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Abstract

Objective: In this review the authors discuss evidence from the literature concerning vitamin D 

and temporal bone diseases (benign paroxysmal positional vertigo (BPPV), Meniere´s disease 

(MD), vestibular neuritis, idiopathic facial paralysis, idiopathic acute hearing loss). Common 

features shared by Meniere´s disease, glaucoma and the possible influence by vitamin D are 

briefly discussed.

Data Sources, Study Selection: Publications from 1970 until recent times have been 

reviewed according to a keyword search (see above) in PUBMED.

Conclusions: MD, BPPV, vestibular neuritis, idiopathic facial paralysis, idiopathic acute 

hearing loss may all have several etiological factors, but a common feature of the current theories 

is that an initial viral infection and a subsequent autoimmune/autoinflammatory reaction might be 

involved. Additionally, in some of these entities varying degrees of demyelination have been 

documented. Given the immunomodulatory effect of vitamin D, we postulate that it may play a 

role in suppressing an eventual postviral autoimmune reaction. This beneficial effect may be 

enhanced by the antioxidative activity of vitamin D and its potential in stabilizing endothelial 

cells. The association of vitamin D deficiency with demyelination has already been established in 

other entities such as multiple sclerosis and experimental autoimmune encephalitis. Mice without 

vitamin D receptor show degenerative features in inner ear ganglia, hair cells, as well as otoconia. 

The authors suggest further studies concerning the role of vitamin D deficiency in diseases of the 

temporal bone. Additionally, the possible presence and degree of demyelination in these entities 

will have to be elucidated more systematically in the future.

Introduction

In 2013 we observed that vitamin D (VD) deficiency may be associated with benign 

paroxysmal positional vertigo (BPPV) (1). Since then this hypothesis has been supported by 

several laboratories (2-6). In the last 4 years we noted a trend that correcting VD deficiency 

in newly diagnosed cases of Meniere´s disease (MD) decreased the necessity of the ablative 

therapy with intratympanal gentamicin (7). These observations raise the question if VD 

influences inner ear pathology in general and if yes, by what mechanism. In this review we 
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examine if there is a common mechanism by which VD may influence these pathogenetic 

processes.

Possible common pathogenic factors in diseases of the temporal bone

The etiology of the idiopathic peripheral (Bell´s) palsy is not entirely clear (with the 

exception of facial palsy caused by borrelia burgdorferi or herpes zoster, which are usually 

not called ‘idiopathic’). One proposed mechanism implicated reactivated herpes simplex 

viruses (HSV) (8,9), which might provoke a cell-mediated autoimmune response against 

myelin. Because of this demyelination, Bell´s palsy might be hypothetically regarded as a 

mononeuropathic form of Guillain-Barré syndrome (10).

After vestibular neuritis, histopathological changes are consistent with an isolated viral 

infection of the Scarpa´s ganglia, frequently without viral particles or antigens (11,12). 

Therefore either a direct viral damage or an immune-mediated process has been postulated 

analogous to the post-infectious encephalomyelitis seen in the central nervous system 

(11,13,14).

In BPPV, it has been shown that dislodgement of otoconia occurs frequently after vestibular 

neuritis, when only the superior vestibular nerve (which innervates the utriculus) is affected 

(15,16). In these cases the otoconia may be dislodged because the utricular nerve is involved 

along with the lateral and superior canal ampulla. The fact that parts of the labyrinth may 

remain unaffected after a bout of vestibular neuritis means that vestibular neuritis is a 

neuropathy/neuroepithelopathy. In principle, it is possible that idiopathic BPPV is also 

caused/exacerbated by a neuropathy of utricular nerve fibers. Indeed, in BPPV loss of 

vestibular ganglion cells could be shown together with histopathological features 

characteristic of reactivation of latent herpes simplex viruses (17).

Although sudden hearing loss (SHL) may be caused by infectious agents, such as herpes 

zoster, mumps virus; in most cases the pathogenesis remains unknown. Low frequency 

hearing loss should be considered separately from high frequency sudden hearing loss, 

because the former is possibly caused by increased endolymphatic pressure (hydrops) as in 

Meniere´s disease (18). In 2005 Merchant et al examined 17 temporal bones donated by 

patients with a history of sudden hearing loss (19). Unambiguous evidence of a concomitant 

direct viral invasion was lacking and the authors postulated that idiopathic SHL may be the 

result of pathologic activation of cellular stress pathways involving nuclear factor-kappaB 

(NF-kB) and release of inflammatory cytokines and other stress-related proteins within the 

cochlea, elicited by a systemic or distant viral infection, a systemic inflammatory disorder, 

physical, mental or metabolic stress that triggers an antibody response (19). Type II 

fibrocytes, which house the potassium ion recirculation system of the cochlea, could be 

targeted by such a process. In other studies, histopathologic changes after idiopathic SHL 

were indicative of infection with neurotropic viruses (20,21) or (herpes)viral cochleitis 

(22,23) . In animal experiments auditory nerve demyelination by transient loss of cochlear 

Schwann-cells caused auditory neuropathy associated with hidden hearing loss (24).
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The etiology and pathogenesis of MD remain unknown. Proposed theories include viral 

infections and immune system-mediated mechanisms. The presence of anti-herpes simplex 

virus antibodies was more frequent than in controls in perilymph samples collected from 

patients with MD (25) and the virus could be more frequently isolated from vestibular 

ganglia in MD than from controls (26). Because endolymphatic hydrops is such a 

conspicuous histological change in cases of MD, histopathological examinations in the 

literature concentrated mainly on the end organ. However, in a light and electron 

microscopic study Spencer et al found moderate to severe demyelination in the vestibular 

nerve with microglia, which assumed a phagocytic role (27). Based on this, the authors 

postulated that viral and/or immune-mediated factors may play a role in MD, similar to 

those seen in other demyelinating diseases, such as multiple sclerosis and Guillain-Barre 

syndrome. Gacek observed a significant loss of vestibular ganglion cells in temporal bones 

from patients with history of MD with viral particles enclosed in transport vesicles (28). 

Kitamura et al demonstrated a small number of degenerated nerve fibers, found a correlation 

between reduced vestibular caloric response and the incidence /density of the abnormal 

nerve fibers (29). Considering the end organ in MD, degeneration of the blood-brain barrier 

(30) has been demonstrated, possibly caused by oxidative stress and pericyte pathology 

including degeneration and migration (31). Apart from perivascular microvascular damage 

also neuroepithelial damage with hair cell loss, basement membrane thickening (32), and 

diminished aquaporin 4 (AQP4) expression in the supporting cells have been shown (33,34). 

AQP6 exhibited a loss of polarity, being spread throughout the cell, rather than being 

localized to the apical region of the supporting cell (33). Cochlear sulcus cells in the apical 

cochlea, where usually the first signs of endolymphatic hydrops can be observed, contain 

AQP4 and AQP5 in their membranes (35,36). These channels are responsible for the water 

transport between endolymphatic and perilymphatic spaces. AQP4 is the most abundant 

water channel in the central nervous system. It is targeted by IgG in neuromyelitis optica, a 

syndrome characterized by optic neuritis and myelitis (37). It has been suggested that 

antibodies against AQP4 may also play a role in MD as it has many similarities to 

neuromyelitis optica in terms of age of onset, course characteristics, pathological features 

such as histological loss of AQP4 and treatment response to glucocorticoid therapy (38).

Cochlin (COCH, coagulation factor C homology), the most abundant extracellular matrix 

protein in the ear, has also been shown to be altered in MD. Immunolocalization showed 

increased levels of cochlin deposition and expression in the basilar membranes of the cristae 

ampullaris and maculae utricle in subjects with MD (39). Certain mutations of cochlin cause 

autosomal dominant nonsyndromic sensorineural hearing loss with variable vestibular 

symptoms (DFNA9). Although hearing deteriorates usually bilaterally in the high frequency 

region, this hereditary defect sometimes also causes vestibular symptoms like in MD 

(40,41). While the causative mechanism is not clear yet, it has been shown that the product 

of the mutant gene aggregates as abundant granulates of homogeneous acellular eosinophilic 

deposits in the cochlear and vestibular labyrinths, similar to protein aggregation in well-

known neurodegenerative disorders such as Alzheimer’s disease (42,43). Therefore DFNA9 

is listed among protein aggregate diseases along with Alzheimer´s and Parkinson´s 

diseases(44). One possible mechanism may be that mutant cochlin (when the mutation 

involves its LCCL domain) is cytotoxic due to prolonged or stable formation of dimers, 
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whereas wildtype (normal) cochlin only forms transient dimers (45). This would explain 

why is it possible that aggregated cochlin molecules may have a role in MD although it has 

been shown that in sporadic ‘true’ MD the COCH gene is not mutated (46,47). In these 

sporadic cases accidentally misfolded cochlin molecules might ‘infect’ healthy ones, purely 

by changing their folding structure and make them resistant against degradation(45)2.

Is it possible that even without mutation, the cells of the inner ear start to produce such 

misfolded protein molecules? Apparently, this may be possible in chronic inflammation. 

During cellular stress or after harmful stimuli that damage the protein folding process, 

unfolded or misfolded proteins accumulate in the endoplasmatic reticulum (48), which in 

turn leads to an inflammatory reaction, involving transcription factors such as NF-kB and 

others. Thereby a vicious cycle ensues and exacerbates inflammatory reaction involving 

specialized cells such as macrophages (called microglia in the central nervous system) (48). 

As we already mentioned above, recently it has been shown that the inner ear (even its 

sensory cell areas) and the vicinity of the vestibulocochlear nerve are densely populated by 

macrophages/microglia (49). These cells cannot be differentiated from other fibrocyte-like 

cells by standard hematoxylin and eosin staining. It has also been shown that T cell 

responsiveness against cochlin may be a mechanism in cases of autoimmune-induced 

inflammation and hearing loss (50). According to a study, several Aspergillus species and 

penicillium molds share homology with the LCCL domain of cochlin, therefore fungal 

exposure might trigger autoimmunity in a subset of susceptible patients (51). A subset of 

MD patients have higher basal levels of proinflammatory cytokines and the exposure to 

Aspergillus and Penicillium extracts may trigger additional TNF-α release and exacerbate 

inflammation (52). In bilateral MD the TWEAK/Fn14 pathway, which is involved in the 

modulation of inflammation in several human autoimmune diseases (including multiple 

sclerosis, systemic lupus erythematosus or rheumatoid arthritis), may regulate cellular 

proliferation in lymphoid cells by increasing the translation of NF-κB (53). The authors 

suggest that carriers of a certain risk genotype (rs4947296) of a regulator of TWEAK/Fn14 

may develop an NF-κB-mediated inflammatory response in MD.

However, systemic exposure to molds and subsequent autoimmune reaction should involve 

both ears, but sporadic MD is mostly unilateral. It has been shown that latent herpes viruses 

cause a localized, incomplete or low-level lytic infection leading to a persistent immune 

response (54), therefore unilateral, postinfectious immune reaction might occur without 

persistent viral presence by molecular mimicry and/or bystander activation (55) as in 

herpetic stromal keratitis (56). This may explain why in many cases of MD viral presence 

could not be demonstrated. Gacek and Gacek devised a complex anatomical ad pathological 

framework to explain all the features of BPPV, MD and neuritis, including the vertigo 

attacks, exclusively by neuronal pathology caused by herpetic ‘ganglionitis’ (57). The exact 

pattern of the post-herpetic degeneration may be determined by the local neural 

involvement. In some cases the demyelination may dominate, in others the end-organ 

pathology. For instance, Meniere´s disease may differ from all the other entities in that the 

chronic post-herpetic autoimmune inflammation may cause peripheral microvascular 

damage, dislocate aquaporin channels in the cell and/or lead to pathological aggregation and 

accumulation of cochlin molecules. From time to time, the endolymphatic pressure increases 

sharply, as has been recently convincingly demonstrated using measurements of the 
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operating point of the outer hair cells during acute attacks (58), but chronic hydrops is 

certainly only a last common consequence of primary underlying pathologies.

In addition to the inner ear, cochlin has been identified in the glaucomatous trabecular 

meshwork (TM) (59). Primary open angle glaucoma is the most common form of glaucoma 

and is typically associated with elevated intraocular pressure. Over-expression and down-

regulation of cochlin increases and decreases intraocular pressure (60). TM cells detect 

aqueous humor fluid shear stress via cochlin interactions with the cell surface bound and 

stretch-activated channel TREK-1 (61). It is not known if these pressure-sensing function 

operates in the inner ear. A rare cause of secondary glaucoma, the Posner-Schlossman 

syndrome, shows striking similarities to MD. This condition goes with recurrent, acute 

attacks of mild, unilateral, anterior uveitis accompanied by markedly elevated intraocular 

pressure. Although not much is known about this entity, it is believed that the initial event 

that leads to it is a viral infection in the anterior chamber, caused probably by 

cytomegalovirus (62) or herpes simplex virus (63). Apparently, vascular endothelial cell 

dysfunction is a risk factor for both normal-tension, open-angle glaucoma and for Posner-

Schlossman syndrome as well, possibly by disturbing flow-mediated vasodilatation (62).

In conclusion, Bell´s palsy, BPPV, vestibular neuritis, sudden hearing loss and Meniere´s 

disease may all involve neuropathies/neuroepitheliopathies with variable demyelination and 

the pathogenetic role of viruses may be a common factor in subsets of these diseases. In the 

past decades, efforts to elucidate the pathogenetic mechanisms in these entities were 

concentrated on the pathologic features of the end-organs, and only a few studies addressed 

the frequency of the demyelination of the cochleo-vestibular nerve fibers or ganglia 

pathology.

Vitamin D: possible mechanisms of action

In the last few years it has been shown that VD regulates biological processes beyond its 

classical effects on skeletal mineral homeostasis. The most important non-classical effect is 

its immunomodulatory function (64), which has been confirmed by in vivo and in vitro 
studies including genome-wide analyses (65-67). VD upregulates the innate and inhibits the 

adaptive immune response and therefore its role in suppressing autoimmune/ 

autoinflammatory processes has been emphasized (68). In multiple sclerosis (MS) we see an 

example of this effect. MS is a heterogeneous, multifactorial disease influenced by both 

genetic and environmental factors. Pathological processes include breakdown of the blood-

brain barrier, multifocal inflammation, demyelination, oligodendrocyte loss, reactive gliosis, 

and axonal degeneration (69), some of which have been observed in the above diseases of 

the temporal bone. Apparently infectious agents play a crucial role in inducing myelin-

reactive pathogenic T cells (70). Potential mechanisms include cross reactivity with CNS 

myelin antigens, triggering an already expanded autoreactive immune repertoire (71). 

Increased VD levels, especially before the age of 20, are associated with a reduced risk of 

MS in later life and VD is not only linked to MS, but also to other autoimmune diseases, 

including rheumatoid arthritis, type 1 diabetes and systemic lupus erythematous (71).
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Concerning increased intraocular pressure and glaucoma, in several studies the possibility 

has been raised that VD deficiency may be related to increased intraocular pressure (66). 

Krefting et al. found no statistical difference in intraocular pressure levels between 

individuals without eye disease with respect to VD levels (72). However, in patients with 

open angle glaucoma, VD deficiency was shown to be a potential risk factor for the 

development of the complaints (73). Also, gene expression studies showed that VD 

modulate genes regulating both aqueous humour outflow and production, as well as the 

architecture of the trabecular meshwork, thereby influencing intraocular pressure. By 

comprehensive microarray data analysis, Kutuzova et al. (74) found in cultured mouse 

calvarial cells and rat intestinal mucosa that VD altered the expression of genes known to be 

relevant to the regulation of intraocular pressure. In an interesting experiment the authors 

also examined the effect of VD and an active VD analogue on intraocular pressure in 

macaque monkeys (74). They demonstrated that topical VD transiently reduced intraocular 

pressure by 20 percent within hours. Until now these experiments have not been reproduced 

or followed upon (personal communication Prof Hector F. DeLuca), therefore the 

mechanism by which the impressive, acute decrease of the intraocular pressure was brought 

about is not clear.

A new mechanism, by which VD might influence the above processes, has been 

demonstrated by Gibson et al (75). The authors showed that dietary VD (which is usually 

considered an inactive precursor) had profound and immediate stabilizing effect on 

endothelial stability at physiologically relevant concentrations. The effects were independent 

of the canonical transcription-mediated VD pathway, which showed the presence of an 

alternative signaling modality by which VD acts directly on endothelial cells to prevent 

vascular leak. As seen above, increased permeability of the blood-brain-barrier and/or of the 

microvascular circulation has been hypothetically associated to the inflammatory processes 

of the inner ear.

VD also influences the processes of aging (76). In the study of Keisala et al. (77) VD 

receptor knockout (Vdr null) mice, fed with a special rescue diet showed several aging 

related characteristics such as poorer survival, early alopecia, thickened skin (Figure 1), 

enlarged sebaceous glands and development of epidermal cysts. Intriguingly, the phenotype 

of aged VDR knockout mice was similar to mouse models with hypervitaminosis D. The 

authors suggested that VD homeostasis regulated physiological aging. In our laboratory 

(Vestibular Genetics Lab., Boys Town National Research Hospital, Omaha, US) a possible 

connection between VD deficiency and BPPV was found, because otoconia in Vdr null mice 

showed degenerative features such as fissure (arrows in Figure 2F), fusion (arrowhead in 

Figure 2H) and smaller particles (hollow arrowhead in Figure 2H). These features have been 

observed in aging otoconia (78,79). In addition, Vdr null mice also had compromised 

vestibular ganglia and hair cells in our material, as indicated by reduced signals of calretinin 

(Figure 2B vs. 2A, 2D vs. 2C, respectively). There was abnormal formation and/or loss of 

hair cells (Figure 3) in the cochlea of Vdr null mice as shown in our laboratory. Spiral 

ganglia loss in the mice has been previously reported by Zou et al, 2008. These mice have 

progressive hearing loss (80). In humans, VD deficiency has been associated with bilateral 

sensorineural hearing loss (81,82).
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The direct effect of VD on otoconia would be controlling calcium concentration by 

regulating calcium absorption and uptake, and by influencing ion channel/pump expression 

which in turn affect calcium and subsequently otoconia formation/maintenance (Figure 4). 

In the intestine, the plasma membrane calcium pump (PMCA or Atp2b), isoform 1 is 

responsible for mediating the systemic effects of VD (83). Various PMCA isoforms are 

expressed in the inner ear [see NCBI GEO Profile], particularly PMCA2, which is essential 

for otoconial formation and hair cell function (84). In addition, calcium transport by 

transient receptor potential vanilloid 5 (TRPV5) is enhanced by VD (85). All TRPVs 

(TRPV1-6) are expressed in vestibular and cochlear sensory epithelia (86-88), and can 

regulate Ca2+ concentration in the endolymph (88), which would subsequently affect 

otoconia.

The effects of VD on ganglia and hair cells could also involve the above processes, i.e. via 

regulation of gene expression. In addition, VD is known to enhance antioxidant responses 

and reduce apoptosis in other organs, which would be beneficial to cellular function and 

survival in the inner ear as well (see also oxidative stress in MD (31) ). The protective effects 

of VD by enhancing antioxidant responses and reducing cell death have been shown at both 

cellular (89,90) and transcriptome levels (91). In human umbilical vein endothelial cell 

cultures it prevented cell death through modulation of the interplay between apoptosis and 

autophagy by inhibiting superoxide anion generation, maintaining mitochondria function 

and cell viability, activating survival kinases, and inducing NO production (67).

Concerning the immunomodulatory function of VD, the role of estrogen complicates the 

picture. In an earlier study we have shown that menopause increases the tendency of women 

to develop BPPV and that in the studied population there was a strong female:male 

preponderance (92) . A slight female:male preponderance is also known in patients with 

Meniere’s disease (1.3:1) and the peak incidence is in the 40 to 60-year age group (93,94). 

Recently it has been shown in animal experiments that low estrogen levels inhibit VD-

mediated resistance to experimental autoimmune encephalomyelitis because estrogen 

controls VD metabolism and receptor expression (95). The findings in this study suggest that 

low estrogen levels might contribute to the increased female gender bias also in BPPV and 

MD by influencing VD metabolism.

Conclusion

While it is too early to draw a conclusion, it is possible that VD deficiency has a detrimental 

effect in BPPV and MD. Hypothetically, if after herpes simplex infection antigenic mimicry 

or bystander activation elicited a local autoimmune/autoinflammatory reaction in the 

temporal bone, this might be regulated/inhibited by physiological VD levels. The 

involvement of the different nerves would explain specific manifestations. MD would arise 

later if the chronic inflammatory reaction caused a faulty folding of cochlin in the 

endoplasmic reticulum, which could eventually cause accumulation of less degradable 

isoforms. Currently, the pathophysiologic mechanism of MD is yet unresolved and it is 

unclear to what extent neuropathy and demyelination exist in this disorder. However, the 

theory of antigenic mimicry or bystander activation, which may emerge years later, would 

explain the so called ‘late hydrops’ and the fact that it is often impossible to show dormant 
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herpes viruses in the histological probes. Similarities with another pathological entity, 

glaucoma with intra-organ pressure increase, may be clarified in the future.

The role of decreasing estrogen levels in female patients with Meniere’s disease should also 

be examined. Given the known overall benefits of VD, we recommend the measurement of 

25(OH)D in the serum and supplementation if necessary.
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Figure 1. 
Phenotype of vitamin D receptor knockout mouse (KO) compared to wildtype littermate 

(WT: wild type at the age of 4.5 (top) and 8.5 (bottom) months.

(Reprinted from (77) with permission from Elsevier).
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Figure 2. 
Effects of vitamin D receptor (Vdr) deletion in the vestibule. A-D: tissue sections were 

stained with an antibody against calretinin (green). Nuclei of cells were stained with DAPI 

(blue). The intensity of calretinin signals is reduced in the ganglion (B) and hair cells (D) of 

Vdr null mice as compared with age-matched wildtype controls (C57Bl/6J, labelled as C57) 

in A and C, respectively. Arrowheads in C-D denote hair cells, and arrows point to 

supporting cells. E-H: scanning electron micrographs of otoconia in C57 (E, G) and Vdr null 

mice (F, H) show degenerative features of otoconia in both the utricle and saccule of the Vdr 

null mice, such as fissure (arrows in F), fusion (arrowhead in H) and smaller particles 

(hollow arrowhead in H).
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Figure 3. 
Abnormal formation and/or loss of hair cells in the cochlea of Vdr null mice.
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Figure 4. 
Hypothetical mechanisms underlying the effects of vitamin D in the inner ear.
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