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Abstract

When extreme, anxiety can become debilitating. Anxiety disorders, which often first emerge early 

in development, are common and challenging to treat, yet the underlying mechanisms have only 

recently begun to come into focus. Here, we review new insights into the nature and biological 

bases of dispositional negativity, a fundamental dimension of childhood temperament and adult 

personality and a prominent risk factor for the development of pediatric and adult anxiety 

disorders. Converging lines of epidemiological, neurobiological, and mechanistic evidence suggest 

that dispositional negativity increases the likelihood of psychopathology via specific 

neurocognitive mechanisms, including attentional biases to threat and deficits in executive control. 

Collectively, these observations provide an integrative translational framework for understanding 

the development and maintenance of anxiety disorders in adults and youth and set the stage for 

developing improved intervention strategies.
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INTRODUCTION

Anxiety is a sustained state of elevated apprehension, arousal, and vigilance that occurs in 

the absence of clear and immediate danger (Davis, Walker, Miles, & Grillon, 2010; Grupe & 

Nitschke, 2013; LeDoux, 2015; Shackman & Fox, 2016a). Anxiety lies on a continuum and, 
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when expressed in extreme ways or inappropriate contexts, can become debilitating 

(Conway et al., in press; Craske et al., 2017; Salomon et al., 2015; Shackman et al., 2016c). 

Anxiety disorders are the most prevalent family of mental illnesses (Global Burden of 

Disease Collaborators, 2016; U.S. Burden of Disease Collaborators, 2018; Wang, Gaitsch, 

Poon, Cox, & Rzhetsky, 2017). They typically emerge early in life, enabling greater 

cumulative damage, and can contribute to the development of depression, substance abuse, 

and other adverse outcomes (Bitsko et al., 2018; Fox & Kalin, 2014a; Kessler et al., 2007; 

Kessler, Petukhova, Sampson, Zaslavsky, & Wittchen, 2012; Lee et al., 2014; McGorry, 

Purcell, Goldstone, & Amminger, 2011; Pratt, Druss, Manderscheid, & Walker, 2016; 

Shackman et al., 2016c). Existing treatments are underutilized, inconsistently effective, and, 

in the case of pharmaceuticals, associated with significant adverse effects (Craske et al., 

2017; Gordon & Redish, 2016; Griebel & Holmes, 2013). In short, anxiety disorders impose 

a staggering burden on public health and the global economy, underscoring the urgency of 

developing a more complete understanding of the underlying mechanisms (DiLuca & 

Olesen, 2014; Global Burden of Disease Collaborators, 2016; Roehrig, 2016; U.S. Burden of 

Disease Collaborators, 2018).

We begin by describing new insights into the nature and the biological bases of dispositional 
negativity, a central dimension of mammalian temperament that confers elevated risk for the 

development of anxiety disorders and other stress-sensitive psychiatric diseases. Like 

anxiety disorders, dispositional negativity is a complex, multidimensional phenotype that 

encompasses variation in behavior, peripheral physiology, feelings, and cognition (Cavanagh 

& Shackman, 2015; Grupe & Nitschke, 2013; LeDoux, 2015; Shackman et al., 2016a; 

Shackman et al., 2016c). A key challenge is to identify the mechanisms underlying these 

features and discover how they contribute to the etiology of psychiatric disease in adults and 

youth. Here, we focus on recent advances in our understanding of threat-related1 attentional 

biases and deficits in executive control. These intermediate cognitive phenotypes are key 

features of dispositional negativity and there is compelling evidence that each can contribute 

to the development and course of anxiety disorders. While important strides have been made 

at delineating the neural underpinnings of attentional biases to threat, much less scientific 

attention has been devoted to executive deficits. In the final section, we highlight emerging 

evidence that these intermediate phenotypes can interact when threat-related cues are 

present, but unrelated to on-going goals. Although these new observations provide important 

1 The terms ‘threat-related’ or ‘threat-relevant’ encompass a broad range of stimuli, including clear and immediate dangers (e.g., cues 
paired with shock), novel situations or individuals, uncertain or diffuse dangers (e.g., darkness), aversive stimuli (e.g., unpleasant 
images or films), and angry and fearful facial expressions. Angry faces signal a direct threat to the observer and prompt the 
mobilization of defensive responses, as indexed by potentiation of the startle reflex (Dunning, Auriemmo, Castille, & Hajcak, 2010; 
Hess, Sabourin, & Kleck, 2007; Springer, Rosas, McGetrick, & Bowers, 2007b), facilitation of avoidance-related movements (Marsh, 
Ambady, & Kleck, 2005), and increased fear ratings (Dimberg, 1988). In contrast, fearful faces signal the presence, but not the source 
of potential threat, and can promote heightened vigilance in the absence of defensive mobilization (Whalen, 1998). Static images of 
fearful faces typically do not amplify the startle reflex (Grillon & Charney, 2011b; Springer, Rosas, McGetrick, & Bowers, 2007a) or 
autonomic measures (Dunsmoor, Mitroff, & LaBar, 2009). But they can increase subjective feelings of anxiety (Blairy, Herrera, & 
Hess, 1999) and are perceived as more threatening and arousing than neutral or happy faces (Grillon & Charney, 2011b; Wieser & 
Keil, 2014). Fearful faces elicit a more cautious, inhibited behavioral response style (Tipples, 2018). They also increase vigilance for 
potentially threat-relevant cues, particularly for low spatial-frequency (LSF) information. Indeed, the mere presentation of fearful faces 
has been shown to enhance subsequent contrast sensitivity (Phelps, Ling, & Carrasco, 2006), LSF orientation sensitivity (Bocanegra & 
Zeelenberg, 2009; Nicol, Perrotta, Caliciuri, & Wachowiak, 2013), and context memory (Davis et al., 2011); boost the temporal 
resolution of subsequent visual processing (Bocanegra & Zeelenberg, 2011a, 2011b); and increase the efficiency of visual search 
(Becker, 2009).
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insights, they also raise a number of interesting questions. We conclude by outlining some of 

the most important avenues for future research and some strategies for addressing them.

THE NATURE, CONSEQUENCES, AND NEUROBIOLOGY OF 

DISPOSITIONAL NEGATIVITY

The Nature of Dispositional Negativity

Dispositional negativity or ‘negative emotionality’—the propensity to experience and 

express more frequent, intense, or persistent fear, anxiety, and other negative emotions—is a 

fundamental dimension of childhood temperament and adult personality (Shackman, 

Stockbridge, LeMay, & Fox, 2018a; Shackman et al., 2016c). We conceptualize 

dispositional negativity as an extended family of closely related phenotypes that first emerge 

early in development, persist into adulthood, and reflect a combination of heritable and non-

heritable factors (Kandler, Waaktaar, Mottus, Riemann, & Torgensen, in press; e.g., Kendler 

et al., in press; Roysamb, Nes, Czajkowski, & Vassend, 2018; Savage, Sawyers, Roberson-

Nay, & Hettema, 2017; Soto & John, 2014; Vukasovic & Bratko, 2015). The psychometric 

structure of dispositional negativity is relatively invariant across cultures, languages, and 

ages, at least from elementary school onward (De Pauw, 2017; Kajonius & Giolla, 2017; 

McCrae, Terracciano, & Personality Profiles of Cultures, 2005; Schmitt, Allik, McCrae, & 

Benet-Martinez, 2007; Shiner, 2018; Soto & John, 2014; van Hemert, van de Vijver, 

Poortinga, & Georgas, 2002). Individual differences in dispositional negativity are highly 

reliable, show substantial agreement across instruments and informants, and predict 

objective behavioral and psychophysiological indices of anxiety in the laboratory, indicating 

that dispositional negativity is more than just a negative response bias (Back, Schmukle, & 

Egloff, 2009; Borkenau, Riemann, Angleitner, & Spinath, 2001; Brunson, Øverup, & Mehta, 

2016; Buss, 1991; Connelly & Ones, 2010; Connolly, Kavanagh, & Viswesvaran, 2007; 

Costa & McCrae, 1988; Fetvadjiev, Meiring, van de Vijver, Nel, & De Kock, in press; 
Holland & Roisman, 2008; Kurtz, Puher, & Cross, 2012; McCrae & Costa, 1987; Mõttus, 

McCrae, Allik, & Realo, 2014; Pace & Brannick, 2010; Shackman et al., 2016c; Smith et al., 

2016; Soto, John, Gosling, & Potter, 2011; Thielmann & Hilbig, in press; Vazire, 2010; 

Vazire & Carlson, 2010; Watson, Nus, & Wu, in press). Indeed, core features of this 

phenotypic family—including increased behavioral inhibition, heightened vigilance, and 

other signs of fear and anxiety—are expressed similarly across mammalian species, enabling 

‘mechanistic’ (i.e., focal perturbation) studies to be performed in rodents and monkeys 

(Boissy, 1995; Capitanio, 2018; Fox & Kalin, 2014a; Mobbs & Kim, 2015; Oler, Fox, 

Shackman, & Kalin, 2016; Qi et al., 2010). Although the molecular pathways underlying 

dispositional negativity remain poorly understood, some promising candidates have been 

identified in humans and animals (Alisch et al., 2014; Alisch et al., 2017; Fox et al., 2012; 

Grotzinger et al., 2018; Hill et al., 2018; Kalin et al., 2016; Lo et al., 2017; Luciano et al., 

2018; Nagel et al., 2018a; Nagel, Watanabe, Stringer, Posthuma, & van der Sluis, 2018b; 

Okbay et al., 2016; Oler et al., 2009; Rogers et al., 2013; Roseboom et al., 2014).
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Dispositional Negativity Confers Risk for Anxiety Disorders and Other Psychiatric 
Diseases

Dispositional negativity is robustly associated with some of the most common and 

burdensome mental illnesses, including anxiety disorders, depression, and co-morbid 

substance abuse (e.g., Castellanos-Ryan et al., 2016; Davis et al., 2018; Hayes, Osborn, 

Lewis, Dalman, & Lundin, 2017; Hengartner, Tyrer, Ajdacic-Gross, Angst, & Rossler, 2018; 

Kendler et al., in press; Navrady et al., 2017; Paulus, Backes, Sander, Weber, & von 

Gontard, 2015; Seeboth & Mottus, 2018; Shackman et al., 2016c). Longitudinal work shows 

that individuals with elevated levels of dispositional negativity are more likely to develop 

internalizing (i.e., anxiety and mood) disorders in the future (e.g., Buzzell et al., 2017; Clark, 

Durbin, Hicks, Iacono, & McGue, in press; Goldstein, Kotov, Perlman, Watson, & Klein, 

2018; Klein & Mumper, 2018; Luan et al., in press; Struijs et al., 2018; Wichstrom, Penelo, 

Rensvik Viddal, de la Osa, & Ezpeleta, 2018; Zinbarg et al., 2016). The magnitude of these 

prospective associations is substantial. A recent meta-analysis indicates that nearly half of 

children who show consistently elevated levels of shyness and behavioral inhibition—a core 

facet of dispositional negativity—were diagnosed with social anxiety disorder later in life (N 

= 692; risk ratio = 3.4; Clauss & Blackford, 2012). Among adults, data from the Zurich 

Cohort Study (N = 591) shows that a one standard-deviation increase in dispositional 

negativity at the time of the baseline assessment in 1988 increased the odds of developing an 

anxiety disorder by 32% and a major depressive episode by 41% during the twenty-year 

follow-up period (Hengartner, Ajdacic-Gross, Wyss, Angst, & Rossler, 2016a). Likewise, a 

recent meta-analysis of prospective longitudinal studies revealed medium-to-large relations 

between measures of dispositional negativity and future anxiety symptoms (Cohen’s d = .

68), anxiety disorders (d = .48), depressive symptoms (d = .74), and major depressive 

disorder (MDD; d = .50) (N = 7,748 – 39,161; Jeronimus, Kotov, Riese, & Ormel, 2016). 

Relations between dispositional negativity and internalizing symptoms remain evident after 

eliminating overlapping item content or adjusting for baseline symptoms and they are 

magnified by social isolation, social exclusion, and stressor exposure (Frenkel et al., 2015; 

Gazelle & Rudolph, 2004; Hartley, Stritzke, Page, Blades, & Parentich, 2018; Hengartner et 

al., 2018; Jeronimus et al., 2016; Kendler, Kuhn, & Prescott, 2004; Kopala-Sibley et al., 

2016a; Kopala-Sibley et al., 2016b; Lahey, Krueger, Rathouz, Waldman, & Zald, 2017; 

Markovic & Bowker, 2017; Uliaszek et al., 2009; Vinkers et al., 2014). Taken together, these 

observations suggest that high levels of dispositional negativity represent a diathesis for the 

internalizing spectrum of disorders (disposition × stressor → psychopathology). Other work 

suggests that dispositional negativity can promote mental illness by increasing the likelihood 

of experiences (e.g., loneliness, difficulty adjusting to university) and events (e.g., conflict, 

divorce, sickness) that, themselves, confer risk for internalizing illness in vulnerable 

individuals (disposition → stressor × disposition → psychopathology) (Abdellaoui et al., 

2018; Clarke et al., 2018; Credé & Niehorster, 2012; Hengartner et al., 2018; Howland, 

Armeli, Feinn, & Tennen, 2017; Jocklin, McGue, & Lykken, 1996; Klimstra, Noftle, 

Luyckx, Goossens, & Robins, 2018; Matthews et al., in press; Overstreet, Berenz, Kendler, 

Dick, & Amstadter, 2017; Serrat, Villar, Pratt, & Stukas, 2018; Shackman et al., 2016c; 

Soto, in press; Tackett & Lahey, 2017). Among individuals with a history of internalizing 

illness, higher levels of dispositional negativity are associated with a greater number of 

diagnoses and a more pessimistic prognosis (e.g., Buckman et al., 2018; Bufferd et al., 2016; 
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Hengartner, Kawohl, Haker, Rossler, & Ajdacic-Gross, 2016b; Shackman et al., 2016c; 

Spinhoven et al., 2016; Struijs et al., 2018).

Consistent with these phenotypic associations, family, twin, and genome-wide association 

studies (GWAS) show that dispositional negativity is genetically correlated with 

internalizing symptoms and disorders (Adams et al., 2019; Glahn et al., 2012; Gottschalk & 

Domschke, 2017; Hettema, 2008; Hill et al., 2018; Howard et al., 2018; Kendler & Myers, 

2010; Lee et al., 2019; Levey et al., 2019; Li et al., 2018; Lo et al., 2017; Luciano et al., 

2018; Meier et al., 2018; Nagel et al., 2018b; Navrady et al., 2018; Purves et al., 2017; 

Taylor et al., in press; Wray et al., 2018). For example, dispositional negativity is genetically 

associated with anxiety disorders (rG = .82, N = 17,310), depressive symptoms (rG = .79, N 
= 688,809), and MDD (rG = .68, N = 18,759) (Nagel et al., 2018a). These observations show 

that dispositional negativity, anxiety disorders, and depression are marked by similar 

patterns of intergenerational transmission: they ‘pass down the family tree’ in tandem. The 

sizable magnitude of these genetic correlations indicates strongly overlapping molecular 

genetic roots, dovetailing with psychometric and clinical evidence of continuity across the 

internalizing disorders and between normal phenotypic variation in personality in the 

population and psychopathology (Barlow, Sauer-Zavala, Carl, Bullis, & Ellard, 2013; 

Conway et al., in press; Sullivan et al., 2018; Waszczuk et al., 2018). Interestingly, 

‘mendelian randomization’ analyses (Burgess, Butterworth, Malarstig, & Thompson, 2012; 

Burgess, Timpson, Ebrahim, & Davey Smith, 2015; Smith, 2010; Smith & Ebrahim, 2005; 

Smith et al., 2005a)—a family of genetic approaches that mitigate some of the most serious 

limitations of cross-sectional observational studies (e.g., confounding, reverse causation, 

reporting biases)—suggest that the causal pathways underlying these genetic correlations are 

similar, with a unidirectional pattern evident for both anxiety disorders and MDD 

(disposition → psychopathology) (Howard et al., in press; Nagel et al., 2018a; Speed, 

Hemani, Speed, Boerglum, & Oestergaard, 2018). In the case of depression, molecular 

genetic and longitudinal studies suggest that the experience of MDD can, over the course of 

a lifetime, enhance dispositional negativity (psychopathology → disposition), although this 

‘scar’ effect appears to be substantially weaker than the reverse association (Howard et al., 

in press; Nagel et al., 2018a; Ormel et al., 2013).

Dispositional Negativity Causally Contributes to Psychopathology

Dispositional negativity is stable, but not immutable, and can change in response to 

experience. Like anxiety disorders and depression, dispositional negativity is amplified by 

exposure to stressors, trauma, and negative life events (Allen & Walter, 2018; Barlow et al., 

2017; Bateson, Brilot, & Nettle, 2011; Bentley et al., 2017; Kandler & Ostendorf, 2016; 

Kornadt, Hagemeyer, Neyer, & Kandler, 2018; Milojev, Osbourne, & Sibley, 2014; Mueller, 

Wagner, Smith, Voelkle, & Gerstorf, in press; Roy, 2002; Shackman et al., 2016c; Wilson et 

al., 2006; Woods, Wille, Wu, Lievens, & De Fruyt, 2019), particularly when negative events 

occur prior to adulthood (Newton-Howes, Horwood, & Mulder, 2015; Ogle, Rubin, & 

Siegler, 2014; Shiner, Allen, & Masten, 2017). On the other hand, there is evidence that 

dispositional negativity can be attenuated by positive experiences, such as job promotions 

and marriage (Denissen, Luhmann, Chung, & Bleidorn, in press; Klimstra et al., 2018; 

Schalet et al., 2016; Shackman et al., 2016c). Likewise, genetic analyses of data gleaned 
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from the UK Biobank (N = 328,917) suggest that increased educational attainment tends to 

reduce dispositional negativity (Nagel et al., 2018a). Other work demonstrates that 

dispositional negativity is sensitive to clinical interventions targeting anxiety and depression. 

In a comprehensive meta-analysis of clinical intervention studies (k = 199 studies), Roberts 

and colleagues showed robust reductions in dispositional negativity following psychosocial 

or pharmacological treatment for internalizing disorders (Cohen’s d = .59 for pre vs. post; d 

= .69 for treatment vs. controls; Roberts et al., 2017). Likewise, childhood interventions 

targeting heightened dispositional negativity reduce the likelihood of future internalizing 

problems (Rapee & Bayer, 2018). Taken together, these more mechanistic observations 

suggest that elevated levels of dispositional negativity causally contribute to the development 

and maintenance of internalizing disorders.

Relevance of the Amygdala to Dispositional Negativity

The neural circuits governing trait-like individual differences in dispositional negativity have 

only recently started to come into focus. Work by our group and others demonstrates that 

humans and monkeys with a more negative disposition show heightened responses to threat-

relevant cues in a number of brain regions, including the amygdala, anterior hippocampus, 

anterior insula, bed nucleus of the stria terminalis (BST), mid-cingulate cortex, orbitofrontal 

cortex, and periaqueductal gray (Avery, Clauss, & Blackford, 2016; Cavanagh & Shackman, 

2015; Fox & Kalin, 2014b; Fox & Shackman, 2019; Kalin, 2017; Kirlic et al., 2019; 

Lowery-Gionta, DiBerto, Mazzone, & Kash, 2018; Shackman & Fox, 2016b; Shackman et 

al., 2011b; Shackman et al., 2016c). While all of these regions are important, here we focus 

on the most intensely scrutinized component of this system, the amygdala, a heterogeneous 

collection of nuclei buried beneath the temporal lobe (Freese & Amaral, 2009; Yilmazer-

Hanke, 2012) (Figure 1). Anatomically, the amygdala is poised to use information from 

sensory, contextual, and regulatory regions to assemble a range of reactions via dense mono- 

and poly-synaptic projections to the downstream regions that directly mediate the behavioral 

(e.g., passive and active avoidance), peripheral physiological (e.g., cardiovascular and 

neuroendocrine activity, startle), and cognitive (e.g., vigilance) features of momentary fear 

and anxiety (Davis & Whalen, 2001; Fox, Oler, Tromp, Fudge, & Kalin, 2015b; Freese & 

Amaral, 2009; Fudge et al., 2017; Lapate & Shackman, 2018) (Figure 1). Functional 

neuroimaging studies in monkeys and humans demonstrate that many of these downstream 

regions show robust connectivity with the amygdala, reinforcing the possibility that they 

represent coherent functional circuits that are relevant to human experience and disease 

(Birn et al., 2014; Fox et al., 2018c; Gorka, Torrisi, Shackman, Grillon, & Ernst, 2018; 

Tillman et al., 2018; Torrisi et al., 2018; Torrisi et al., 2015).

Human imaging research demonstrates that the amygdala is engaged by a broad range of 

unpleasant and potentially threat-relevant stimuli (Costafreda, Brammer, David, & Fu, 2008; 

Fox & Shackman, 2019; Fusar-Poli et al., 2009; Lindquist, Satpute, Wager, Weber, & 

Barrett, 2016; Naaz, Knight, & Depue, in press; Price et al., 2018; Sabatinelli et al., 2011; 

Sergerie, Chochol, & Armony, 2008). Recent high-resolution fMRI research indicates that 

the dorsal-posterior amygdala—in the approximate location of the central nucleus (Ce) (cf. 

Figure 1)—is particularly sensitive to aversive visual stimuli (Hrybouski et al., 2016). 

Increased activation in this region has, in turn, been associated with elevated signs and 
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symptoms of arousal in response to threat (Fox & Shackman, 2019; Sjouwerman, 

Scharfenort, & Lonsdorf, 2017). More recent work has leveraged machine-learning 

approaches to show that the dorsal-posterior amygdala (in the region of the Ce) is a key 

component of circuits that underlie negative affect elicited by aversive photographs (Chang, 

Gianaros, Manuck, Krishnan, & Wager, 2015) and that distinguish conditioned threat (CS+) 

from safety (CS-) (Reddan, Wager, & Schiller, 2018).

Brain imaging studies provide compelling evidence that adults and youth with a more 

negative disposition are prone to increased or prolonged activity in the dorsal-posterior 

amygdala (Figure 2). This has been observed both at ‘rest’ (i.e., in the absence of an explicit 

task) and in response to novelty, negative emotional faces, unpleasant images, and 

conditioned threat cues (CS+) (e.g., Coombs, Loggia, Greve, & Holt, 2014; Gaffrey, Barch, 

& Luby, 2016; Kann, O’Rawe, Huang, Klein, & Leung, 2017; Shackman et al., 2016c; 

Sjouwerman et al., 2017; Stout, Shackman, Pedersen, Miskovich, & Larson, 2017). For 

example, Kaczkurkin and colleagues used a large peri-adolescent youth dataset (N = 875) to 

show that adolescent women are marked by a more negative disposition, on average, 

compared to adolescent men (consistent with other large-scales studies; Shackman et al., 

2016c) and that this sex difference reflects elevated ‘resting’ perfusion in the dorsal 

amygdala (female-vs.-male → resting amygdala activity → disposition) (Kaczkurkin et al., 

2016b). The association between dispositional negativity and task-related amygdala 

reactivity appears to be amplified among individuals with lower levels of perceived social 

support (Hyde, Gorka, Manuck, & Hariri, 2011), an important risk factor for the 

development of internalizing disorders (Kendler & Gardner, 2014; Shackman et al., 2018b).

Studies of nonhuman primates afford an important opportunity to obtain concurrent 

measures of brain metabolism and naturalistic defensive responses to ethologically relevant 

threats—something that would be difficult to accomplish in humans, given the sensitivity of 

functional MRI to even modest amounts of motion artifact (Ciric et al., 2018), and the 

challenges of eliciting robust fear and anxiety in the laboratory (Shackman & Wager, 2019). 

Using fluorodeoxyglucose-positron emission tomography (FDG-PET) in samples 

encompassing as many as 592 individuals, we have demonstrated that metabolic activity in 

the Ce (Figure 2) is associated with heightened behavioral and neuroendocrine reactions to 

naturalistic threat (Fox & Kalin, 2014b; Fox et al., 2015a). Ce metabolism is moderately 

stable over time and context and, as such, represents a trait-like feature of brain function 

(Fox, Shelton, Oakes, Davidson, & Kalin, 2008). For example, Fox and colleagues showed 

that metabolic activity in the Ce during exposure to an unfamiliar human intruder’s profile 

showed an intra-class correlation (ICC) of 0.64 across three occasions over a 1.1 year span, 

similar to the concurrent re-test stability of dispositional negativity in young monkeys (ICC 

= 0.72; Fox et al., 2012; see also Shackman et al., 2013; Shackman et al., 2017) and the 5-

year stability of dispositional negativity in humans (partial R = .60; N = 56,735; Hakulinen 

et al., 2015). Other work in nonhuman primates suggests that elevated activity in the Ce is a 

core substrate for different presentations of dispositional negativity (Figure 3). Like humans, 

individual monkeys have different ways of expressing their extreme disposition. Some 

characteristically respond to threat with high levels of the stress-sensitive hormone cortisol 

(and average levels of behavioral inhibition), whereas others show the reverse profile. Yet 

across these different phenotypes, we have observed a remarkably consistent pattern of 
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elevated metabolism in the Ce (Shackman et al., 2013). This observation is broadly 

consistent with evidence suggesting that elevated amygdala reactivity to threat-related cues 

is a transdiagnostic marker of the internalizing disorders in humans (Etkin & Wager, 2007; 

Hamilton et al., 2012).

Like the internalizing disorders, dispositional negativity is moderately heritable in humans 

and monkeys (Fox et al., 2015a; Shackman et al., 2016c). Recent work in nonhuman 

primates demonstrates that the neural circuitry underlying trait-like individual differences in 

dispositional negativity can be genetically fractionated. Metabolic activity in the Ce, while 

heritable, appears to be more relevant to understanding variation in dispositional negativity 

attributable to experience, such as stressor exposure (h2 = .26, rG = n.s., N = 592) (Fox et al., 

2015a) (Figure 2). In contrast, functional connectivity between the Ce and BST (Figure 4a) 

appears to be more relevant to understanding heritable variation in dispositional negativity 

and, hence, to the intergenerational transmission of risk from parents to their offspring (h2 

= .45, rG = .87, N = 378) (Fox et al., 2018c). Whether this pattern translates to humans 

remains unknown, making it a key challenge for future research.

Recent work has begun to move beyond the amygdala and clarify the architecture of the 

distributed neural circuitry underlying dispositional negativity (Fox & Shackman, 2019; 

Shackman et al., 2016c). For example, using a combination of chronic electrophysiological 

recordings, experience sampling, and machine learning, Kirkby and colleagues showed that 

momentary fluctuations in negative mood are reliably associated with the functional 

connectivity of a circuit linking the posterior-dorsal amygdala to the hippocampus, and that 

this association was only evident among individuals with a more negative disposition 

(Kirkby et al., 2018) (Figure 4b). Work using more conventional fMRI techniques 

demonstrates that young monkeys with elevated levels of dispositional negativity and 

children with anxiety disorders show reduced functional connectivity between the Ce and 

dorsolateral prefrontal cortex (dlPFC) at ‘rest’ (Figure 4c). Monkeys with a more negative 

disposition also showed reduced functional connectivity between the Ce and mesial 

prefrontal cortex (mPFC)—including regions of the pregenual anterior cingulate (pgACC)—

broadly consistent with work in human adults (Kim, Gee, Loucks, Davis, & Whalen, 2011; 

Pezawas et al., 2005)2. Taken together, this suggests that alterations in these evolutionarily-

conserved functional circuits may confer risk for the development of pathological anxiety 

(Birn et al., 2014; Oler et al., 2016). More broadly, these observations show that core 

features of personality and temperament—features that confer increased risk for mental 

illness—are embodied in the spontaneous activity of the brain, in the absence of overt trait-

relevant challenges. An important avenue for future research will be to use focal 

perturbations, pharmacological interventions, or other mechanistic approaches to clarify the 

causal contribution of this circuitry to dispositional negativity and psychopathology (Dubois 

et al., in press; Grayson et al., 2016; Kalin et al., 2016). Prospective longitudinal studies will 

be required to understand the relevance of this circuitry to the emergence of 

psychopathology.

2Although other studies in youth have identified relations between amygdala-mPFC functional connectivity and anxiety, the sign of 
the association (i.e., hyper- vs. hypo-connectivity) has proven inconsistent, potentially reflecting differences in sample age, analytic 
approach, or the specific amygdala nuclei examined (Gee et al., 2013; Jalbrzikowski et al., 2017; Qin et al., 2014).
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The Amygdala Causally Contributes to Extreme Fear and Anxiety

Mechanistic work in rodent models demonstrates that neuronal microcircuits encompassing 

the Ce are critical for orchestrating defensive responses to a wide variety of threats (Choi & 

Kim, 2010; Fox & Shackman, 2019; Gungor & Paré, 2016; Pliota et al., in press; Pomrenze 

et al., 2019; Tovote, Fadok, & Luthi, 2015). Other work indicates a role in dispositional 

negativity (Fadok, Markovic, Tovote, & Lüthi, 2018). For example, Ahrens and colleagues 

showed that anxious, behaviorally inhibited mice are characterized by tonically elevated 

activity in a specific type of Ce neurons—cells within the lateral division that express 

somatostatin and project to the BST (Ahrens et al., 2018)—consistent with the much coarser 

results revealed by FDG-PET and arterial spin labeling (ASL) perfusion fMRI studies of 

humans and monkeys (Abercrombie et al., 1998; Canli et al., 2006; Fox et al., 2008; 

Kaczkurkin et al., 2016b). In an elegant series of experiments, Ahrens and colleagues 

demonstrated that these neurons are sensitive to uncertain danger (i.e., unpredictable shock) 

and that they are both necessary and sufficient for heightened defensive responses (e.g., 

freezing) to novelty and diffuse threat (e.g., a brightly lit open-field). This and other recent 

studies that have exploited the cellular precision afforded by opto- and chemogenetic 

techniques make it abundantly clear that the Ce, like many other brain regions, harbors a 

variety of intermingled cell ‘types’—populations of neurons that can be distinguished based 

on their protein expression, firing characteristics, connectivity, and other features—and that 

different cell types within the Ce perform distinct, even opposing functional roles (Fox & 

Shackman, 2019; Pignatelli & Beyeler, 2018). The upshot is that research that relies on 

traditional lesion techniques, pharmacological interventions, or in vivo imaging techniques 

will necessarily reflect a mixture of cells and signals. Making sense of this complexity and 

identifying the circuit components most relevant to human experience and psychiatric 

disease represent important avenues for future research.

While our understanding of the primate amygdala lags behind that of rodents, work in 

monkeys and humans suggests that this region is crucial for extreme anxiety. In monkeys, 

fiber-sparing (excitotoxic) lesions of the amygdala—of the Ce in particular—have been 

shown to attenuate defensive behaviors and endocrine responses to a range of learned and 

innate threats (Davis, Antoniadis, Amaral, & Winslow, 2008; Kalin et al., 2016; Oler et al., 

2016). These observations are consistent with studies of humans with disease-related 

amygdala damage (Bechara et al., 1995; Feinstein, Adolphs, Damasio, & Tranel, 2011; 

Feinstein, Adolphs, & Tranel, 2016; Klumpers, Morgan, Terburg, Stein, & van Honk, 2015; 

Korn et al., 2017). Patient SM, for example, is marked by near-complete bilateral destruction 

of the amygdala and shows a profound lack of fear and anxiety—whether measured 

objectively or subjectively—to both diffusely threatening contexts (e.g., a haunted house) 

and acute threat cues (e.g., spiders, snakes, clips of horror films, conditioned threat cues, 

‘jump-scares’ in the haunted house, and even real-world assault) (Feinstein et al., 2011). 

Moreover, SM reports abnormally low levels of dispositional negativity when assessed using 

standard psychometric measures (Feinstein et al., 2011), consistent with clinical assessments 

of her temperament (Tranel, Gullickson, Koch, & Adolphs, 2006). An important caveat is 

that SM’s deficits may reflect damage to fibers of passage or more subtle functional 

disconnections (Davis & Whalen, 2001; Fox & Shackman, 2019) (R. Adolphs, personal 
communication, 24 July 2017). It also merits comment that SM and other patients with 
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substantial amygdala damage can experience fear, even panic attacks, in the laboratory in 

response to breathing air enriched with CO2 (Feinstein et al., 2013; Khalsa et al., 2016). On 

balance, this body of work teaches us that the amygdala is not a fear or anxiety center, per 
se, but instead plays a critical role in assembling responses to threats encountered in the 

external environment.

Other research has examined the consequences of amplifying amygdala activity. Work in 

monkeys shows that genetic manipulations that increase metabolic activity in the Ce 

potentiate signs of anxiety (Kalin et al., 2016), in broad accord with rodent studies (Ahrens 

et al., 2018). Electrical stimulation studies in humans have revealed a more complex pattern 

of results (Inman et al., in press). Subjective responses to amygdala stimulation are 

infrequent, likely due to heterogeneity in electrode placement (C. Inman, personal 
communication, 24 March 2018). Nevertheless, when feelings are reported, they are 

typically described as a heightened state of negative affect and can be quite robust (Inman et 

al., in press). Inman and colleagues recently described an individual (‘subject 8’) who 

experienced intense fear and anxiety in response to 6V stimulation in the region of the right 

Ce: “It was, um, it was terrifying, it was just…it was like I was about to get attacked by a 
dog…like someone unleashes a dog on you, and it’s just like it’s so close, and you feel like 
you’re going to s*** your pants. It’s terrifying.” At 8V, he asked to terminate the 

stimulation, saying “that was so scary it was nauseating. It’s like, um, I went zip-lining a few 
weeks ago…and this was worse” (Inman et al., in press)3. Such feelings were never reported 

during intermixed sham trials. Taken together, the results of lesion and stimulation studies 

suggest that a circuit centered on the Ce is necessary and sufficient for many of the core 

signs and symptoms of anxiety.

Relevance of the Amygdala to Psychopathology

Four lines of evidence motivate the hypothesis that elevated amygdala reactivity contributes 

to the development and maintenance of mental illness. Amygdala activation:

1. Is elevated in children, adolescents, and adults with internalizing disorders and 

individuals with a positive family history (Shackman et al., 2016a). Heightened 

‘resting’ activity has also been found in psychotic patients marked by elevated 

levels of paranoia and negative affect (Pinkham et al., 2015; Stegmayer et al., 

2017). Amygdala activation has also been shown to co-vary with the severity of 

anxious symptoms, albeit less consistently (Thomas et al., 2001; van den Bulk et 

al., 2014).

2. Is amplified by exposure to the same kinds of stressors and psychological 

pathogens (e.g., combat, childhood maltreatment) that can precipitate acute 

mental illness in dispositionally vulnerable individuals (Hein & Monk, 2017; 

McCrory, Gerin, & Viding, 2017; Shackman et al., 2016a; Teicher, Samson, 

Anderson, & Ohashi, 2016).

3. Prospectively predicts heightened internalizing symptoms among adolescents 

and young adults exposed to stress, trauma, or negative life events (Admon et al., 

3A video record of the stimulation is available at http://dx.doi.org/10.1016/j.neuropsychologia.2018.03.019
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2009; Stevens et al., 2017; Swartz, Knodt, Radtke, & Hariri, 2015). For example, 

McLaughlin and colleagues showed that adolescents marked by a more reactive 

amygdala at initial assessment experienced heightened posttraumatic symptoms 

9 months later, following exposure to the terrorist attacks at the 2013 Boston 

Marathon (McLaughlin et al., 2014). Among preschool-aged children, amygdala 

activation prospectively predicts heightened negative affect (Gaffrey et al., 2016).

4. Is attenuated by clinically effective cognitive-behavioral and pharmacological 

(e.g., benzodiazepine) treatments for anxiety and depression in adults (Månsson 

et al., 2016; Shackman et al., 2016a). More recent work shows that amygdala 

reactivity is also dampened by low to moderate doses of ethyl alcohol (Hur et al., 

2018), a well-established anxiolytic that, like the benzodiazepines, enhances 

inhibitory neurotransmission in the Ce (Bartholow, Henry, Lust, Saults, & Wood, 

2012; Kaye, Bradford, Magruder, & Curtin, 2017; Sharko, Kaigler, Fadel, & 

Wilson, 2016). These observations suggest that the amygdala causally 

contributes to pathological anxiety in humans, consistent with the mechanistic 

work reviewed in the prior section.

Interim Conclusions

Dispositional negativity is a well-established diathesis for the internalizing spectrum of 

disorders. Children and adults with a more negative disposition are more likely to develop 

anxiety disorders and depression if they experience the appropriate precipitants (e.g., 

negative life events, chronic stress). Dispositional negativity can be conceptualized as an 

extended family of complex phenotypes that reflect multiple brain circuits and molecular 

pathways. Converging lines of epidemiological, imaging, mechanistic, and clinical evidence 

suggests that specific populations of neurons in the amygdala, particularly those harbored 

within the Ce: (a) underlie core features of dispositional negativity in humans and other 

mammals, (b) exert bi-directional control over defensive responses to threat and subjective 

feelings of fear and anxiety, and (c) causally contribute to the development of anxiety and 

mood disorders.

THE NATURE, CONSEQUENCES, AND NEUROBIOLOGY OF ATTENTIONAL 

BIASES TO THREAT

Alterations in vigilance, risk assessment, and other aspects of attention are hallmarks of 

dispositional negativity and anxiety (Blanchard, Griebel, & Blanchard, 2001; Grupe & 

Nitschke, 2013; Shackman et al., 2016a). Attention is a fundamental property of perception 

and cognition. Attentional mechanisms prioritize the most relevant sources of information 

while inhibiting or ignoring potential distractions and competing courses of action 

(Desimone & Duncan, 1995). Once a target is selected, attention determines how deeply it is 

processed, how quickly and accurately a response is executed, and how well it is 

remembered. Thus, attention involves both stimulus selection and the intensity of processing 

once a stimulus has been selected.
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The Nature of Attentional Biases to Threat

Threat-related stimuli—whether learned (CS+) and unlearned (e.g., spiders)—can strongly 

influence feature selection and the depth of processing. Across a range of laboratory assays, 

they are more likely to be detected, to capture attention, and to be remembered (Shackman et 

al., 2016a). Threat-related stimuli are associated with enhanced processing in sensory 

regions of the brain and this amplified processing is associated with faster and more accurate 

detection of the stimuli (Shackman et al., 2016a).

Relevance of Attentional Biases to Dispositional Negativity and Anxiety Disorders

Heightened vigilance and exaggerated risk assessment behaviors to threat-related cues are 

hallmarks of dispositional negativity and pathological anxiety (Grupe & Nitschke, 2013). 

Like many patients with anxiety disorders, adults and youth with a more negative disposition 

tend to allocate excess attention to threat-related cues, even when they are task irrelevant 

(Pérez-Edgar et al., 2017; Shackman et al., 2016a; Silvers et al., 2017). On average, 

dispositionally negative adults are more likely to initially orient their gaze towards threat-

related cues in free-viewing tasks; quicker to fixate threat-related targets in visual search 

tasks; and slower to disengage from threat-related distractors (Armstrong & Olatunji, 2012; 

Cisler & Koster, 2010; Rudaizky, Basanovic, & MacLeod, 2014; Sheppes, Luria, Fukuda, & 

Gross, 2013). Meta-analyses indicate that youth with elevated levels of dispositional 

negativity or anxiety disorders show a significantly greater attentional bias for threat-related 

stimuli when compared to typical youth (k = 44 studies; mean Cohen’s d = 0.21) or when 

compared to emotionally neutral stimuli (k = 16 studies; mean Cohen’s d = 0.54; Dudeney, 

Sharpe, & Hunt, 2015). Although the latter effect is similar to that reported in adult studies 

(k = 101 studies; mean Cohen’s d = 0.45; Bar-Haim, Lamy, Pergamin, Bakermans-

Kranenburg, & van IJzendoorn, 2007), recent large-scale studies suggest that the size of 

these effects is likely to be somewhat misleading. For example, a recent meta-analysis of 

clinical studies using various dot-probe4 tasks failed to uncover evidence of a significant 

threat bias in 1,005 anxiety patients (Kruijt, Parsons, & Fox, 2018). Eye-tracking studies 

have often failed to demonstrate enhanced threat detection or hypervigilance in 

pathologically anxious adults, although they have revealed consistent evidence of sustained 

attention to threat (e.g., increased dwell time) (Lazarov, Abend, & Bar-Haim, 2016; Lazarov 

et al., in press), consistent with evidence that adults with a more negative disposition are 

particularly impaired in disengaging from threat-related cues (Sheppes et al., 2013). Using 

data gleaned from a large (N = 1,291) international sample of youth, Abend and colleagues 

reported a zero-order correlation of r = .08 between anxiety symptoms and attentional biases 

to threat, again, indexed using the dot-probe (Abend et al., 2018). The modest size of this 

association likely reflects multiple factors, including the suboptimal psychometric properties 

of dot-probe tasks (McNally, in press; Price et al., 2015; Rodebaugh et al., 2016), an 

exclusive reliance on social threat (angry faces), and unmeasured heterogeneity in the nature 

of attentional biases (e.g., initial vigilance followed by avoidance; Armstrong & Olatunji, 

4In the ‘dot-probe’ paradigm, subjects view two lateralized cues (e.g., words, faces), one threat-related, the other emotionally neutral. 
A short time following the offset of the cues (e.g., 500 msec), a probe (e.g., a dot) is presented in either the same location as the threat-
related (‘congruent’) or neutral cue (‘incongruent’) with equal probability. Bias scores are computed by subtracting the mean reaction 
time for congruent trials from the mean reaction time for incongruent trials. Positive scores indicate faster engagement or slower 
disengagement from the threat-related cue.
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2012; Di Simplicio et al., 2014; Mogg, Waters, & Bradley, 2017a; Naim et al., 2015; Onnis, 

Dadds, & Bryant, 2011; Roy, Dennis, & Warner, 2015; Waters et al., 2015; Weierich, Treat, 

& Hollingworth, 2008; Zvielli, Bernstein, & Koster, 2014). Developing tools for reliably 

quantifying these more nuanced cognitive biases represents a crucial direction for future 

research (Liu, Taber-Thomas, Fu, & Perez-Edgar, 2018; MacLeod, in press).

Attentional Biases to Threat Causally Contribute to Pathological Anxiety

Several lines of evidence suggest that attentional biases to threat-related cues can causally 

contribute to the development of pathological anxiety. Attentional biases to threat have been 

shown to promote inflated estimates of threat intensity or likelihood (Aue & Okon-Singer, 

2015)—a key feature of extreme anxiety (Grupe & Nitschke, 2013; Stuijfzand, Creswell, 

Field, Pearcey, & Dodd, 2018)—and to foreshadow the development of social inhibition in 

children (Kiel & Buss, 2011). From a longitudinal perspective, attentional biases to threat-

related cues have been shown to moderate the impact of dispositional negativity on the 

development of internalizing symptoms in youth. Among youth with an early history of 

extreme dispositional negativity, it is the subset who also show an attentional bias to threat 

who are most likely to exhibit social withdrawal and elevated anxiety symptoms in the future 

(Perez-Edgar et al., 2010a; Perez-Edgar et al., 2011; White et al., 2017). Moreover, there is 

some evidence that clinically effective cognitive-behavioral and pharmacological treatments 

for anxiety can reduce attentional biases to threat-related cues, with greater therapeutic gains 

among patients showing larger reductions in attentional biases (Hadwin & Richards, 2016; 

Reinholdt-Dunne, Mogg, Vangkilde, Bradley, & Esbjørn, 2015; Shackman et al., 2016a). 

Direct support for a causal role comes from meta-analyses of computer-based interventions 

aimed at reducing attentional biases to threat, often termed ‘attention bias modification’ 

(ABM). For example, Heeren and colleagues reported a small-to-medium reduction in social 

anxiety symptoms (g = .27) and reactivity to a public speaking challenge (g = .46) (N = 

1,043; Heeren, Mogoase, Philippot, & McNally, 2015) Among adult clinical samples, small-

to-medium treatment effects have been observed when ABM is compared to placebo training 

(Linetzky, Pergamin-Hight, Pine, & Bar-Haim, 2015; MacLeod & Clarke, 2015; Price et al., 

2016b), although the precise size and consistency of such effects remain contentious 

(Cristea, 2018; Cristea, Kok, & Cuijpers, 2015; Grafton et al., 2017; Grafton et al., 2018; 

Kruijt, 2018; Mogg & Bradley, 2016a, 2018; Mogg et al., 2017a). Results have been less 

consistent in pediatric clinical samples (Hardee et al., 2013; Liu et al., 2018; Shackman et 

al., 2016a). Broadly speaking, across this literature the most promising clinical effects have 

been found in studies where ABM was delivered in the clinic or laboratory and produced 

evidence of ‘target engagement,’ that is, a demonstrable reduction in attentional biases to 

threat-related cues (Grafton et al., 2017; MacLeod & Grafton, 2016; Mogg & Bradley, 2018; 

Notebaert et al., 2018; Price et al., 2016b). Indeed, Heeren and colleagues reported a 

substantial between-study covariation (k = 8 studies, r = .90) between ABM-induced 

reductions in attentional biases and experimentally elicited anxiety (Heeren et al., 2015). On 

balance, these observations are consistent with the idea that attentional biases to threat can 

causally contribute to the development of anxiety disorders.
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Relevance of the Amygdala to Attentional Biases to Threat

The neural mechanisms underlying attentional biases to threat remain poorly understood, 

particularly in youth. Nonetheless, there is compelling evidence that the prioritized 

processing of threat-related cues reflects the influence of neural circuits encompassing the 

amygdala. Imaging and single unit recording studies in humans and monkeys demonstrate 

that the amygdala is sensitive to a broad range of emotionally salient, attention-grabbing 

stimuli, including faces, aversive images, erotica, and food and drug cues (Méndez-Bértolo 

et al., 2016; Minxha et al., 2017; Shackman et al., 2016b). Increased amygdala activation is 

even observed using subliminal or task-irrelevant emotional stimuli (Brooks et al., 2012; 

Cromheeke & Mueller, 2014; Hung, Gaillard, Yarmak, & Arsalidou, 2018; Krug & Carter, 

2010) and has been associated with more severe symptoms in pediatric anxiety patients 

(Monk et al., 2008b). Among children, heightened amygdala activation is associated with 

enhanced detection of threat-related faces in a crowed array and, among those exposed to 

early deprivation, greater amygdala activation is associated with elevated anxiety symptoms 

(Silvers et al., 2017). Among adults, individuals with a more negative disposition show 

heightened amygdala activation and enhanced attentional capture (i.e., response slowing) to 

threat-related cues, even when they are task-irrelevant (Ewbank et al., 2009). Likewise, 

adults and children with anxiety disorders have been shown to exhibit increased amygdala 

activation and exaggerated behavioral interference when performing standard ‘emotional 

attention’ tasks (e.g., emotional Stroop, dot-probe; Boehme et al., 2015; Price et al., 2016a).

As shown in Figure 5a, anatomical tracing studies in nonhuman primates and mechanistic 

studies in rodents indicate that the amygdala is well-positioned to prioritize the processing of 

threat and other salient stimuli. Enhanced attention can occur via at least two mechanisms: 

directly, via excitatory projections from the basolateral (BL) nucleus of the amygdala 

(Figure 1) to the relevant areas of sensory cortex (e.g., fusiform face area) and indirectly, via 

projections from the basal nuclei and Ce to neuromodulatory systems in the basal forebrain 

and brainstem that, in turn, can modulate sensory cortex (i.e., increase the neuronal signal-

to-noise ratio; Davis & Whalen, 2001; Freese & Amaral, 2009). Consistent with this 

perspective, adult imaging research shows that trial-by-trial fluctuations in amygdala activity 

predict whether degraded threat stimuli are detected—consistent with single unit recording 

studies in monkeys (Peck, Peck, & Salzman, 2014)—and demonstrate that this association is 

statistically mediated by enhanced activation in the relevant areas of sensory cortex (Lim, 

Padmala, & Pessoa, 2009) (Figure 5b). Determining whether this distributed amygdalo-

cortical circuitry is altered in individuals with a negative disposition or anxiety disorder 

remains an important challenge for the future.

A growing body of research in human adults and monkeys indicates that the amygdala plays 

a mechanistically important role in biasing attention to threat-related cues. Manipulations 

that potentiate amygdala reactivity also enhance attentional biases to threat-related 

information (Herry et al., 2007). For example, Herry and colleagues demonstrated that 

exposure to an emotionally neutral, temporally unpredictable train of auditory pulses 

activates the lateral and BL amygdala (cf. Figure 1) and amplifies attentional biases to angry 

faces in a dot-probe task. Conversely, patients with amygdala damage and monkeys with 

selective amygdala lesions do not show enhanced processing of threat-related cues (i.e., 
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fearful or threatening faces) in sensory cortex (Hadj-Bouziane et al., 2012; Rotshtein et al., 

2010; Vuilleumier, Richardson, Armony, Driver, & Dolan, 2004). In particular, amygdala 

insults markedly reduce ‘valence’ effects for facial expressions (i.e., Threat > Neutral) in the 

fusiform face area in humans (Vuilleumier et al., 2004) (Figure 5c) and inferior temporal 

cortex in monkeys (Hadj-Bouziane et al., 2012). In humans, amygdala damage disrupts the 

prioritized processing of threat-related faces in crowded stimulus arrays (Bach, Hurlemann, 

& Dolan, 2015). Likewise, monkeys’ normal preference for viewing conspecific faces is 

disrupted by fiber-sparing (excitotoxic) lesions of the amygdala (Taubert et al., 2018)5.

Other work suggests that the amygdala can actively tune attention. In addition to biasing 

selection and increasing the depth of processing, there is compelling evidence that the 

amygdala plays a key role in redirecting gaze (i.e., overt attention) to those features of the 

face, such as the eyes and brow, that are most diagnostic of threat, trustworthiness, anger, 

and fear (Oosterhof & Todorov, 2008, 2009; Smith, Cottrell, Gosselin, & Schyns, 2005b). 

Using a combination of eye tracking and brain imaging, Gamer and colleagues have 

demonstrated that human adults are biased to reflexively attend the eye and brow region of 

the face, that this bias is most pronounced for threat-related (i.e., fearful) facial expressions, 

and that individuals with greater amygdala activation are more likely to shift their gaze to 

the eyes (Gamer & Buchel, 2009; Scheller, Buchel, & Gamer, 2012) (Figure 6a, b). Similar 

effects have been obtained for complex non-social cues; subjects are biased to fixate the 

visual features most predictive of threat and this tendency co-varies with trial-by-trial 

fluctuations in amygdala activation (Eippert, Gamer, & Buchel, 2012). With regard to faces, 

this kind of attentional bias is exaggerated among adults with a more negative disposition 

(Perlman et al., 2009) and those with social anxiety disorder (Boll, Bartholomaeus, Peter, 

Lupke, & Gamer, 2016). Importantly, patients with circumscribed amygdala damage do not 

show reflexive saccades to the eyes (Gamer, Schmitz, Tittgemeyer, & Schilbach, 2013) 

(Figure 6c). Instead, they tend to fixate the mouth, both in laboratory assessments and real-

world social interactions (Adolphs et al., 2005; Spezio, Huang, Castelli, & Adolphs, 2007), 

and this impairs the ability to recognize facial expressions of fear (Adolphs et al., 2005). 

Likewise, monkeys with selective lesions of the amygdala show markedly reduced detection 

of threat-diagnostic facial features (i.e., enhanced capture) and spend more time visually 

exploring the mouth region of the face (Dal Monte, Costa, Noble, Murray, & Averbeck, 

2015). These converging lines of neurophysiological and mechanistic evidence indicate that 

the amygdala is crucial for re-allocating attention to threat-diagnostic social cues in adults. 

A key challenge for the future is establishing whether the amygdala performs a similar role 

IN other clinical populations and youth.

Pervasive Hypervigilance May Reflect Stress-Induced Sensitization of the Amygdala

Hypervigilance in inappropriate or maladaptive settings is a core feature of extreme anxiety 

(Grupe & Nitschke, 2013; Notebaert et al., in press; Notebaert, Tilbrook, Clarke, & 

5Opposing effects have been reported for a rare group of patients with selective BLA damage (i.e., sparing Ce). BL patients have 
difficulty ignoring task-irrelevant threat, show prolonged attention to potentially threat-diagnostic facial features, and exhibit enhanced 
recognition of dynamic fearful facial expressions (de Gelder et al., 2014; Terburg et al., 2012). Building on mechanistic work in 
rodents, these observations have been interpreted as evidence that BL normally inhibits vigilance-related processes orchestrated by the 
Ce (Terburg et al., 2018).
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MacLeod, 2017). Persistent, contextually inappropriate vigilance or attentional biases to 

threat-related information may reflect stress-induced sensitization of the amygdala. Recent 

work in adult humans shows that acute experimental stressors (e.g., threat-of-shock, aversive 

film clips) potentiate defensive reactions (i.e., startle) to threat-related facial expressions 

(Grillon & Charney, 2011a), cause persistent increases in spontaneous amygdala activity 

(Cousijn et al., 2010)—consistent with rodent studies (Ahrens et al., 2018)—and potentiate 

amygdala reactivity to threat-related faces (Pichon, Miendlarzewska, Eryilmaz, & 

Vuilleumier, 2015; van Marle, Hermans, Qin, & Fernandez, 2009). Acute stressors produce 

even longer-lasting changes (i.e., minutes to hours) in amygdala functional connectivity 

(Hermans et al., 2017; Vaisvaser et al., 2013; van Marle, Hermans, Qin, & Fernandez, 2010). 

Moreover, these kinds of neurobiological ‘spill-over’ effects are amplified among 

individuals with a more negative disposition. For example, a large-scale imaging study (n = 

120) showed that dispositionally negative individuals exhibit potentiated activation to threat-

related faces following acute stressor exposure (Everaerd, Klumpers, van Wingen, 

Tendolkar, & Fernandez, 2015). Persistent amygdala sensitization could promote pervasive 

anxiety and ‘spillover’ of negative affect by increasing the likelihood that attention is 

allocated to threat-related cues in the environment (Grupe & Nitschke, 2013; Macatee, 

Albanese, Schmidt, & Cougle, 2017; Shackman et al., 2016c). Understanding the relevance 

of these pathways to the development of anxiety disorders is important because the roots of 

anxiety disorders often extend into childhood (Kessler et al., 2007) and mental illnesses that 

emerge before adulthood impose a substantially higher economic burden than those that 

emerge in mid or later life (Lee et al., 2014; WHO, 2007).

Interim Conclusions

Hypervigilance is a core feature of the anxiety disorders and dispositional negativity and, on 

average, adults and youth with a more negative disposition tend to allocate excess attention 

to potentially threat-related cues, even when they are task irrelevant (Shackman et al., 

2016a). Like other candidate biomarkers, the magnitude of this cross-sectional association is 

too small to be clinically useful, at least when assessed using the popular, but 

psychometrically flawed dot-probe task (Abend et al., 2018; Fu & Pérez-Edgar, 2019; Kruijt 

et al., 2018; Rodebaugh et al., 2016). Preliminary work using new paradigms and new 

behavioral measures, including eyetracking, suggests that patients with anxiety disorders and 

individuals with a more negative disposition are more likely to dwell on threat-related cues 

and are more likely to shift attention to potentially threat-diagnostic features of the 

environment (Boll et al., 2016; Lazarov et al., 2016; Lazarov et al., in press; Perlman et al., 

2009; Sheppes et al., 2013). Attentional biases to threat prospectively predict the first 

emergence of anxiety symptoms in youth and interventions that attenuate attentional biases 

to threat have been shown to reduce pathological anxiety in adults, indicating a causal 

contribution (Grafton et al., 2017; White et al., 2017).

Converging lines of neuroimaging, electrophysiological, and mechanistic research indicate 

that the amygdala plays a crucial role in prioritizing the processing of threat-related cues 

(Bach et al., 2015; Gamer et al., 2013; Hadj-Bouziane et al., 2012; Lim et al., 2009; Peck et 

al., 2014; Vuilleumier et al., 2004). Individuals with a more negative disposition and patients 

with anxiety disorders show exaggerated behavioral interference and elevated amygdala 
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activation when performing emotional attention tasks (Boehme et al., 2015; Ewbank et al., 

2009; Price et al., 2016a). Exposure to acute stressors increases the on-going activity of the 

amygdala and potentiates reactivity to threat-related cues encountered in the future, 

suggesting a substrate for the kinds of mood spillover effects and inappropriate deployment 

of attentional resources that characterize individuals with a more negative disposition and 

many anxiety patients (Cousijn et al., 2010; Everaerd et al., 2015; Shackman et al., 2016c).

THE NATURE, CONSEQUENCES, AND NEUROBIOLOGY OF EXECUTIVE 

DEFICITS

The Nature of Executive Function and Cognitive Control

Lapses in concentration and problems with cognitive function are clinically significant 

features of anxiety disorders and other psychiatric illnesses (American Psychiatric 

Association, 2013). Yet the contributions of executive function and cognitive control—the 

basic building blocks of intelligence and complex everyday cognition—to pathological 

anxiety have received considerably less empirical attention than attentional biases to threat. 

Executive function refers to the processes involved in shifting between mental sets or tasks, 

updating and monitoring working memory (e.g., n-back continuous performance task), and 

inhibiting prepotent responses (Banich, 2009; Miyake & Friedman, 2012; Miyake et al., 

2000). Cognitive control encompasses a range of processes—including attention, inhibition, 

and learning—that are engaged when automatic or habitual responses are insufficient to 

sustain goal-directed behavior, as with the inhibitory facet of executive function (Shackman 

et al., 2011b). Like fear and anxiety, cognitive control is a component of the NIMH Research 

Domain Criteria (RDoC) (Clark, Cuthbert, Lewis-Fernandez, Narrow, & Reed, 2017; Kozak 

& Cuthbert, 2016). Common assays of cognitive control include variants of the Anti-

Saccade, Eriksen Flanker, Go/No-Go, Simon, Stop-Signal, and Stroop tasks. Here, we use 

‘executive control’ as a rubric for executive function and cognitive control.

Relevance of Executive Control Deficits to Dispositional Negativity and Anxiety Disorders

Converging lines of educational, epidemiological, developmental, and experimental research 

suggest that dispositional negativity is associated with deficits in executive control. 

Increased dispositional negativity is associated with reduced educational attainment 

(Damian, Su, Shanahan, Trautwein, & Roberts, 2015; Hengartner et al., 2016b; Hill, Weiss, 

McIntosh, Gale, & Deary, 2017; Nagel et al., 2018a; Nagel et al., 2018b) and fluid 

intelligence (Dubois, Galdi, Han, Paul, & Adolphs, 2018). Dispositional negativity is 

genetically correlated with reduced educational attainment (rG = −.22, N = 328,917) (Nagel 

et al., 2018a) and lower intelligence (rG = −.21, N = 170,911) (Savage et al., 2018), 

suggesting shared molecular underpinnings. In laboratory settings, children and adults with a 

more negative disposition are prone to executive control deficits when performing standard 

emotionally neutral tasks, that is, in the absence of threat-related cues (Basten, Stelzel, & 

Fiebach, 2011; Beaudreau, MacKay-Brandt, & Reynolds, 2013; Berggren & Derakshan, 

2013; Bishop, 2009; Derakshan & Eysenck, 2009; Derryberry & Reed, 2002; Eysenck & 

Derakshan, 2011; Eysenck, Derakshan, Santos, & Calvo, 2007b; Gustavson, Altamirano, 

Johnson, Whisman, & Miyake, 2017; Gustavson & Miyake, 2016; Muris, de Jong, & 
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Engelen, 2004; Muris, van der Pennen, Sigmond, & Mayer, 2008; Osinsky, Gebhardt, 

Alexander, & Hennig, 2012). For example, adults with a more negative disposition tend to 

commit more errors in task-switching and inhibitory control paradigms (Ansari & 

Derakshan, 2011; Basten et al., 2011; Derakshan, Ansari, Hansard, Shoker, & Eysenck, 

2009a; Derakshan, Smyth, & Eysenck, 2009b; Garner, Ainsworth, Gould, Gardner, & 

Baldwin, 2009; Goodwin & Sher, 1992; Orem, Petrac, & Bedwell, 2008; Pacheco-Unguetti, 

Acosta, Callejas, & Lupiáñez, 2010; Pacheco-Unguetti, Lupiáñez, & Acosta, 2009; Wieser, 

Pauli, & Mühlberger, 2009). Clinical samples reveal a broadly similar pattern (Aupperle, 

Melrose, Stein, & Paulus, 2012; Hallion, Tolin, Assaf, Goethe, & Diefenbach, 2017; Polak, 

Witteveen, Reitsma, & Olff, 2012; Scott et al., 2015; Stefanopoulou, Hirsch, Hayes, Adlam, 

& Coker, 2014; Wright, Lipszyc, Dupuis, Thayapararajah, & Schachar, 2014). Nevertheless, 

the limited number, breadth, and quality of clinical studies signals the need for additional 

research (McTeague, Goodkind, & Etkin, 2016; Snyder, Miyake, & Hankin, 2015).

Executive Control Deficits Causally Contribute to Pathological Anxiety

Longitudinal studies show that executive control difficulties are prospectively associated 

with greater anxiety, worry, and rumination in the future (Aupperle et al., 2012; Bredemeier 

& Berenbaum, 2013; Crowe, Matthews, & Walkenhorst, 2007; De Lissnyder et al., 2012; 

Duchesne, Larose, Vitaro, & Tremblay, 2010; Pérez-Edgar, Taber-Thomas, Auday, & 

Morales, 2014; Snyder et al., 2014; Whitmer & Banich, 2007; Zhang et al., 2015). In a 

nationally representative sample of 2,605 American adults, decrements in set shifting, 

updating, and inhibition conferred robust risk of developing generalized anxiety disorder 

(GAD) across the 9-year follow-up period (e.g., Odds Ratios for Updating > 6.00; Zainal & 

Newman, 2018). Likewise, a recent meta-analysis uncovered evidence of cognitive 

impairment—including lower IQ (−0.19 SD) and academic performance—in first-degree 

relatives of individuals with MDD (N = 8,468) (MacKenzie, Uher, & Pavlova, in press), 

suggesting a causal role. Conversely, there is emerging evidence that interventions targeting 

cognitive control can ameliorate anxiety symptoms, reinforcing the conclusion that executive 

control deficits causally contribute to the development of pathological anxiety (e.g., Cohen, 

Daches, Mor, & Henik, 2014; Cohen, Mor, & Henik, 2015).

The Neurobiology of Executive Control

Executive control is often associated with the prefrontal cortex (PFC). Historically, this view 

was motivated by early evidence of impairments in goal-directed behavior and complex 

cognition in monkeys and humans with selective damage to the lateral PFC (Bianchi & 

Macdonald, 1922; Duncan, 1986; Ferrier, 1886; Grafman, 1994; Knight, 1984; Passingham, 

1993). Recent meta-analyses of the functional neuroimaging literature have extended this 

perspective, suggesting that executive control reflects the coordinated function of several 

large-scale brain circuits, including the frontoparietal network (dlPFC, intraparietal sulcus) 

and cingulo-opercular network (midcingulate cortex, anterior insula, frontal operculum) 

(Chen et al., 2018; Hung et al., 2018; Li et al., 2017; McKenna, Rushe, & Woodcock, 2017) 

(Figure 7).
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Relevance of Executive Control Networks to Dispositional Negativity and Anxiety 
Disorders

To our knowledge, only three functional neuroimaging studies have examined relations 

between dispositional negativity and executive control. Two studies reported increased 
engagement of frontoparietal control networks, while a third, much smaller study reported 

decreased engagement. Fales and colleagues showed that dispositional negativity enhanced 

activation of frontoparietal regions on control-demanding trials of a complex n-back task in 

the absence of overt differences in performance (N = 96; Fales et al., 2008). Likewise, 

Basten and colleagues found enhanced dlPFC activation on control-demanding (i.e. 

incongruent) trials of the widely used Stroop task (N = 46; Basten et al., 2011). Here, the 

positive association between dispositional negativity and dlPFC activation remained 

significant after controlling for performance decrements among subjects with a more 

negative disposition. Finally, Bishop used a compound attentional-search/response-conflict 

paradigm to reveal reduced dlPFC activation and slower target identification among 

individuals with a more negative disposition (N = 17; Bishop, 2009). While the results of 

these three studies preclude strong conclusions, the overall pattern aligns with the hypothesis 

that dispositionally negative individuals tend to inefficiently allocate executive control 

resources, requiring greater effort or neural engagement to achieve similar (or worse) ends 

(Berggren & Derakshan, 2013; Eysenck & Derakshan, 2011; Eysenck, Derakshan, Santos, & 

Calvo, 2007a). At present, even less is known about the relevance of executive control 

networks to clinical anxiety. A comprehensive recent meta-analysis of neuroimaging studies 

failed to uncover any significant regional differences in activation during the performance of 

emotionally neutral executive control tasks, although this may reflect the disproportionate 

representation of obsessive-compulsive compulsive disorder (OCD) samples (k = 32 studies; 

McTeague et al., 2016; McTeague et al., 2017). Given the consequences of executive control 

deficits for the development of pathological anxiety (Zainal & Newman, 2018), additional 

research in adults and youth is clearly warranted

EMERGING EVIDENCE FOR THE INTERPLAY OF ATTENTIONAL BIASES 

AND EXECUTIVE CONTROL

While most research has focused on attentional biases to threat or deficits in executive 

control in isolation, an emerging body of data and theory suggests that these processes are 

intimately related and can reciprocally interact (Bishop, 2008b, 2009; Bishop & Forster, 

2013; Derakshan et al., 2009a; Eysenck & Derakshan, 2011; Eysenck et al., 2007b; Iordan, 

Dolcos, & Dolcos, 2013; Mogg & Bradley, 2016b; Mogg & Bradley, 2018; Mogg, Waters, 

& Bradley, 2017b; Tottenham & Gabard-Durnam, 2017). From a conceptual perspective, 

such interactions are most likely to occur when there is competition between task-irrelevant 

threat-related cues and on-going goals, as with a variety of ‘emotional conflict’ tasks (e.g., 

emotional Stroop). Monitoring and adjudicating this conflict demands executive control 

resources, rendering them less available for on-going cognitive performance (Shackman et 

al., 2011b) or anxiety regulation (Buhle et al., 2014). Consistent with this view, there is 

evidence that excessive allocation of attention and working memory capacity to threat 

disrupts on-going performance and hijacks regions of the frontoparietal network, and that 

these adverse consequences are more pronounced among dispositionally negative individuals 
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(Hur et al., 2015; Moran, 2016; Robinson, Vytal, Cornwell, & Grillon, 2013; Shackman, 

Maxwell, McMenamin, Greischar, & Davidson, 2011a; Shackman et al., 2006; Stout, 

Shackman, & Larson, 2013). Other work demonstrates that attentional biases to threat are 

enhanced among dispositionally negative individuals with poor cognitive control and that 

they are reduced under conditions that facilitate cognitive control (Derryberry & Reed, 2002; 

Hadwin & Richards, 2016; Hur, Iordan, Berenbaum, & Dolcos, 2016; Lonigan & Vasey, 

2009; Susa, Pitică, Benga, & Miclea, 2012; Taylor, Bomyea, & Amir, 2010).

Given the many ways in which attentional biases to threat and executive control can 

potentially interact, and the numerous mono- and polysynaptic pathways linking the 

amygdala to regions involved in executive control, the underlying neural circuitry is likely to 

be complex and at least somewhat task-dependent (Benarroch, 2015; Etkin, Buchel, & 

Gross, 2015; Freese & Amaral, 2009; Mogg & Bradley, 2018). Nevertheless, recent meta-

analyses of the functional neuroimaging literature reveal a remarkably consistent 

engagement of regions within the frontoparietal and cingular-opercular networks (Figure 7) 

across a wide range of emotional interference tasks (k = 10–48 studies; Chen et al., 2018; 

Cromheeke & Mueller, 2014; Hung et al., 2018; Song et al., 2017; Xu, Xu, & Yang, 2016). 

Work focused on adult anxiety patients has begun to document aberrant functional 

connectivity between the amygdala and these control regions, as well as diminished mPFC 

responses to threat distractors (Bishop, 2008a; Blackford & Pine, 2012; Carpenter et al., 

2015; Ding et al., 2011; Etkin et al., 2015; Kim, Gee, Loucks, Davis, & Whalen, 2010; Liao 

et al., 2010; Monk et al., 2006; Monk et al., 2008a; Price, Eldreth, & Mohlman, 2011; Shin 

et al., 2005; Stein, Goldin, Sareen, Zorrilla, & Brown, 2002; Sussman, Jin, & Mohanty, 

2016; Sylvester et al., 2012; Tillfors et al., 2001). While most of the work remains undone, 

these observations suggest that dispositional negativity and anxiety disorders disrupt the 

balance between attention and control—amplifying the attentional salience of threat and 

attenuating executive control—leading to less effective or less efficient performance 

(Berggren & Derakshan, 2013; Eysenck et al., 2007b; Snyder et al., 2015).

FUTURE CHALLENGES

The data that we have reviewed provide new insights into the neurocognitive mechanisms 

that support individual differences in dispositional negativity and that link this disposition to 

the development of anxiety disorders and other psychiatric diseases. Yet, it is clear that our 

understanding remains far from complete. Throughout the review, we highlighted a number 

of specific conceptual and methodological challenges for future research in this area. Here, 

we outline some broader questions for the field and offer some strategies for starting to 

address them (for general recommendations about best practices, see Fox, Lapate, Davidson, 

& Shackman, 2018a).

1. How do different aspects of attention contribute to the development of anxiety 
disorders? In this review, we have treated hypervigilance and attentional biases 

to threat-related information as virtually synonymous. Yet, there is a growing 

recognition that the amount of attention allocated to threat-related cues can be 

decomposed into several constituents: (i) the likelihood that task-relevant threat 

will be detected and attention will be re-oriented, (ii) the likelihood that task-
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irrelevant threat will capture attention or bias behavior (i.e., reduced attentional 

control or selectivity), (iii) the rapidity of disengagement from threat, and (iv) the 

degree of attentional avoidance (or maintenance) during sustained, free-viewing 

tasks (Mogg & Bradley, 2018; Richards, Benson, Donnelly, & Hadwin, 2014). 

Although work by Gamer and colleagues demonstrates that the amygdala plays a 

crucial role in the initial re-orienting to threat-diagnostic features of the face 

(Gamer & Buchel, 2009; Gamer et al., 2013), much less is known about the 

clinical relevance or neurobiology of these other biases in adults or youth. 

Addressing this question will require the integration of eye tracking with brain 

imaging or electrophysiological assays in individuals with anxiety disorders or 

varying levels of familial or dispositional risk. Longitudinal studies in high-risk 

populations would be especially valuable.

2. How do different components of the amygdala contribute to risk? Like 

attention, the amygdala can be divided into meaningful sub-components or 

nuclei (Freese & Amaral, 2009; Yilmazer-Hanke, 2012) (Figure 1). Developing a 

deeper understanding of this heterogeneity and its relevance to the development 

of anxiety disorders and other stress-sensitive mental illnesses requires that we 

first acknowledge it. Although investigators need to be cautious when assigning 

specific labels (e.g., Ce) to activation clusters in imaging studies, we encourage 

them to describe the relative position of activation peaks (e.g., dorsal-posterior 

amygdala) and interpret their results on the basis of the most likely sub-

component of the amygdala (e.g., ‘in the region of the Ce’). The use of high-field 

MRI or specialized analytic approaches (e.g., spatially unsmoothed data) may 

also prove useful (Fox & Shackman, 2019; Hur et al., 2018; Tillman et al., 2018).

3. Which brain circuits are associated with individual differences in risk? There 

is widespread consensus that dispositional negativity, hyper-vigilance for threat, 

and executive control deficits—like other psychologically and psychiatrically 

relevant processes—reflect the coordinated activity of distributed brain circuits 

(Okon-Singer, Hendler, Pessoa, & Shackman, 2015; Pessoa, 2013; Shackman, 

Fox, & Seminowicz, 2015). Yet most imaging investigators (including our team) 

have relied heavily on localization strategies, where function is mapped to 

isolated brain structures. Unfortunately, this approach tends to promote the 

development of models in which a small number of territories—the amygdala, 

dlPFC, and MCC, for example—do all or most of the ‘heavy lifting.’ 

Overcoming this important barrier requires that we accelerate the transition from 

localization strategies to network-based approaches (Fornito, Zalesky, & 

Breakspear, 2015; Guloksuz, Pries, & Van Os, 2017; McMenamin, Langeslag, 

Sirbu, Padmala, & Pessoa, 2014; Servaas et al., 2014). Information-based 

approaches, such as multivoxel classifier approaches, provide another powerful 

tool for discovering the distributed functional networks associated with 

emotional states, traits, and disorders (Kragel, Koban, Barrett, & Wager, 2018; 

Woo, Chang, Lindquist, & Wager, 2017). Developing robust and generalizable 

(i.e., task- and sample-general) classifiers that are firmly grounded in overt 

behavior or subjective report are more likely to be useful for therapeutics 
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development and more likely to successfully translate to the clinic (Hur, Tillman, 

Fox, & Shackman, in press; Shackman & Fox, 2018; Shackman & Wager, 2019).

4. How relevant are individual differences in brain function to anxiety-related 
experience and behavior in the real world? Most psychophysiological and 

imaging studies of anxiety and anxiety-relevant cognitive mechanisms (e.g., 

attention bias, attention control) rely on a limited number of well-controlled, but 

highly artificial manipulations (e.g., static emotional faces, unpleasant images, 

threat-of-shock), collected under unnatural conditions (Coan & Allen, 2007; Fox, 

Lapate, Shackman, & Davidson, 2018b). Although this approach has afforded 

many important insights, the real-world or ‘translational’ significance of the 

circuits identified in the laboratory often remain unclear. Given the limitations of 

ambulatory measures of brain activity—there is no ‘fMRI helmet’ as yet—

addressing this fundamental question requires integrating assays of brain 

function and behavior (e.g., eye tracking) acquired in the scanner with thoughts, 

feelings, and behavior assessed under naturalistic conditions in the field 
(Anderson, Monroy, & Keltner, 2018) or in the laboratory (e.g., during semi-

structured interactions or using commercially available virtual reality techniques; 

Creed & Funder, 1998; Kroes, Dunsmoor, Mackey, McClay, & Phelps, 2017; 

Perez-Edgar et al., 2010b; Stolz, Endres, & Mueller, in press; Thomson et al., 

2019, in press). Work combining fMRI with ecological momentary assessment 

(EMA) and other experience-sampling techniques highlights the value of this 

approach for identifying the neural systems underlying naturalistic variation in 

mood and behavior in adults, adolescents, and older children (Berkman & Falk, 

2013; Forbes et al., 2009; Heller et al., 2015; Lopez, Hofmann, Wagner, Kelley, 

& Heatherton, 2014; Price et al., 2016a; Wilson, Smyth, & MacLean, 2014). The 

development of robust mobile eye trackers (Liu et al., 2018), the emergence of 

commercial software for automated facial analytics (Olderbak, Hildebrandt, 

Pinkpank, Sommer, & Wilhelm, 2014), and the widespread dissemination of 

‘smart’ mobile technologies afford new opportunities for intensively quantifying 

social attention, arousal, behavior, mood, and anxiety-relevant features of the 

environment (Boukhechba, Chow, Fua, Teachman, & Barnes, 2018; Chow et al., 

2017; Mohr, Zhang, & Schueller, 2017; Picard, 2018; Saeb, Lattie, Schueller, 

Kording, & Mohr, 2016; Shackman et al., 2018b; Stingone et al., 2017). 

Networked sensors in smartphones and other wearables are already woven into 

the fabric of our lives. In the U.S., 77% of adults and 94% of young adults (<30 

years) own smartphones (Pew Research Center, 2018). Because data are 

repeatedly captured in the real world, smartphone-based EMA circumvents the 

mnemonic biases that can distort daily diaries, clinical assessments, and other 

retrospective ‘snapshots’ (Ebner-Priemer & Trull, 2009; Kanning, Ebner-

Priemer, & Schlicht, 2013; Shiffman, Stone, & Hufford, 2008; Solhan, Trull, 

Jahng, & Wood, 2009; Stone, Shiffman, Atienza, & Nebeling, 2007; Tost, 

Champagne, & Meyer-Lindenberg, 2015). Smartwatches and other wearable 

sensors (e.g., actigraphy, GPS) go a step further, eliminating the need for subjects 

to repeatedly respond to surveys and providing continuous and objective 
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measures (‘movies’) of anxiety-relevant behaviors (Gambhir, Ge, Vermesh, & 

Spitler, 2018). Moreover, digital tracking can provide behavioral phenotypes 

(e.g., locomotion, sleep, social avoidance) that are directly comparable between 

humans and animals (Freimer & Mohr, in press; Hong et al., 2015), facilitating 

the development of cross-species models and enhancing opportunities for 

mechanistic insight (Fox & Shackman, 2019; Shackman & Fox, 2016b). 

Combining these measures with laboratory assays of brain function would open 

the door to discovering the neural systems underlying maladaptive experiences 

and pathology-promoting behaviors (e.g., social withdrawal, avoidance) in the 

real world, close to clinical end-points (Price et al., 2016a). This approach 

promises a depth of understanding that cannot be achieved using either animal 

models or isolated measures of brain function and represents a key step to 

establishing the clinical and therapeutic relevance of these brain circuits.

5. What mechanisms underlie individual differences in risk? Much of the data 

that we have reviewed comes from brain imaging studies. Aside from unresolved 

questions about the origins and significance of the measured signals (Logothetis, 

2008), the most important limitation of imaging studies is that they cannot 

address necessity or sufficiency. A crucial challenge for the future is to develop a 

mechanistic understanding of the brain regions and functional circuits that confer 

increased risk for the development of anxiety disorders in adults and youth. 

Addressing this fundamental question requires coordinated research efforts in 

humans and nonhuman animal models. This could be achieved by combining 

mechanistic techniques in animals with the same whole-brain imaging strategies 

routinely used in humans, enabling the development of bidirectional translational 

models (Birn et al., 2014; Fox & Shackman, 2019; Kalin, 2017; Terburg et al., 

2018). Nonhuman primate models are likely to be particularly useful for 

modeling and understanding the molecular and cellular neurobiology of 

dispositional negativity because monkeys and humans share similar genes and 

brains, which endow the two species with a shared repertoire of complex social, 

emotional, and cognitive behaviors (Fox & Shackman, 2019). Furthermore, well-

established techniques already exist for studying both dispositional negativity 

and attention in nonhuman primates (Hadj-Bouziane et al., 2012; Noudoost, 

Albarran, & Moore, 2014; Oler et al., 2016).

Human studies will also be crucial. After all, anxiety disorders are defined and diagnosed on 

the basis of subjective symptoms and human studies are essential for understanding the 

neural mechanisms supporting the experience of fear and anxiety (LeDoux & Hofmann, 

2018; Pankevich, Altevogt, Dunlop, Gage, & Hyman, 2014; Pine & LeDoux, 2017; Zoellner 

& Foa, 2016). Human studies are also important for identifying the features of animal 

models that are conserved and, hence, most relevant to understanding human disease and to 

developing improved interventions for human suffering (‘forward translation;’ Birn et al., 

2014; Hyman, 2016; Pankevich et al., 2014). In humans, imaging approaches can be applied 

to patients with circumscribed brain damage (Adolphs, 2016; Motzkin et al., 2015a; 

Motzkin, Philippi, Wolf, Baskaya, & Koenigs, 2014, 2015b; Spunt et al., 2015). 

Alternatively, fMRI or EEG can be combined with noninvasive perturbation techniques 
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(Bestmann & Feredoes, 2013; Dubois et al., in press; Reinhart & Woodman, 2014), 

neurofeedback (deBettencourt, Cohen, Lee, Norman, & Turk-Browne, 2015; Greer, Trujillo, 

Glover, & Knutson, 2014; Stoeckel et al., 2014), cognitive-behavioral interventions (Britton 

et al., 2015; Schnyer et al., 2015), pharmacological interventions (Paulus, Feinstein, Castillo, 

Simmons, & Stein, 2005; Wager et al., 2013), or more passive psychological manipulations 

(i.e., temporally unpredictable auditory stimuli; Herry et al., 2007). Prospective longitudinal 

imaging studies represent another important approach to identifying candidate mechanisms, 

especially in relation to the development of internalizing disorders (Admon, Milad, & 

Hendler, 2013; Burghy et al., 2012; Herringa et al., 2013; McLaughlin et al., 2014; Swartz, 

Williamson, & Hariri, 2015).

CONCLUSIONS

The work that we have reviewed highlights the importance of amygdala, frontoparietal, and 

cingular-opercular circuits to individual differences in dispositional negativity and two 

prominent intermediate phenotypes: threat-related attentional biases, and deficits in 

executive control. Collectively, these observations provide an integrative translational 

framework for understanding the development and maintenance of anxiety and mood 

disorders in adults and youth and set the stage for developing improved strategies for 

preventing or treating them.
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Figure 1. Simplified schematic of amygdala circuitry relevant to dispositional negativity, 
attentional biases, and hyper-vigilance to threat.
The amygdala is a heterogeneous collection of nuclei buried beneath the temporal lobe. It 

receives inputs from sensory (yellow), contextual (blue), and regulatory (green) systems and, 

as shown by the translucent white arrow at the center of the figure, information generally 

flows from the more ventral basal regions of the amygdala shown at the lower left toward the 

central (Ce) nucleus of the amygdala (magenta) and the neighboring bed nucleus of the stria 

terminalis (BST) at the upper right. The Ce and BST are, in turn, poised to orchestrate or 

trigger specific physiological, behavioral, and cognitive components of negative affect via 

their projections to downstream effector regions (orange). Prioritized processing of threat-

related and other kinds of cues can occur through two mechanisms: directly, via projections 

from the basolateral (BL) nucleus to relevant areas of sensory cortex (e.g., fusiform face 

area) and indirectly, via projections from the Ce and BST to neuromodulatory systems in the 

basal forebrain and brainstem that, in turn, can modulate sensory cortex. Abbreviations—

Basolateral (BL), Basomedial (BM), Central (Ce), Lateral (La), and Medial (Me) nuclei of 

the amygdala; Bed nucleus of the stria terminalis (BST). BM is often termed the ‘accessory 

basal’ (AB) nucleus. The term ‘basolateral amygdala’ (BLA) is often used to refer to the 

basal and lateral nuclei. Figure adapted with permission from (Tillman et al., 2018).
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Figure 2. Elevated dispositional negativity is associated with increased activity in the dorsal 
amygdala in the region of the Ce. Adults.
Meta-analysis of six published imaging studies reveals consistently elevated activation 

bilaterally in the dorsal amygdala among adults with a more negative disposition (Calder, 

Ewbank, & Passamonti, 2011). Significant relations with dispositional negativity (trait) are 

shown in blue; significant relations with momentary negative affect (state) are depicted in 

red; and the overlap is shown in purple. Adults with an extreme childhood history. Meta-

analysis of seven published imaging studies reveals consistently elevated activation in the 

dorsal amygdala (black ring) in adults with a childhood history of elevated dispositional 

negativity (Fox & Kalin, 2014a). Six of eight amygdala peaks overlapped (yellow) in the 

dorsal amygdala; four of the peaks extended into the region shown in red. Youth. Using 

arterial spin labeled (ASL) functional MRI acquired in the absence of an explicit task (‘at 

rest’) from 878 youth (M = 16.5 years, range = 12–23 years), Kaczkurkin and colleagues 

(2016) demonstrated that individuals with a more negative disposition show elevated 

perfusion in the dorsal amygdala (black ring). Panel depicts the results of a voxelwise 

regression analysis. Young monkeys. Using high-resolution 18-fluorodeoxyglucose-positron 

emission tomography (FDG-PET) acquired from 592 young rhesus monkeys, Fox and 

colleagues (2015) showed that threat-related metabolic activity in the dorsal amygdala 

(black ring) is increased among individuals with a more negative disposition. Abbreviations

—L: left hemisphere, R: right hemisphere. Panel depicts the results of a voxelwise 
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regression analysis. Portions of this figure were adapted with permission from (Calder et al., 

2011; Fox & Kalin, 2014a; Fox et al., 2015a; Kaczkurkin et al., 2016a).
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Figure 3. Elevated amygdala activity is a shared substrate for different phenotypic presentations 
of dispositional negativity.
Shackman and colleagues (2013) used a well-established young nonhuman primate model of 

childhood dispositional negativity and high-resolution FDG-PET to demonstrate that 

individuals with divergent phenotypic presentations of their extreme disposition show 

increased activity in the Ce (orange rings). Divergent phenotypic presentations: To illustrate 

this, phenotypic profiles are plotted for groups (N = 80/group) selected to be extreme on a 

particular dimension of the phenotype (Top tercile: solid lines; Bottom tercile: broken lines). 

The panels on the left illustrate how this procedure sorts individuals into groups with 
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divergent presentations of dispositional negativity. Convergent neural activity: To illustrate 

the consistency of Ce activity across divergent phenotypic presentations, mean neural 

activity for the extreme groups (± SEM) is shown on the right. Individuals with high levels 

of cortisol, freezing, or vocal reductions (and intermediate levels of the other two responses) 

were characterized by greater metabolic activity in the Ce. Figure adapted with permission 

from (Shackman et al., 2013).
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Figure 4. Elevated dispositional negativity is associated with alterations in Ce functional 
connectivity.
A. Ce-BST connectivity. Fox and colleagues (2018) used fMRI to demonstrate that 

functional connectivity between the Ce (red rings) and BST (black rings) is associated with 

elevated dispositional negativity in a sample of 378 young monkeys drawn from an extended 

8-generation pedigree (N = 1,928). They also showed that Ce-BST functional connectivity is 

genetically correlated with individual differences in dispositional negativity, indicating an 

overlapping pattern of intergenerational transmission. Inset depicts the corresponding plane 

of the rhesus brain atlas. B. Amygdala-Hippocampal connectivity. Kirkby and colleagues 
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(2018) used a combination of intracranial electrophysiological recordings, experience 

sampling, and machine learning techniques to identify an amygdala-hippocampal functional 

network (i.e. temporal variability of coherence in the β band; 13–30 Hz) that reliably 

predicted momentary fluctuations in negative mood among treatment-resistant, adult 

epilepsy patients with elevated levels of dispositional negativity. Figure depicts the spatially 

normalized centroid locations of amygdala (magenta) and hippocampal (orange) recording 

electrodes. C. Ce-dlPFC connectivity. Birn and colleagues (2014) demonstrated that young 

monkeys with elevated levels of dispositional negativity (top) and children with anxiety 

disorders (bottom) show a similar pattern of reduced functional connectivity between the Ce 

(red rings) and dorsolateral PFC (dlPFC; black arrows). Pediatric imaging data were 

collected while patients were quietly resting. Nonhuman primate data were collected under 

anesthesia, eliminating potential individual differences in scanner-elicited apprehension or 

neuroendocrine activation (cf. Shackman et al., 2016c). Abbreviations—L: left hemisphere, 

R: right hemisphere. Portions of this figure were adapted with permission from (Birn et al., 

2014; Fox et al., 2018c; Kirkby et al., 2018).
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Figure 5. The amygdala plays a key role in enhancing attention to threat-relevant information.
a. Amygdala projections. Anatomical tracing studies in monkeys and mechanistic studies 

in rodents indicate that the amygdala can enhance vigilance and prioritize the processing of 

threat-relevant information directly, via monosynaptic projections from the basolateral 

nucleus (BL; see Figure 1) to sensory cortex, and indirectly, via projections from the basal 

nuclei and central nucleus (Ce) to ascending neuromodulatory systems in the basal forebrain 

and brain stem. In turn, these transmitter systems can enhance the signal-to-noise ratio of 

neuronal processing in cortical sensory regions. In this simplified illustration, select 
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projections from the basal forebrain cholinergic (ACh) system to the visual cortex are 

depicted. b. Amygdala activity. Using fMRI, Lim and colleagues demonstrated that 

amygdala activation predicts trial-by-trial fluctuations in threat detection (Lim et al., 2009). 

Mediation analyses revealed that relations between amygdala activation and detection 

performance were explained by increased activation in the visual cortex, consistent with 

work in animals. c. Amygdala damage. In a seminal study, Vuilleumier and colleagues 

(2004) showed that individuals with amygdala damage do not show increased activation to 

threat-related facial expressions in the fusiform face area (FFA) of the visual cortex, 

indicating that the amygdala causally contributes to the enhanced processing of threat-

related stimuli in humans. This observation has since been replicated using more selective 

chemical lesions in monkeys (Hadj-Bouziane et al., 2012). Abbreviations—ACh: 

acetylcholine; FFA: fusiform face area. Portions of this figure were adapted with permission 

from (Tang, Holzel, & Posner, 2015; Vuilleumier et al., 2004).
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Figure 6. The amygdala plays a key role in orienting overt attention to potentially threat-
diagnostic information in the environment. a. Attentional exploration of faces.
Eye tracking data reveal a strong bias for scanning the eye and brow region, particularly for 

fearful faces (Scheller et al., 2012). This bias is evident in both the density of fixations over 

time (top panel: warmer colors indicate higher density) and the likelihood of reflexive 

saccades toward the facial feature presented in the visual periphery (bottom panel). b. 
Amygdala activation and attentional orienting. Individuals with increased activation in 

the right amygdala (indicated by the red ring) are more likely to orient their gaze to the eye 

and brow region of fearful faces (Gamer & Buchel, 2009). C. Amygdala damage impairs 
reflexive orienting. Patient MW has selective damage to the right amygdala (red ring) and 

shows a profound reduction in reflexive saccades to the eye region of the face (Gamer et al., 

2013). Abbreviations—L: left hemisphere, R: right hemisphere. Portions of this figure were 

adapted with permission from (Shackman et al., 2016a).
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Figure 7. Executive control networks.
The frontoparietal (blue) and cingulo-opercular (green)networks are sensitive to a broad 

spectrum of executive function and cognitive control tasks. Abbreviations—AI: anterior 

insula; dlPFC: dorsolateral prefrontal cortex; FO: frontal operculum; IPS: intraparietal 

sulcus; MCC: midcingulate cortex; SMA: supplementary motor area. This figure were 

adapted with permission from (Li et al., 2017)
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