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Quantitative descriptions of the cellular transformations 
from behaviorally relevant inputs into temporal patterns of 
firing are crucial for understanding information processing 
in systems of neurons and for incorporating biological 
properties of neurons into models of the neural control of 
behavior. To understand how neurons that mediate vesti- 
bulo-ocular behavior transform their inputs into temporal 
patterns of firing, we examined responses of medial ves- 
tibular nucleus (MVN) neurons to current injected intracel- 
lularly. MVN neurons recorded from avian brain slices fired 
spontaneously. Sinusoidal modulation of input current pro- 
duced precisely sinusoidal modulation of firing rate. The 
transformation between input current and firing rate was 
remarkably linear: firing rate scaled linearly as a function 
of current amplitude, and the responses to steps of input 
current were predicted accurately from the linear super- 
position of responses to sinusoidal modulation of input 
current. Over the physiological range of head movement 
frequencies, from 0.1 to 10 Hz, peak-to-peak modulation of 
firing rate was relatively constant or increased slightly in 
most neurons. In contrast, when hyperpolarizing current 
was used to keep neurons below threshold for action po- 
tentials, the frequency response of the membrane potential 
behaved like a low-pass filter. These results imply that the 
membrane conductances that are active when MVN neu- 
rons fire compensate for the low-pass characteristics of 
the membrane to allow faithful transmission of high fre- 
quency head movement signals. 

[Key words: spike generation, vestibule-ocular reflex, fir- 
ing rate, temporal filtering, medial vestibular nucleus, fre- 
quency response] 

A combination of network and cellular mechanisms transform 
sensory information into behavioral commands. Understanding 
the neural basis of behavior therefore requires quantitative de- 
scriptions of how both systems of neurons and individual neu- 
rons process incoming information. Because it has been studied 
so thoroughly in intact animals, the vestibulo-ocular reflex 
(VOR) provides an excellent behavioral system for understand- 
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ing the relative contributions of network and cellular mecha- 
nisms to the generation of behavior. 

To generate the VOR, central vestibular neurons transform 
time-varying head movement information into precise patterns 
of firing in extraocular motoneurons. The transformation from 
sensory signals into motor outputs has three important features. 
First, incoming head movement signals must be passed with 
high fidelity over a wide frequency range, from about 0.1 to 10 
Hz, and the highest frequency signals must be amplified (Keller, 
1978). Second, head velocity signals must be mathematically 
integrated to produce the eye position related firing of extraocu- 
lar motoneurons (Skavenski and Robinson, 1973). Finally, be- 
cause the behavioral response to head movement exhibits both 
short- and long-term plasticity (Ito et al., 1974; Gonshor and 
Melvill-Jones, 1976; Melvill-Jones, 1977; Collewijn and Groo- 
tendorst, 1978; Miles and Eighmy, 1980; Wallman et al., 1982; 
Schairer and Bennett, 1986; Snyder and King, 1992), the pro- 
cessing of head movement information must be modifiable. 

It has been traditional to assume that information processing 
in the VOR results from network properties and that individual 
neurons themselves either pass incoming signals unaltered or 
attenuate and delay responses at high frequencies. However, in- 
dividual neurons contain a variety of membrane and synaptic 
properties that could contribute to the processing of vestibulo- 
ocular information and that undoubtedly contribute to behavioral 
learning. The goal of this article is to determine how cellular 
mechanisms of single vestibular neurons contribute to informa- 
tion processing in the VOR. The head movement signals that 
guide the VOR enter the brain via the vestibular nerve and are 
subjected to the first stage of central processing in the vestibular 
nuclei. Much is already known how neurons in the medial ves- 
tibular nucleus (MVN) fire during vestibulo-ocular behavior 
(Fuchs and Kimm, 1975; Lisberger and Miles, 1980; Chubb et 
al., 1984; Tomlinson and Robinson, 1984; McCrea et al., 
1987a,b; Ohgaki et al., 1988; McFarland and Fuchs, 1992; Scud- 
der and Fuchs, 1992; Cullen et al., 1993; Cullen and McCrea, 
1993; Lisberger et al., 1994a,b), so we have selected these heu- 
rons for study with intracellular recordings in in vitro brainstem 
slices. 

In the vestibular and oculomotor systems, most neurons fire 
action potentials spontaneously, and information appears to be 
encoded in modulations of firing rate. We consider the cellular 
processing of firing rate information as having three broad 
stages. First, the firing of presynaptic neurons is transformed by 
synaptic machinery into current at the postsynaptic neuronal 
dendrites (and/or soma). Second, passive cable properties and 
active dendritic conductances filter the synaptic current. Finally, 
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filtered current at the soma and axon hillock gets transformed 
into temporal patterns of action potentials via a process called 
spike generation. 

In the present study, we investigate the contributions of spike 
generation in MVN neurons to temporal information processing. 
To determine how MVN neurons transform behaviorally rele- 
vant information into a firing rate code, we measured firing rate 
responses to intracellularly injected current that was modulated 
sinusoidally over the physiological range of head movement fre- 
quencies. To determine how the membrane conductances that 
are active during spike generation shape the responses to tem- 
porally modulated inputs, we compared the frequency response 
of the spike generator with that of the membrane below spike 
threshold. Our results demonstrate that MVN neurons transform 
inputs into firing rate in a precise and linear fashion over the 
behaviorally relevant range of input frequencies. Over a large 
range of firing rates, the responses to high frequency inputs are 
strong, indicating that active membrane conductances compen- 
sate for the passive filtering properties of the membrane, en- 
abling MVN neurons to transmit high frequency head movement 
information. 

Materials and Methods 
Brainstem slices containing the medial vestibular nucleus were prepared 
from 2-12 d old chicks. The slice preparation has been described in 
detail previously (du Lac and Lisberger 1995). In brief, chicks were 
anesthetized with ketamine (5 mg), decapitated, and the brainstem was 
dissected from the skull under Ringer’s bubbled with carbogen (95% 
0, and 5% CO,). Transverse slices containing the medial vestibular 
nucleus were cut on a vibratome (Campden) at a thickness of 450-500 
FM. Slices were incubated in carbogenated Ringer’s at room tempera- 
ture for at least 1 hr before recordings began. Carbogenated Ringer’s 
had a final pH of 7.4 and contained (in mM): NaCl, 130; KCI, 3; MgSO,, 
1.5; NaHCO,, 26; CaCI,, 2.5; NaH,PO,, 1.75; and dextrose, 10. 

Recordings were made in a submersion-type chamber through which 
carbogenated ringer, warmed to 31-33°C flowed at 4-5 ml/min. Micro- 
electrodes were filled with 3 M KC1 or 3 M KAc and ranged from 50 
to 100 MR in resistance; we found no differences in the properties of 
neurons recorded with different electrolytes. Recordings were made 
with an Axoclamp 2-A (Axon Instruments) in current-clamp mode; the 
bridge balance was checked and adjusted regularly throughout the 
course of the experiments. Membrane potential measurements for each 
neuron were adjusted for any offset in potential following removal of 
the electrode from the neuron. Signals were filtered at 3 kHz, amplified 
50X, and digitized at a sample rate of at least 5 kHz by an 386 IBM- 
compatible computer. 

During the initial 5-10 min after neurons were impaled, the input 
resistance, spontaneous firing rate, and response to depolarizing current 
steps often varied. Data collection began after these properties attained 
stable values. Neurons were injected intracellularly with sinusoidally 
modulated current; current injection was controlled by the computer. 
Between 4 and 30 cycles of each of a number of frequencies between 
0.1 and 10 Hz were presented. At least 3 set elapsed between injection 
of different sinusoidal frequencies. In some neurons, sinusoidal current 
modulation was superimposed on a steady DC level of current that 
either depolarized or hyperpolarized the neuron, and frequency re- 
sponses were collected at two or more different mean firing rates. Fol- 
lowing sinusoidal injection, the response to 6-10 steps of depolarizing 
current were collected. Spontaneous firing rate was measured periodi- 
cally during the course of the experiment, and the data were discarded 
if spontaneous rate varied by more than 15% percent of the average 
rate. 

Data analysis 

Instantaneous firing rate, r(t), was calculated as the reciprocal of the 
interval between successive pairs of spikes and assigned to the time, r, 
of the second spike. This algorithm was chosen to insure that changes 
in our estimate of firing rate would be related causally to input current, 
that is, that a measured change in firing rate would not precede the 
stimulus that caused a change in the interspike interval. Firing rate 

values were not calculated for times between spikes. Firing rate re- 
sponses to sinusoidal current injection were fitted with sinusoidal func- 
tions of time, R(t) = a. sin(2nft + b) + c. The parameters of this 
function, a, j b, and c, were chosen to minimize the mean squared 
difference between the actual firing rate, r(t), and predicted sinusoidal 
firing rate, R(t), at each spike time. 

We tested whether firing rate scales linearly as a function of input 
current amplitude by injecting individual neurons with current modu- 
lated sinusoidally at one of a number of frequencies and at a range of 
amplitudes. To determine whether the peak-to-peak firing rate response 
scaled linearly with current amplitude, we fitted the firing rate response 
with a sine wave as above, plotted the amplitude of the best fit sine 
wave as a function of peak-to-peak current amplitude, and calculated 
the regression coefficient of the best least squares linear fit of the plotted 
data. 

We tested additivity (superposition) of the transformation from input 
current into firing rate by comparing a neuron’s response to steps of 
current with that predicted by the same neuron’s responses to sinuso- 
idally injected current. Let Rj(t) represent the firing rate, as a function 
of time, to unit amplitude sinusoidal current injection at j Hz, and let 
R’j(t) be the response to a square wave modulation of current of unit 
amplitude, with period j. Denote by (R(t)} the modulated component 
(difference from baseline rate) of the response. Additivity of the mod- 
ulated components predicts that the { R’j(t)} is equal to the Fourier 
synthesis of the sinusoidal responses: 

(R’(t)] = -/,.[{Rl@)) + %.(R3@)} + %.{R5(t)] .I. (1) 

This was tested as follows. First, best fitting response gain and phase 
values for Z?j(t) were obtained from each neuron at several input fre- 
quencies j from 0.1 to 10 Hz. Next, gain and phase were plotted sep- 
arately as a function of input frequency, and these plots were fitted with 
third order polynomials. The polynomials provided good fits to gain 
and phase as a function of frequency (see Fig. 5). The polynomial fits 
were then used to interpolate response gain and phase at frequencies j, 
3j, etc., up to a maximum of 10 Hz. The responses Rl(t), R3(t), etc., 
were determined from these gain and phase values, entered into Equa- 
tion 1, and used to generate a prediction for the firing rate response 
R’(t). This prediction was regressed against the actual firing rate re- 
sponse to 2-10 repetitions of a step of current of duration j/2 (which is 
half of one cycle of a squarewave stimulus of period j); the quality of 
the prediction was determined from the correlation coefficients of the 
linear regression. 

Compan’sons czcross neurcms. For each neuron, firing rate responses 
were obtained to sinusoidal current modulated at a fixed amplitude and 
at frequencies between 0.1 and 10 Hz. The amplitudes of the best fit 
sine wave to the response at each frequency were then plotted as a 
function of frequency and fit with a third order polynomial using com- 
mercially available software (e.g., Fig. 5A,B). Response gain was nor- 
malized to the value of the polynomial fit at 0.5 Hz. Phase values were 
not normalized. 

Subthreshold measurements. Membrane potential responses to sinu- 
soidal current injection were obtained from neurons that were held be- 
low action potential threshold by injection of hyperpolarizing DC cur- 
rent. Membrane potential was fitted with a sinusoidal function of time 
with the algorithm used to fit sinusoidal firing rate responses. Membrane 
time constants were obtained from the subthreshold membrane poten- 
tial response to small hyperpolarizing steps of current. The gain of a 
first order low-pass filter with time constant T was calculated as 
l/2/( 1 + (2r$Z)*) wherefis the input frequency. The phase, in degrees, 
was calculated as 180/~.arctan(2@). 

Simulations. To investigate the response to sinusoidal input of neu- 
ron-like oscillators that convert continuous input into a discrete firing 
rate code, we constructed two simple models. Both models generate an 
action potential of fixed height whenever membrane potential crosses a 
set threshold. Following the action potential, membrane potential is re- 
set to a fixed value below action potential threshold. In the first model, 
the trajectory of the membrane potential between action potentials is 
governed by the sum of an intrinsic pacemaking current and injected 
current, and membrane capacitance, such that Z(tota1) = Z(inj) + Z(int), 
Z(int) = g(V,,, - V,,), and dV,,,ldt = Z(total)/C, where Z(int) is the intrinsic 
current, Veq is the equilibrium potential of the intrinsic channel, C is the 
membrane capacitance, and V, is the current membrane potential. In 
the absence of injected current the membrane potential between spikes 
follows an exponential trajectory and the model fires spontaneously. A 
given spontaneous firing rate could be achieved with a number of com- 
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binations of model parameters; however, the qualitative behavior of the 
model was robust to parameter combination. 

The second model contains no intrinsic pacemaking current and 
therefore does not fire in the absence of injected current. Membrane 
trajectory between spikes is linear and follows the relationship dV,,,ldt 
= I(inj)/C. Injection of constant depolarizing current causes the model 
to fire at a regular rate determined by the amount of injected current 
and the model capacitance. The models’ firing rate responses to sinu- 
soidally injected current were analyzed with the same algorithms used 
for real neurons. Response gain was normalized to the gain at 0.5 Hz 
as described for real neurons; phase was not normalized. 

Results 
The results represent data from 21 neurons recorded intracellu- 
larly in the medial vestibular nucleus (MVN). All of the neurons 
were spontaneously active, had action potentials that were at 
least 45 mV in height (from threshold to peak) and rapid after- 
hyperpolarizations between 10 and 25 mV in depth, and were 
able to sustain repetitive firing when injected with sustained de- 
polarizing current. Spontaneous firing levels and responses to 
current injection were stable and consistent over the course of 
the experiment for each of the neurons in our sample. Intrinsic 
membrane and firing properties have been described previously 
and are qualitatively similar both across MVN neurons recorded 
in avian brain slices and between chicks and mammals (dis- 
cussed in du Lac and Lisberger 1995). 

Responses to sinusoidal current injection 

Figure 1 shows a typical example of the response of an MVN 
neuron to injection of current modulated sinusoidally at 2 cy- 
cles/sec 2 100 pA. During the first 100 msec of the trace, no 
current was injected, and the neuron fired steadily at 27 
spikeslsec. Sinusoidal alternation of depolarizing and hyperpo- 
larizing current resulted in alternating increases and decreases 
in the neuron’s instantaneous firing rate. The maximum and min- 
imum firing rates occurred at approximately the same time as 
the peak depolarizing and hyperpolarizing current, respectively. 

Over a wide range of frequencies, sinusoidal modulation of 
injected current produced sinusoidal modulations in firing rate. 
Figure 2 shows the responses of a representative neuron to si- 
nusoidal current injection at six different frequencies. The circles 
in each panel plot instantaneous firing rate as a function of time 

in response to a particular input frequency, indicated at the top 
of the panel. The solid line in each panel shows the least-squares 
sinusoidal fit to the response. The figure illustrates two important 
points. First, over the range of frequencies from 0.1 to 10 Hz, 
the modulation of instantaneous firing rate in response to sinu- 
soidal current injection can be well described by a sine wave. 
Second, the response to current injection is very precise, as in- 
dicated by the small amount of scatter of the data around the 
best fit sine wave. 

Sinusoidal current modulation resulted in precise, sinusoidal 
modulation in firing rate in all of the neurons in our sample. We 
quantified the responses to sinusoidal current injection by eval- 
uating the correlation coefficient (R*) of the best fit of the re- 
sponses to a sine wave. In 21 neurons, over the input frequency 
ranges from 0.1 to 10 Hz, the mean R* value was 0.97 (SD = 
0.03). For comparison, the R2 values of the data shown in Figure 
2 ranged between 0.96 and 0.99. 

Tests of linearity 

The findings that sinusoidal current injection produced precisely 
sinusoidal modulation in firing rate over a wide range of fre- 
quencies suggest that spike generation in vestibular nucleus neu- 
rons is linear. We set out to test linearity of the MVN spike 
generator for two reasons. First, linearity implies that one could 
predict the pattern of MVN firing in response to any arbitrary 
input simply by knowing the responses to sinusoidal inputs. Sec- 
ond, linearity of spike generation in MVN neurons has conse- 
quences for vestibulo-ocular behavior and implications for the 
cellular machinery that transforms inputs into action potentials. 
Two properties-scaling and additivity-must hold for a process 
to be linear (Bracewell, 1986). That is, the output should scale 
linearly as a function of the input, and the response to the sum 
of a number of different inputs should equal the sum of the 
responses to the individual inputs. 

Scaling. To determine whether spike generation in MVN neu- 
rons satisfies scaling, we injected individual neurons with sinu- 
soidal input currents at a single frequency and a range of am- 
plitudes and measured the resulting modulation of firing rate. 
Figure 3 demonstrates this test in a representative neuron. The 
responses to current modulation at a single frequency of 4 Hz 
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Figure 2. Response of a single MVN neuron to sinusoidal current modulation at six different frequencies. The symbols in each panel show 
instantaneous firing rate as a function of time in response to intracellularly injected current modulated sinusoidally at the frequency indicated at the 
top of the panel. Responses to two repetitions of a particular sinusoidal input frequency are shown in each panel. The line indicates the best least 
squares sinusoidal tit through the data. 

and at two different current amplitudes are shown in Figure 3A; with current amplitude, we obtained the best fit sine wave to the 
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Figure 3. Test of scaling. A shows in- 
stantaneous firing rate as a function of 
time in response to injected current 
modulated sinusoidally at 4 Hz at two 
different amplitudes in a single neuron. 
The solid and open symbols plot the 
neuron’s response to sine waves with 
peak-to-peak amplitudes of 100 pA and 
300 pA, respectively. Lines through the 
points indicate the best least squares si- 
nusoidal fit through the data. B plots 
the peak-to-peak amplitude of the fits 
to the firing rate responses ‘to sinusoidal 
current injection as a function of the 
peak-to-peak amplitude of the injected 
current. The line indicates the best least 
squares linear fit through the relation- 
ship between current amplitude and 
peak-to-peak firing rate modulation (F 
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sponse led that of the input. 



8004 du Lac and Lisberger - Temporal Processing in Vestibular Interneurons 

LL I I 

-200 200 600 1000 1400 

Time (msec) 

Figure 4. Test of additivity. The open symbols indicate instantaneous 
firing rate, as a function of time, in response to six repetitions of a 200 
pA step of current, indicated at bottom. The line through the points is 
the prediction from the Fourier synthesis of the neuron’s response to 
sinusoidal current injection. 

is scaled, we also measured the phase shift between the input 
current and the sine wave that best fitted the data and plotted it 
as a function of input amplitude. Figure 3C demonstrates that 
the phase of the response did not change with input amplitude. 

We tested scaling in a total of eight neurons at three different 
input frequencies (three neurons at 2 Hz, one at 4 Hz, and four 
at 8 Hz) and over a range of spontaneous firing rates from 18 
to 50 spikes/set and peak-to-peak modulation amplitudes from 
4 to 80 spikestsec. In each neuron, peak-to-peak firing rate mod- 
ulation scaled linearly with input amplitude; the correlation co- 
efficients for the best fit line ranged from 0.996 to 0.999. Re- 
sponse phase did not change as a function of input amplitude 
when the input current was modulated at 2 Hz or 4 Hz. In two 
of the four neurons tested at 8 Hz, response phase declined by 
as much as 10” as current amplitude increased. In the other two 
neurons tested at 8 Hz, response phase was constant across input 
amplitudes. We conclude that the spike generator in MVN neu- 
rons scales its inputs essentially linearly at all frequencies but 
at high frequencies can produce small changes in response dy- 
namics. 

Ad&tidy. To test additivity, we used the approach outlined 
in the Materials and Methods to compare the actual response to 
steps of current with that predicted from the Fourier synthesis 
of the responses to sinusoidally modulated current. Figure 4 
shows an example of the comparison in a single neuron. The 
open circles in Figure 4 show the superimposed firing rate re- 
sponses to six repetitions of a step of current, indicated by the 
line at the bottom of the figure. The neuron fired spontaneously 
at 21 spikes/set. After the onset of the step, firing rate increased 
rapidly to a peak of 33 spikeslsec and then decreased to a steady 
state value of about 31 spikeslsec that was maintained during 
the step. When the step was turned off, firing rate decreased to 
a minimum of 18 spikes/set and then returned to the sponta- 
neous level. The solid line shows the prediction from the Fourier 
synthesis of the responses to sinusoidal current injection; the 
close fit (R2 = 0.97) indicates that spike generation in this neu- 
ron satisfies the linear requirement of additivity. 

We tested additivity in 12 neurons with mean firing rates be- 
tween 13 and 68 spikeslsec; the magnitude of the change in 
firing rate evoked by the steps tested ranged from 6 to 23 

spikeslsec. The Fourier synthesis of sinusoidal responses closely 
predicted firing rate responses to steps of injected current: re- 
gression of the predictions on the actual data yielded R2 values 
that ranged from 0.83 to 0.98 (median = 0.94). We conclude 
from this analysis that spike generation in vestibular nucleus 
neurons satisfies the linear requirement of additivity. 

Frequency responses 
The findings that spike generation in MVN neurons satisfies both 
scaling and additivity implies that the spike generator can be 
thought of as a linear filter. To investigate the filtering properties 
of the spike generator, we held input current amplitude constant 
and measured the amplitude and phase of the best sinusoidal fits 
to the firing rate response to sinusoidal current injection between 
0.1 and 10 Hz. Figure 5, A and B, show the results of this 
experiment for two different neurons. The symbols in each plot 
of Figure 5 indicate the actual data; lines drawn through the 
symbols are 3rd order polynomials that provided the best fit to 
the data. 

The neuron in Figure SA fired spontaneously at 24 spikeslsec. 
Sinusoidal current injection at a frequency of 0.1 Hz caused a 
peak-to-peak modulation in the neuron’s firing rate of 12.3 
spikeslsec (Fig. 5AI). As the input frequency increased, the 
peak-to-peak modulation in firing rate increased slightly, reach- 
ing a maximum of 14 spikes/set at 4 Hz. Firing rate phase with 
respect to input current phase is shown in Figure 5A2. At input 
frequencies below 0.75 Hz, firing rate phase lagged that of the 
input by a few degrees. As input frequency increased, firing rate 
phase led input phase; phase lead increased steadily as a function 
of input frequency to a maximum of 51” at 10 Hz. The mean 
firing rate of the neuron shown in Figure 5A and of all of the 
neurons in our sample did not change as a function of sinusoidal 
input frequency. Figure 5B shows data from a different neuron 
that fired spontaneously at 49 spikeslsec. In this neuron, the 
peak-to-peak modulation in firing rate increased steadily with 
input frequency from 10.2 spikes/set to 13.3 spikeslsec (Fig. 
5BI). The neuron’s response was approximately in phase with 
injected current at frequencies up to 4 Hz; above this frequency, 
response phase led that of the input, with phase lead reaching a 
maximum of 11” at 10 Hz (Fig. 5B2). 

E#ect of mean Jiring rate. The responses to high input fre- 
quencies depended on the neuron’s mean firing rate. The effect 
of mean firing rate is illustrated in Figure 5C, which shows the 
frequency response of a single neuron- firing at three different 
mean rates (spontaneously, at 34 spikesfsec; depolarized with 
DC current to 49 spikes/set, and hyperpolarized to 10 spikes/ 
set). Figure XI plots response gain, normalized as described 
in the Materials and Methods. At all three firing rates, gain was 
essentially constant between input frequencies of 0.1 and 2 Hz. 
When the neuron fired at a mean rate of 10 spikes/set, gain 
dropped rapidly as input frequency increased above 2 Hz. In 
contrast, when the neuron fired at 34 spikeslsec, gain was rela- 
tively constant across all input frequencies. When the neuron 
fired at 49 spikeslsec, gain increased slightly as input frequency 
increased between 2 and 10 Hz. 

Response phase also depended on mean firing rate. As shown 
in Figure X2, the pattern of phase as a function of frequency 
was similar whether the neuron fired at mean rates of 34 or 49 
spikes/set: firing rate was approximately in phase with input 
currents at frequencies between 0.1 and 2 Hz, firing rate phase 
led that of inputs above 2 Hz, and phase lead increased slightly 
with frequency. In contrast, when the neuron fired at a mean 
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Figure 5. Frequency responses of MVN neurons. Al shows the amplitude of the best least squares sinusoidal fit a neuron’s response’ to sinusoidal 
modulation of current as a function of input frequency. A2 plots the phase of the best fitting sine wave as a function of input frequency for the 
same neuron as in Al. Positive values of phase indicate that the phase of the response led that of the input. Firing rate in this neuron was modulated 
around a mean rate of 24 spikes/set. BI and B2, same as Al and A2 but for a different neuron in which firing rate was modulated around a mean 
rate of 49 spikeslsec. Cl plots the gain of the best fit responses as a function of input frequency to current modulated sinusoidally around three 
different mean rates: 10 spikes/set (squares), 34 spikes/set (solid circles), and 49 spikeslsec (open circles). See Materials and Methods for 
normalization of response gain. C2 plots the phase of the best fit responses of the neuron shown in Cl. Dl and 2 show the mean gain and phase, 
respectively, for 13 neurons firing at mean rates between 20 and 37 spikes/set (open circles) and for 9 neurons firing at mean rates between 44 
and 68 spikes/set (solid circles). Bars indicate SDS. Lines drawn through the data in each panel are the best (least square) 3rd order polynomial 
fits of the form: Y = a + bx + c? + d.x3. Coefficients for the fits in D were as follows. Dl, 20-37 spikes/set: a = 0.97601; b = 0.050614; c = 
-0.006371; d = 0.00018395. Dl, 44-68 spikeslsec: a = 0.97449; b = 0.048132; c = -0.0021853; d = 5.2670e-05. 02, 20-37 spikeslsec: a = 
-2.2183; b = 2.2566; c = 0.41416; d = -0.021729. 02, 44-68 spikeslsec: a = -2.9187; b = -0.25813; c = 0.14525; d = 0.0014006. 
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rate of 10 spikes/set, firing rate phase led that of the input at 
frequencies greater than 0.5 Hz, and phase lead increased dra- 
matically as a function of frequency. 

In our entire sample of neurons, the responses to high fre- 
quency inputs depended on mean firing rate. We recorded from 
four neurons firing at rates less than 20 spikeslsec; in each of 
them, response gain declined at input frequencies above 2 Hz, 
and response phase led that of the input by more than 90” at 6- 
8 Hz. In contrast, Figure 5D shows mean gain and phase as a 
function of frequency for our population of neurons that fired at 
or above 20 spikeslsec. We have arbitrarily subdivided our sam- 
ple into two groups, those firing at mean rates between 20 and 
31 spikeslsec (n = 13) and those firing at mean rates between 
44 and 68 spikeslsec (n = 9). Figure 5Dl shows that when 
neurons fired between 20 and 31 spikeslsec, gain tended to be 
relatively constant between 0.1 and 10 Hz. However, when neu- 
rons fired between 44 and 68 spikeslsec, gain tended to increase 
for input frequencies above 2 Hz. Figure 502 shows that re- 
gardless of firing rate, responses were approximately in phase 
with input frequencies less than about 1 Hz. When neurons fired 
between 20 and 37 spikeslsec, response phase led that of the 
input at frequencies greater than 1 Hz, and phase lead increased 
to a mean of 40” at 10 Hz. When neurons fired at rates between 
44 and 68 spikeslsec, phase lead increased much more slowly 
with frequency, reaching a mean of 10” at 10 Hz. These trends 
applied both to neurons firing spontaneously and to those in 
which DC current was injected to elevate spontaneous firing 
rate. 

The variation in gain and phase with mean firing rate indicates 
that spike generation in MVN neurons is not an entirely linear 
process. However, the tests of scaling and additivity demonstrate 
that when the mean firing rate is constant, spike generation acts 
as a linear filter. To describe quantitatively the linear filtering 
properties of the MVN spike generator, we fit 3rd order poly- 
nomials to the population gain and phase as a function of fre- 
quency for neurons firing between 20 and 37 spikeslsec and for 
those firing between 44 and 68 spikeslsec. Third order polyno- 
mials described the population data quite well; the R2 values for 
the fits shown in Figures 5DI and 2 ranged between 0.988 and 
0.999 (the coefficients of the fit are given in the caption to Fig. 
5). 

Comparison with subthreshold frequency responses. To de- 
termine whether the filtering properties of the spike generator 
differ from those of the neuron’s membrane when it is below 
spike threshold, we hyperpolarized neurons with DC current to 
a stable membrane potential (between -65 and -80 mV) and 
then modulated current sinusoidally around the DC level. Si- 
nusoidal current injection produced sinusoidal modulation in 
membrane potential; R2 values of sinusoidal fits to membrane 
potential modulation ranged from 0.87 to 0.98 (median = 0.95). 
We defined “subthreshold gain” at each frequency as the peak- 
to-peak amplitude of the best fit sine wave, normalized to the 
amplitude of the best fit sine wave in response to input current 
modulated at 0.5 Hz. “Subthreshold phase” was defined as the 
phase of the best fit sine wave to modulated membrane potential. 

In Figure 6, the solid symbols plot subthreshold gain and 
phase as a function of input current frequency for a represen- 
tative neuron. The frequency response of the subthreshold mem- 
brane can be described roughly as a low-pass filter. At input 
frequencies below about 1 Hz, both gain and phase were con- 
stant as a function of frequency. At frequencies above 1 Hz, 
gain declined with input frequency, while the response phase 
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Figure 6. Comparison of the frequency response of the spike gener- 
ator and that of the neuron’s membrane below spike threshold. A, The 
open symbols plot the gain of the best sinusoidal fit to a neuron’s firing 
rate response to sinusoidal modulation of current as a function of input 
frequency. Gain normalization is described in Materials and Methods. 
The solid symbols plot the normalized peal-to-peak membrane potential 
attained during sinusoidal modulation of injected current when the neu- 
ron hyperpolarized with DC current to a mean membrane potential of 
-70 mV. The solid lines through the open symbols indicate the best 
third order polynomial fit to the data. The dashed lines indicate the 
frequency response of an ideal low-pass filter based on an R-C circuit 
with a time constant of 21 msec. B, The open symbols plot the phase 
of the best sinusoidal fit to the firing rate response of the neuron shown 
in A to sinusoidal current modulation. The solid symbols plot the phase 
of membrane potential in response to sinusoidal modulation of injected 
current when the neuron was hyperpolarized with DC current. 

lagged that of the input. For comparison, the dashed lines in 
Figure 6, A and B, indicate the gain and phase of an ideal low- 
pass filter with a time constant equal to the dominant time con- 
stant of the neuron, which was 21 msec. Deviations in the data 
from the predictions of a low-pass filter may reflect the presence 
of active conductances in the membrane below spike threshold 
(Serafin et al., 1991a,b; du Lac and Lisberger 1995). 

The frequency response of the subthreshold membrane dif- 
fered significantly from that of the spike generator. The open 
symbols in Figure 6, A and B, plot the gain and phase, respec- 
tively, of the best fit sine wave to the firing rate response to 
sinusoidal current modulation. At frequencies between 0.1 and 
1 Hz, spike generation gain and phase were relatively constant, 
as were subthreshold gain and phase. However, at frequencies 
above 1 Hz, spike generation gain increased (Fig. 6A), and spike 
generation phase led that of input current (Fig. 6B). 

We measured the frequency response of the subthreshold 
membrane in four neurons. Each neuron behaved approximately 
as a low-pass filter. Gain declined as a function of frequencies 
above 1 Hz to a mean value at 10 Hz of 0.66 (SD = 0.13). 
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Phase lagged that of the input by a mean value of 36” (SD = 
9.5). In contrast, for neurons firing above 20 spikeslsec, spike 
generation gain was either constant or increased as a function 
of input frequency, and spike generation phase tended to lead 
that of the input (Fig. 5D). For neurons firing at mean rates of 
less than 20 spikeslsec, spike generation gain decreased as a 
function of frequency, as did subthreshold gain. However, at 
these firing rates spike generation gain led that of the input at 
frequencies greater than about 1 Hz, whereas subthreshold gain 
lagged that of the input at these frequencies. We conclude that 
the filtering properties of the membrane below spike threshold 
do not describe those of the spike generator. 
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Comparison with simple oscillator models. To gain further 
insight into the filtering properties of the MVN spike generator, 
we performed simulations of neuron-like oscillators that convert 
continuous current inputs into a discrete firing rate code. Our 
goal was to test whether the effect of me& firing rate on the 
frequency response of MVN neurons (Fig. 5) could be an in- 
herent property of oscillators that encode information as mod- 
ulations in firing rate. Firing rate responses to sinusoidal current 
injection were analyzed in two types of oscillator models, de- 
scribed in the Materials and Methods. Sinusoidal injection of 
current into both models produced sinusoidal modulations in fir- 
ing rate. The models behaved linearly: firing rate responses 
scaled linearly as a function of input amplitude, and responses 
to input steps could be predicted from the Fourier synthesis of 
sinusoidal responses. The effects of mean firing rate on the gain 
and phase of firing rate responses were qualitatively similar for 
both models and across many variations in model parameters. 
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The frequency response of the oscillator models depended on 
mean firing rate in a manner that was similar to real MVN neu- 
rons. Figure 7 shows the frequency response of an oscillator 
model firing at 3 different mean rates. When the model fired at 
10 spikeslsec, response gain decreased markedly as input fre- 
quency increased above 2 Hz (Fig. 7A). When the model fired 
at higher rates, response gain decreased less as a function of 
input frequency. The decline in gain as input frequency ap- 
proaches mean firing rate reflects a smooth transition to the con- 
dition in which the input frequency equals firing rate. Under this 
condition, the model fired a single action potential during each 
cycle of the input, and firing rate was not modulated (hence 
response gain was zero). Response phase in the model also de- 
pended on mean firing rate, as shown in Figure 7B. At all firing 
rates, response phase led that of the input, and as input frequency 
increased, phase lead also increased. However, the increase in 
phase lead was greater for neurons firing at low mean rates than 
at higher mean rates (compare 10 spikes/set with 30 spikes/set). 
The trends depicted in Figure 7 were observed for both types 
of models and for all model parameters. 

Figure 7. Frequency response of an oscillator model. In A, the gain 
of the peak-to-peak firing rate modulation, normalized as in Materials 
and Methods, is plotted as a function of input current frequency for a 
model that fired at 10 spikes/set (apen squares), 30 spikes/set (solid 
circles), and 50 spikes/set (open circles). In B, the phase of the model’s 
firing rate response is plotted as a function of input frequency for the 
same firing rates as shown in A. Lines through the points were derived 
from 3rd order polynomial fits through the model data. 

The oscillator model differed from real MVN neurons in two 
important ways. First, response gain in the model always de- 
clined as input frequency increased, regardless of the mean firing 

useful for determining how their cellular properties contribute 
to the processing of temporal information in VOR pathways. To 
assess how the spike generator in MVN neurons transforms 
time-varying inputs into temporal modulations of firing rate, we 
injected sinusoidal current intracellularly and measured the re- 
sulting pattern of action potentials. The results demonstrated that 
the spike generator transforms inputs into firing rates in a precise 
and surprisingly linear fashion over a wide range of input fre- 
quencies. Comparison of the frequency response of the spike 
generator with subthreshold membrane revealed that active con- 
ductances enable MVN neurons to respond well to high fre- 
quency inputs despite the low-pass characteristics of the mem- 
brane. These findings suggest that active conductances in MVN 
neurons play a critical role in mediating signal transformations 
that are appropriate for vestibulo-ocular behavior. 

Assumations 1 
rate, particular model tested, or combination of model parame- 
ters. In contrast, MVN neurons firing at rates > 40 spikeslsec 

A number of assumptions must be discussed before considering 

exhibit a gain increase as input frequency increases (Fig. 5). 
possible behavioral consequences of neuronal properties that 

Second, the magnitude of phase leads produced by the model 
were measured in vitro. First, we assume that current injected 

were substantially greater than those observed in real MVN neu- 
intracellularly mimics synaptic current in its effect on the spike 

-̂ -̂  generator. The validity of this assumption has been demonstrated 
1”llb. 

Discussion 
for steady-state inputs to motoneurons (Granit et al., 1966; Ker- 
nell, 1969; Schwindt and Calvin, 1973; Powers et al., 1992); it 
has not yet been tested for temporally modulated inputs. Second, 

Our goal was to describe the intrinsic transformations performed we assume that the properties of the MVN spike generator that 
by medial vestibular nucleus neurons in a way that would be we have measured in vitro apply to the same neurons in vivo. 
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In awake, behaving animals, spontaneous firing rates of vestib- 
ular neurons range from 0 to over 100 spikesfsec, depending on 
the behavioral condition and the species. We have described the 
filtering properties of spike generation in neurons firing at mean 
rates between 10 and 70 spikeslsec; therefore, our findings apply 
directly to a significant subset of the range of behaviorally rel- 
evant firing rates. 

Although we did not identify the synaptic inputs or projection 
patterns of the MVN neurons in our study, we assume that at 
least some of them are involved in vestibulo-ocular behavior. 
The MVN receives inputs from vestibular nerve afferents (Fer- 
nandez and Goldberg, 1971; Wold, 197.5; Cox and Peusner, 
1990) and some MVN neurons project to oculomotor nuclei 
(McCrea et al., 1987; Labandeira-Garcia et al., 1989; Scudder 
and Fuchs, 1992). A subset of MVN neurons receive monosyn- 
aptic inhibition from the cerebellar floccular lobe, a structure 
that participates in motor learning in the vestibulo-ocular reflex 
(Sato et al., 1988; du Lac and Lisberger, 1992; Lisberger et al., 
1994). Although the MVN contains a variety of cell types dis- 
tinguished by their synaptic connections, projection patterns, and 
responses during vestibulo-ocular behaviors, the intrinsic mem- 
brane and firing properties of MVN neurons are qualitatively 
similar when measured in vitro (du Lac and Lisberger, 199.5). 

Comparison of the transformations performed by the MVN 
spike generator and those required for vestibub-ocular 
behavior 
We have shown that MVN neurons transform input current into 
modulations of firing rate in a linear and precise fashion over a 
wide range of input frequencies. The transformations performed 
by MVN spike generator have a number of features in common 
with those performed by the neural circuitry that produces the 
VOR. First, the VOR circuitry transforms head movement inputs 
into oculomotor commands in an essentially linear fashion over 
a wide range of head movement amplitudes (Baarsma and Col- 
lewijn, 1974; Donaghy, 1980). Second, the behavior itself can 
be quite precise; many repetitions of a given head movement 
give rise to very reproducible eye movements. Third, the range 
of frequencies over which at least humans and cats experience 
significant head movements (from well below 1 Hz to about 7- 
10 Hz; Donaghy, 1980; Grossman et al., 1988), and the range 
of frequencies over which the VOR works well (Donaghy, 1980; 
Grossman et al., 1989) parallels the frequency range within 
which spike generation behaves linearly. These parallels suggest 
the possibility that the broad-band, linear filtering properties of 
the spike generator in MVN neurons are tailored for the requi- 
rements of vestibulo-ocular behavior. 

Neural integration can not be explained by the filtering prop- 
erties of the MVN spike generator. Although vestibular nerve 
afferents fire approximately in phase with head velocity (Fer- 
nandez and Goldberg, 1971) extraocular motoneurons carry a 
signal related to eye position (Skavenski and Robinson, 1973). 
The transformation from the head velocity signal into a position 
signal is thought to be accomplished by a neural form of math- 
ematical integration (Robinson, 1989). Lesions of the medial 
vestibular nucleus, as well as of the neighboring prepositus nu- 
cleus, compromise the proposed integrator function (Cannon and 
Robinson, 1987; Cheron and Godaux, 1987). Our finding that 
MVN neurons are broad-band filters (rather than integrators) 
suggests that neural integration is mediated by synaptic trans- 
formations, dendritic filtering, and/or network mechanisms rath- 
er than by the MVN spike generator. 

The finding that MVN neuronal responses to high frequency 
inputs depend on mean firing rate has implications for the pro- 
cessing of vestibular information. In the behaving animal, MVN 
neurons fire at low rates when the head moves rapidly and/or 
when the eyes are deviated in the orbit (Fuchs and Kimm, 1975; 
Scudder and Fuchs, 1992; Lisberger et al., 1994). Our measure- 
ments of spike generation imply that under these conditions, 
transmission of high frequency inputs by MVN neurons is rel- 
atively attenuated. 

Processing of temporal information by the MVN spike 
generator 

At most firing rates, the MVN spike generator can be described 
roughly as a broad-band linear filter: responses to high frequency 
inputs are equally strong as or stronger than responses to low 
frequency inputs. In contrast, the membrane potential below 
spike threshold behaves as a low-pass filter, attenuating re- 
sponses to high frequency inputs. The differences between the 
spike generator and subthreshold membrane potential reflect the 
combined action of membrane conductances that are active dur- 
ing spike generation. These conductances shape the filtering 
properties of the spike generator in two qualitatively distinct 
ways. First, by generating action potentials they transform con- 
tinuous inputs into a discrete, rate modulation code. Second, 
active conductances control the trajectory of the membrane po- 
tential between action potentials. Our simulations indicate that 
the increase in response gain at high frequencies is not an in- 
herent feature of neuron-like oscillators that incorporate a thresh- 
old crossing mechanism to transform continuous inputs into 
modulations in rate. Instead, the boosting of high frequency re- 
sponses must result from conductances that control the interspike 
membrane potential trajectory. Slow potassium conductances are 
likely to play a role in this process (Schwindt and Crill, 1892; 
Baldissera et al., 1982) but the precise filtering properties of the 
spike generator undoubtedly arise from the combined action of 
both inward and outward currents (Schwindt and Crill, 1892; 
Schwindt, 1992). 

Our simulations of neuron-like oscillators indicate that the 
dependence of filtering properties on mean firing rate that we 
observed in MVN neurons is at least partially a consequence of 
rate coding. As the input frequency approaches the mean firing 
rate, neurons tend toward phase-locking, and the ability to signal 
information with modulations in firing rate becomes compro- 
mised. A hallmark of neurons in vestibulo-ocular reflex path- 
ways, including MVN neurons, is their high spontaneous firing 
rates in vivo. The ability to robustly transmit high frequency 
information is apparently worth the metabolic costs incurred by 
high firing rates. 

Spike generation in MVN neurons, when measured around a 
given mean firing rate, satisfies the linear requirements of scaling 
and additivity remarkably well. While it may be useful from the 
point of view of vestibulo-ocular behavior for MVN neurons to 
transform their inputs linearly into firing rate modulations, the 
fact that spike generation is linear would appear to provide a 
significant challenge from the point of view of the neuron. Many 
of the membrane conductances that comprise spike generators 
are themselves highly nonlinear with respect to membrane po- 
tential and time (Hille, 1992). How active, nonlinear conduc- 
tances are coordinated to produce a linear spike generator in any 
neuron remains unknown (Schwindt, 1992). 



The Journal of Neuroscience, December 1995, 1~712) 8009 

Comparisons with spike generation in other neurons 

To our knowledge, the frequency response of spike generation 
in vertebrate CNS neurons has been measured previously only 
in spinal motoneurons (Baldissera et al., 1984), and tests of ad- 
ditivity have not been performed previously. In motoneurons 
depolarized with DC current, spike generation gain and phase 
lead both increased as a function of input frequency, and the 
frequency response could be described as a first order, high-pass 
filter (Baldissera et al., 1984). In contrast, the frequency re- 
sponse of the MVN spike generator is not well-described as a 
simple high-pass filter at any firing rate: at low firing rates, gain 
decreases as frequency increases; at higher firing rates, phase is 
relatively constant across frequencies. Baldissera et al. (1984) 
reported that the frequency response of spike generation in mo- 
toneurons did not depend on mean firing rate, although they 
tested a limited range of firing rates compared with that reported 
here for MVN neurons. 

Spike generation in CNS neurons has been typically measured 
with steps of input current. Many types of neurons increase their 
firing rate in an approximately linear fashion in response to steps 
of increasing magnitude [e.g., motoneurons (Kernell, 1965; 
Grantyn and Grantyn, 1978) some neocortical neurons (Staf- 
Strom et al., 1984; Lorenzon and Foehring, 1992), brainstem 
auditory neurons (Manis, 1990)]. Many neuron types exhibit 
spike frequency adaptation, in which firing rate declines signif- 
icantly over the course of an input current step [e.g., hippocam- 
pal pyramidal neurons (Madison and Nicoll, 1984) some cor- 
tical neurons (Connors and Gutnick, 1990)]. Given the assump- 
tion of linear superposition, neurons that show significant spike 
frequency adaptation would respond more strongly to high fre- 
quency inputs than to low frequency or steady-state inputs. 

Implications for modeling 

Models of neural networks commonly use “integrate and fire” 
units, in which changes in membrane potential that result from 
a combination of synaptic inputs and passive membrane prop- 
erties are passed through a thresholding mechanism to produce 
an action potential (e.g., Worgotter and Koch, 1991; Buonomano 
and Mauk, 1994). Integrate and fire models are based on the 
assumption that a neuron’s membrane time constant, measured 
when the neuron is below threshold for firing, determines the 
transformation from synaptic inputs into temporal patterns of 
firing. However, the present study demonstrates that spike gen- 
eration in MVN neurons cannot be described as a low-pass filter; 
rather, the active conductances that comprise the spike generator 
transform the low-pass characteristics of the membrane by 
boosting response gain at high frequencies. As described above, 
in many other cell types the spike generator transmits high fre- 
quency inputs more robustly than low frequency inputs; conse- 
quently, spike generation in many CNS neurons would be better 
described as a high-pass filter than as the low-pass filter assumed 
by integrate and fire models (Schwindt 1992). 

The value of models of neural systems increase when they 
incorporate real biological properties of neurons. Biophysically 
based models of neuronal function (e.g., Traub et al., 1991; Mc- 
Cormick and Huguenard, 1992) require many difficult measure- 
ments and can be quite computationally taxing for network mod- 
els. In addition, because they are based on nonlinear membrane 
properties, biophysical models that describe firing rate in re- 
sponse to steps of inputs may not adequately describe the re- 
sponses to behaviorally relevant, time-varying .inputs. We sug- 

gest a simpler, biologically based alternative: quantitative de- 
scriptions of the transformation from temporally modulated cur- 
rent into temporal patterns of firing, such as those reported in 
this study, should be combined with measurements of effective 
synaptic current, as described by Powers et al. (1992). The result 
would describe completely the transformation from presynaptic 
firing to postsynaptic firing in a manner that is simple to com- 
pute yet based on real biological properties. 
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