this case 
all neurons relax to zero frequency when the stimulus is re- 



b 

!m!Iiil 
0 0.05 0.1 0 0.05 0.1 

Rate Rate 

Figure 12. Spike rate distribution (number of neurons, N) in a rever- 
beration. a, In a sample attractor. b, Averaged over all 100 attractors. 
Rates are as fraction of the saturation spike rate. 

moved. This is a clear indication that our analysis of the insta- 
bility of spontaneous activity and the need for its imposition is 
fundamentally correct. 

Coding rates in stimuli and in attractors 
The salient fact that training is done with a fixed sequence of 
stimuli presented in a fixed order (Miyashita, 1988) is expressed 
by allowing information about contiguous patterns in the se- 
quence to be coded into the synaptic structure. In the network 
we have implemented, the synapses connecting excitatory neu- 
rons can take one of three values: 0, 1, and a (see Materials and 
Methods). 

This type of model is suited for effectively storing memories 
oflow coding level, that is, those in which the fraction of network 
neurons activated by a given stimulus is low. We take it to be 
about 1%. The fraction of neurons active in the delay period is 
higher. It reaches several times the level of coding in a single 
stimulus. For example, Figure 13 superposes a histogram of 
neural activity in a state driven by a stimulus and in a delay 
activity attractor. The sharp peak on the right represents the 
population of neurons driven by a stimulus. The shaded area 
under the curve is the population of neurons in a given rever- 
beration with a spike rate (chosen arbitrarily) higher than one- 
half the maximum rate in the distribution. It includes about 5% 
of the neurons. 

Discussion 
Outlook 
The results of the Miyashita experiments as well as the avail- 
ability of a theoretical tool for their reproduction carry much 
promise. The close approach, on a very detailed level, of the 
behavior of the model to the available empirical observations 
implies very strongly that the attractor picture is adequate for 
describing at least part of higher cortical functions (see also 
Zipser et al., 1993). This holds for the computational component 
as well as for the learning one. In fact, the type of cortical 
phenomena described here make the boundary between the two 
much less well defined than in current paradigms. 

This is not the place to expand on the potential psychological 
implications of the attractor picture of cortical function. Much 
of it has been foreshadowed by Hebb, and some recent consid- 
erations, in a more specific context, have been touched upon by 
Griniasti et al. (1992) and Amit (1993a,b). What concerns us 
here is the dialectic between modeling and neurophysiology. 
The existence of the model creates the ground for formulating 
hypotheses for much more detailed experimentation and ex- 
perimental data analysis. 

All along we have tried to suggest direct predictions of the 
model. We have mentioned the level of actual correlations ver- 
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Figure 13. Comparison of sizes of active neuron populations in stim- 
ulus and in reverberation: histograms of frequency populations. Full 
line is for stimulus (frequency not to scale). Dotted line is delay activity 
reverberation. Shaded areu is population of neurons with spike rates 
greater than 0.5 maximum rate. Includes about 5% of neurons. 

sus SPN of the rate distributions in the delay periods, the rate 
distribution among neurons in a given reverberation and its 
relation to the attractor structure as a well defined mixture of 
pure uncorrelated patterns, the relation of neuron spike rate to 
its function as reverberation discriminator and the correspond- 
ing probabilities, and the dependence of the KRCs either on the 
selection of subsets of delay activity distributions from the total 
for data processing, or in training with less than 100 patterns, 
and so on. 

Those are at the simplest level. At the next level one can use 
the attractors and their correlations as hypotheses for the con- 
nection between psychophysical phenomena and neurophysi- 
ological phenomena. Those can be tested on the model and then 
looked for in experiment. Some are discussed in Amit (1993a). 

Next, moving one level away one can test the learning hy- 
pothesis underlying the model. It consists of assuming that un- 
correlated stimuli that arrive at the module during training first 
create uncorrelated attractors. Those attractors carry structural 
information from one stimulus to the consecutive one, to allow 
for the imprinting ofthe connecting terms in the synaptic matrix. 
Such a picture implies many consequences for possible effects 
related to the delay activities generated by different learning 
scenarios: at some stage uncorrelated delay activities should 
show up, and they should be reinforced by extending the training 
time. The structure ofthe correlation coefficients should strongly 
depend on the mixture of subsequences of ordered and disor- 
dered presentations. Some steps in this direction have already 
been undertaken in studying the effect of sequences of ordered 
pairs of stimuli unordered among themselves (Sakai and Mi- 
yashita, 199 1). Since in the proposed model the prescribed ma- 
trix can be replaced by a learning dynamic, the hypotheses can 
first be developed and tested on the model. 

Open questions 

The extensions of the application of the model depend on the 
solidity of its foundations and those involve both its experi- 
mental and theoretical dimensions. We therefore turn to a dis- 
cussion of the exposed flanks. 

Experimental front 
Undoubtedly the reverberations observed in the Miyashita ex- 
periments are correlated. What has not been demonstrated is 
either that the stimuli as such are uncorrelated or that they 
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remain uncorrelated when they finally arrive at AVT. The first 
part of the question relates to the relation between the distri- 
butions of activities produced by the visual stimuli at the retina. 
The second concerns the possibility that even activities uncor- 
related at the retina arrive correlated at AVT, following the 
elaborate preprocessing. 

If the stimuli are correlated at the entrance, much of the 
cognitive import of the phenomenon is lost. If they are uncor- 
related on the retina but arrive correlated at AVT, only the 
learning part of the interpretation is damaged. In other words, 
it is not the generation of correlated attractors from uncorrelated 
input that is taking place in AVT. We would argue that in that 
case some other, earlier, module will have to do what was as- 
cribed to AVT in terms of learning. 

A careful study of the correlations during stimulation is of 
central importance. 

The model 

As complex as the model has become it is still simple enough 
to be studied analytically and may be useful in clarifying the 
potential influence of the multiplicity of factors involved. It is 
therefore important to emphasize its potential weaknesses. 

Synaptic matrix 
At this stage, it seems to us that the most unrealistic feature of 
the model is the detailed synaptic matrix, both the learned ex- 
citatory+xcitatory part and the coupling to the inhibition. Con- 
cerning the first, we are encouraged by two facts: The dynamics 
change little when the structured matrix connecting the excit- 
atory neurons changes between rather remote cases, the one 
described and the one of Tsodyks and Feigel’man (1988). More- 
over, our preliminary results indicate that a rather naive dy- 
namic learning process leads to a synaptic matrix rather similar 
to the one used in this study. One is left with the impression 
that the detailed structure of this synaptic matrix is not very 
crucial, provided it has good attractors for the uncorrelated 
stimuli, in the absence of sequential effects; that sequential ef- 
fects couple nearest neighbors in the synaptic matrix; and that 
inhibition is in tune with the excitatory system. 

We report results only for this network, though we have ex- 
perimented with a very different network as well: the synaptic 
matrix reported in Griniasti et al. (1992) for O-l neurons. This 
is a matrix with synapses of large analog depth, based on the 
model of Tsodyks and Feigel’man (1988) and Buhmann et al. 
(1989). The results are not very different, which indicates that 
the performance is rather robust to details of the synaptic matrix, 
provided the synaptic matrix embeds a reasonable expression 
of the learning hypothesis. 

After structuring the synaptic values on the basis of the learned 
set of uncorrelated stimuli, the network has a naturally sparse 
synaptic connectivity. For the parameters used in the simulation 
(100 learned patterns and coding level 1%; see Materials and 
Methods), every neuron is connected to some 3% of the other 
neurons in the module, though one should keep in mind that 
in the model this connectivity is correlated with the learned 
patterns. We have not simulated the network with unstructured 
low connectivity, but experience with discrete models indicates 
that attractor dynamics are robust to very high levels of random 
dilution (see, e.g., Derrida et al., 1987; Tsodyks, 1988). The 
network comprised 4000 excitatory neurons to allow for the 
storage of a large number of memories with low coding levels. 
This has turned out to be essential since the special correlation 

coefficients (KRC) are very sensitive to the number of random 
variables from which they are calculated (see Additional infor- 
mation in model network, above, and Brunel 1994). 

The model presented has a synaptic structure totally deter- 
mined by the learning process. This implies that synapses are 
not only strengthened and weakened by learning, but are also 
formed in the process. It is more likely though that the con- 
nectivity in the relevant neural module is predetermined in 
development. If it is so, learning has to take place on a reduced 
population of synapses. This would imply additional noise in 
the network’s dynamics and a consequent reduction of memory 
capacity. Certain levels of synaptic dilution can be tolerated by 
our model, but others may be too high for storing the connected 
100 memories. However, things become easier as the number 
of neurons increases and we are, in our simulations, at least a 
factor of 25 below the size of the biological cortical column. 

As far as the coupling to the inhibition is concerned, the main 
defects we perceive are (1) that the localized structure of the 
inhibition is sacrificed and (2) that there are no internal dynam- 
ics to the inhibition. The first has the effect that we cannot 
describe potential effects of the stimulus on inhibitory neurons. 
Such effects seem to appear in the recordings presented in Figure 
3d of Sakai and Miyashita (199 1). They will probably reappear 
when the scope of the simulation is enlarged. We expect, though, 
that localizing the inhibition will not have significant effects on 
the global behavior of the network. The second issue seems 
rather innocuous. It is just the local nature and the dilute pres- 
ence of inhibitory neurons that would justify the lack of inhib- 
itory-inhibitory coupling. 

Neurons 

Our neurons are oversimplified. None of the colorful phenom- 
ena of cable theory are included (Segev, 1992). Some arguments 
to support the possibility that this may be a justified approxi- 
mation in cortex have been advanced in Amit and Tsodyks 
(1992), based on the smoothing effects of the immense afferent 
flux due to spontaneous activity in the entire cortex. Even if 
these arguments are not exact, they do leave room for hope that 
the complex effects of nonlinearities on the dendrites are small 
perturbations. 

This leads to the question of the spontaneous activity. The 
present model does not deal with this phenomenon satisfacto- 
rily, as we have clearly emphasized in the text. It is our view 
that spontaneous activity in the cortex is self-maintaining-it 
generates itself and stabilizes itself. It is a global unstructured 
attractor at low spike rates. Our neural elements do generate 
the spontaneous activity, but do not maintain it. That is why 
we had to introduce it by hand. This is one direction in which 
the model must and will be improved. 

This may have to do with a better treatment of the inhibition 
about which we have been particularly cavalier. We did test 
that more realistic inhibition functions do not disturb the results 
on the attractors, but to fix up the problem of the spontaneous 
activity we may have to enter into more detail. 

There is a question about the absolute values of the spike 
rates at which the reverberations stabilize. They are all related 
to the saturation rate, which in turn is determined in this type 
of model by the inverse of the absolute refractory period and 
by the membrane’s integration time constant. If in fact the sat- 
uration rates are 500 spike/set, our rates are too high, perhaps 
by a factor of 2. This is not a large gap, considering that the 
values of the two time constants are not known very precisely 



The Journal of Neuroscience, November 1994, 14(11) 6445 

in viva On the other hand, it is possible that with a larger number 
of neurons (100,000 compared to our 4000) one may be able 
to stabilize reverberations with lower rates, even if saturation 
rates are at 500. And then there is always the escape route of 
adaptation, which may reduce the effective saturation frequency. 
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