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We used in situ hybridization for the detection of nerve growth
factor (NGF), brain-derived neurotrophic factor (BDNF), and
neurotrophin 3 (NT3) mRNAs combined with immunocyto-
chemistry against the calcium-binding proteins parvalbumin
(PARV), calbindin 28k (CALB), and calretinin (CALR) to deter-
mine the expression of neurotrophins in functionally distinct
subsets of hippocampal interneurons. Most PARV-
immunoreactive neurons in the hippocampus were NGF
mRNA-positive (82%), which corresponds to 71% of NGF-
positive neurons in the hippocampus proper and in the dentate
gyrus (excluding granule cells). In contrast, only a subset of
CALB- and CALR-immunoreactive interneurons (24% and
23%, respectively) displayed hybridization signals for NGF.
Small subsets of PARV- and CALR-positive cells expressed
NT3 mRNA, but we did not find hippocampal interneurons
expressing BDNF mRNA. These results show that NGF and
NT3 genes are differentially regulated in distinct subsets of
GABAergic cells, and these interneurons are a major source of
NGF production in the hippocampus.
We also addressed whether hippocampal interneurons ex-

pressing neurotrophins were targets of the GABAergic septo-

hippocampal pathway. We developed a triple-labeling method
that combines anterograde tracing of this pathway by means of
Phaseolus vulgaris leucoagglutinin injections, with in situ hy-
bridization for the detection of neurotrophins, and immunocy-
tochemistry for calcium-binding proteins. Virtually every PARV-
positive neuron innervated by GABAergic septohippocampal
baskets expressed NGF mRNA (86%), whereas 39–59% of
CALR- and CALB-positive interneurons that were contacted by
GABAergic septohippocampal axons showed NGF gene ex-
pression. A small subset of NT3 mRNA-expressing interneu-
rons was also innervated by septohippocampal baskets. These
findings show that the GABAergic septohippocampal pathway
preferentially terminates on interneurons expressing NGF
mRNA, suggesting that this neurotrophic factor might be in-
volved in the specification of this connection and in its main-
tenance and normal function in the adult brain.
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Neurotrophins, including nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF), and neurotrophins 3 and 4/5
(NT3, NT4), are believed to play a critical role in the development
and maintenance of synaptic connections and to support the
survival of afferent neurons. For this to occur, the production of
neurotrophic factors by target cells and the expression of specific
receptors by afferent fibers must be coordinated temporally and
spatially, in both adult and developing nervous tissue (Barde,
1989; Korsching, 1993; Davies, 1994). For the peripheral nervous
system, there is evidence that several of these neurotrophins may
have specific actions on distinct subpopulations of developing and
mature sensory and sympathetic neurons. In addition, BDNF and
NT3, and more recently NT4, may be the specific neurotrophins

that regulate the survival of motor neurons and the formation of
neuromuscular synapses at sequential developmental stages (Da-
vies, 1994; Ernfors et al., 1994; Johnson and Oppenheim, 1994;
Jones et al., 1994; Klein et al., 1994; Snider, 1994; Funakoshi et al.,
1995; Mettling et al., 1995).
In the CNS, NGF is believed to be essential for the develop-

ment, normal function, and survival of septohippocampal cholin-
ergic neurons (Hefti, 1986; Hartikka and Hefti, 1988; Burke et al.,
1994; Svendsen et al., 1994). There is recent evidence, however,
that adult cholinergic septohippocampal neurons survive after
axotomy and/or target ablation and that they are not dramatically
affected in transgenic mice lacking the NGF or Trk genes (So-
froniew et al., 1990, 1993; Naumann et al., 1992; Crowley et al.,
1994; Smeyne et al., 1994). These data indicate that NGF may be
required not for the survival of these neurons but rather for other
functional aspects, such as the expression of their cholinergic
phenotype or the formation of the pattern of efferent connections.
Moreover, the role of NGF in specifying the connectivity of
cholinergic circuits in the hippocampus is not clear because (1)
cholinergic afferents to the hippocampus are distributed in a
rather diffuse form, with no apparent preference for particular
neuronal types (Frotscher and Leranth, 1985; Leranth and
Frotscher, 1987), and (2) a large number of targets of the cholin-

Received Dec. 19, 1995; revised March 18, 1996; accepted March 21, 1996.
This research was supported by Grants FIS93-0369, SAF94-743, and CIRIT/

GRQ93-1099 (Spain) to E.S. and by the National Scientific Research Foundation
(Hungary), the Human Frontier Science Program, and the Howard Hughes Medical
Institute to T.F.F. N.R. was a recipient of a Ministerio de Educacion y Ciencia
(Spain) postdoctoral fellowship. We are indebted to E. Arenas for the gift of the
NGF cDNA probe. We thank Drs. P. Gaspar, R. Miles, R. Rycroft, and C. Sotelo for
critical reading of this manuscript.
Correspondence should be addressed to Dr. Eduardo Soriano, Departamento de

Biologı́a Celular Animal y Vegetal, Facultad de Biologı́a, Universidad de Barcelona,
Diagonal 645, Barcelona 08028, Spain.
Copyright q 1996 Society for Neuroscience 0270-6474/96/163991-14$05.00/0

The Journal of Neuroscience, June 15, 1996, 16(12):3991–4004



ergic afferents (namely the pyramidal neurons) do not show
detectable levels of NGF mRNA (Lauterborn et al., 1993). NGF,
however, might act coordinately with BDNF on cholinergic sep-
tohippocampal neurons, because BDNF is expressed widely in the
hippocampus and seems to participate in the trophic support of
septal cholinergic neurons (Alderson et al., 1990; Knüsel et al.,
1991; Wetmore et al., 1991; DiStefano et al., 1992; Burke et al.,
1994).
The septohippocampal pathway has a second set of fibers, the

GABAergic component (Köhler et al., 1984), whose dependence
on trophic factors is not understood. GABAergic septohippocam-
pal fibers, like cholinergic axons, arise from the medial septum/
diagonal band complex and establish synaptic contacts almost
exclusively with hippocampal GABAergic interneurons (Freund
and Antal, 1988; Gulyás et al., 1990; Acsàdy et al., 1993). The
axons from this component form multiple pericellular arrays of
boutons around the cell bodies and dendrites of various interneu-
ronal cell types. Because GABAergic hippocampal interneurons
are known to control the activity of large numbers of hippocampal
principal neurons (Soriano et al., 1990; Gulyás et al., 1993a,b; Han
et al., 1993; Buhl et al., 1994), activation of the GABAergic
septohippocampal pathway is proposed to lead to a powerful
disinhibition or synchronization of hippocampal principal cells
(Tóth et al., 1995). Moreover, the high degree of target specificity
achieved by GABAergic septohippocampal axons, which ignore
the far more numerous principal neurons and select GABAergic
interneurons as postsynaptic targets, would require rather exquis-
ite mechanisms of synaptic specification, which have not been
elucidated. These considerations, together with the recent finding
that NGF mRNA is expressed in GABAergic hippocampal neu-
rons (Lauterborn et al., 1993), raise the possibility that neurotro-
phic factors may participate in the formation of the GABAergic
septohippocampal pathway and its maintenance in the adult.
In the present study, we used in situ hybridization for the

detection of neurotrophins, combined with immunocytochemistry
against several interneuronal markers, and we show that NGF and
NT3 gene expression is differentially regulated in distinct subsets
of hippocampal interneurons, whereas BDNF mRNA is absent in
these neurons. In a second set of experiments, we combined
anterograde axonal tracing with Phaseolus vulgaris leucoagglutinin
(PHAL) and in situ hybridization histochemistry, and we show
that hippocampal interneurons expressing NGF and NT3 are
targets of GABAergic septohippocampal axons, thus supporting a
role of these trophic factors in the specification and normal
functioning of the GABAergic septohippocampal pathway.

MATERIALS AND METHODS
In situ hybridization combined with immunocytochemistry. Wistar adult
rats (n 5 17) from our breeding colony were anesthetized deeply with
ether and perfused with 4% paraformaldehyde in 0.1 M phosphate buffer,
pH, 7.4. After they were dissected, brains were postfixed in the same
solution overnight, cryoprotected in 30% sucrose, and frozen on dry ice.
Coronal sections (25 mm) were kept in a cryoprotectant solution at2708C
until use.
In situ hybridization histochemistry and immunocytochemistry were

performed sequentially on “free-floating” tissue sections, essentially as
described elsewhere (Gall and Isackson, 1989; de Lecea et al., 1994).
Sections were deproteinized with 0.2 N HCl, acetylated with 0.25% acetic
anhydride in 0.1 M triethanolamine, pH 8.0, and prehybridized for 3 hr at
558C in a solution containing 50% formamide, 0.62 M NaCl, 10% dextran
sulfate, 50 mM DTT, 20 mM PIPES, pH 6.8, 0.2% SDS, 10 mM EDTA, 53
Denhardt’s solution, and 500 mg/ml sheared salmon sperm DNA. Prehy-
bridization solution was drained off, and the antisense NGF, BDNF, or
NT3 (35S)-labeled riboprobes (10–20 3 106 cpm/ml) were diluted in the
same solution, to which 250 mg/ml yeast tRNA was added. Hybridization

was performed at 558C overnight. After they were rinsed, sections were
incubated with 10 mg/ml RNase A in 10 mM Tris, pH 7.5, 5 mM EDTA,
and 0.5 M NaCl (1 hr at 378C), and final stringency washes were carried
out in 0.53 SSC/50% formamide (3 hr, 558C) and in 0.13 SSC/0.5%
sarkosyl (1 hr, 608C).
Sections were rinsed in PBS and subsequently immunostained for

calcium-binding proteins. After blocking with 10% normal goat serum
and 4% bovine serum albumin (BSA), sections were incubated overnight
with rabbit polyclonal antibodies against parvalbumin (PARV), calbindin
28k (CALB), or calretinin (CALR) (diluted 1:2000; Swant antibodies,
Bellinzona, Switzerland). These antibodies have been characterized else-
where (Schwaller et al., 1993). Primary antibodies were visualized using
biotinylated goat anti-rabbit antibodies and the avidin–biotin peroxidase
complex (ABC) (both diluted 1:200; Vector Labs, Burlingame, CA).
Immunoreagents were diluted in PBS containing 0.2% Triton X-100 and
0.5% BSA. Peroxidase was developed with 0.05% diaminobenzidine
(DAB) and 0.005% hydrogen peroxide. Sections were mounted onto
gelatinized slides, dipped in NTB-2 (Kodak) autoradiographic emulsion
diluted 1:1, and exposed for 4–6 weeks at 48C. Thereafter, sections were
developed with Kodak D-19, fixed, and coverslipped with DPX.
Anterograde tracing with PHAL combined with in situ hybridization and

immunocytochemistry. Eight male Wistar rats (200–300 gm body weight;
Charles River, Budapest, Hungary) were used for the PHAL-tracing
experiments. The animals received bilateral or midline injections of
PHAL (2.5%, Vector) into the medial septum at two anteroposterior
(AP) levels and at three dorsoventral (DV) injection points under
Equitesin (chlornembutal 0.3 ml/kg) anesthesia by iontophoresis (5mA
positive direct current, 7 sec on/off cycle; Gerfen and Sawchenko, 1984).
Stereotaxic coordinates for the midline injections were (from bregma):
AP 10.4 and 11.0, and DV 7.8, 6.8, and 5.8 for both tracks. In the
bilaterally injected animals, the same coordinates were used twice, taking
the left and right sides of the medial sinus as lateral coordinates. This
protocol results in PHAL injection in the medial septum and the vertical
limb of the diagonal band, areas that have been reported to contain the
highest proportion of PARV-containing GABAergic septohippocampal
neurons (Freund, 1989; Kiss et al., 1990; Naumann et al., 1994).
After 1 week of survival, the animals were anesthetized again with

Equitesin and perfused through the heart with 4% paraformaldehyde in
0.1 M phosphate buffer. After they were dissected, the brains were
postfixed overnight, cryoprotected with sucrose, frozen, and sectioned at
25 mm. Sections were then processed for in situ hybridization histochem-
istry for the detection of NGF, NT3, and BDNF transcripts, as described
above. After they were blocked, the sections were incubated with a
mixture of primary antibodies: biotinylated goat anti-PHAL (dilution
1:200; Vector) plus one of the rabbit-raised antibodies against PARV,
CALB, or CALR (diluted 1:2000). The next day, anti-PHAL primary
antibody was visualized by incubating the sections with ABC (2 hr)
followed by development using DAB/cobalt as chromogen, which renders
the reaction end-product black. Calcium-binding protein immunoreactiv-
ity was then visualized by sequential incubation with biotin-coupled goat
anti-rabbit antibodies and the ABC (2 hr each). This second immuno-
peroxidase reaction was developed with DAB alone. Thereafter, the
sections were mounted, processed for emulsion autoradiography, and
coverslipped as described above.
Analysis of the material.Microscopic observations, both qualitative and

quantitative, were focused on sections corresponding to the dorsal third
of the hippocampus. Because the autoradiographic background level was
less than five to six silver grains per cell, neuronal somata were considered
to show positive hybridization when they were overlaid by 12 or more
autoradiographic silver grains, although positive neurons normally dis-
played .25 silver grains (see Figs. 2, 5). The distribution of double- and
triple-labeled neurons in representative hippocampal sections was plotted
onto camera lucida drawings. For the quantitative analysis, the numbers
of immunoreactive neurons displaying positive and negative hybridization
in different hippocampal fields were counted in 12–18 sections from two
to three animals, for each calcium-binding protein.
Riboprobes and controls. BDNF and NT3 cDNA clones were obtained

by PCRamplification of rat genomicDNAusing 59-AACATGTTCATGA-
GGGTCCG-39 and 59-CTATCTTCCCCTCTTAATGGT-39 (BDNF) and
59-GGTCAGAATTCCAGCCGATGA-39 and 59-GGCACACACACA-
GGAAGTGTC-39 (NT3) oligonucleotides as primers, and the conditions
described elsewhere (Isackson et al., 1991). Amplified sequences, corre-
sponding to nucleotides 439–822 (BDNF) and 325–838 (NT3) of rat
cDNA sequences (Hofer et al., 1990; Maisonpierre et al., 1990), were
subcloned into PCRTMII. To obtain antisense riboprobes, plasmids were
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linearized with Xbal, and transcription was carried out in the presence of
35S-UTP using SP6, following the Promega Riboprobe Kit protocol. NGF
cDNA clone, 777 bp of the rat prepro-NGF (Whittemore et al., 1988)
subcloned into pXM, was a gift of E. Arenas (Karolinska Institute,
Stockholm, Sweden). NGF fragment (nucleotides 1–777) was subcloned
into pT7T3 (EcoRi), linearized by SmaI, and transcribed with T7. Control
hybridizations, performed either with tissue pretreated with RNase A or
with sense strand-labeled riboprobes, did not show autoradiographic
labeling above background levels.

RESULTS
NGF and NT3 are expressed in different subsets of
hippocampal interneurons
To determine the types of interneurons expressing NGF, NT3,
and BDNF in the rat hippocampus, radioactive in situ hybridiza-
tion was combined with the immunoperoxidase detection of the
calcium-binding proteins PARV, CALB, and CALR, which label
nonoverlapping subpopulations of GABAergic hippocampal neu-
rons (Celio, 1990; Gulyás et al., 1991; Miettinen et al., 1992). In
agreement with previous studies (Gall and Isackson, 1989; Ernfors
et al., 1990), NGF mRNA-positive neurons were distributed
sparsely throughout the hippocampus proper (CA1–CA3), hilus,
and dentate gyrus, tending to concentrate around the main neu-
ronal laminae and the pyramidal and granule cell layers. In
addition, the dentate granule cells showed weak autoradiographic
signals (Fig. 1A). The distribution of PARV-immunoreactive neu-
rons was also consistent with the literature (Kosaka et al., 1987;
Katsumaru et al., 1988; Celio, 1990; Nitsch et al., 1990; Gulyás et
al., 1991), with immunolabeled interneurons scattered around the
pyramidal and granule cell layers and in the hilus (Figs. 1B, 4). A
pericellular plexus of PARV-positive boutons around the un-
stained somata of granule and pyramidal neurons could also be
seen (Figs. 1B, 2A), corresponding to the axons of basket and
axo-axonic chandelier cells (Katsumaru et al., 1988; Soriano et al.,
1990; Gulyás et al., 1993a; Han et al., 1993; Buhl et al., 1994).
Double-labeled preparations showed that most PARV-
immunoreactive neurons were NGF mRNA-positive (Fig. 2A,B).
As illustrated in Table 1, 80–94% of PARV-immunoreactive cells
displayed NGF mRNA expression in the various hippocampal
subdivisions. The degree of colocalization might be higher, in fact,
because most PARV-positive, NGF mRNA-negative neurons
were at the bottom of the tissue sections, which might have caused
partial autoradiographic exposure. Furthermore, with the excep-
tion of the granule cells, up to 71% of the NGF mRNA-expressing
neurons were PARV-positive in the hippocampus proper and
dentate gyrus (n 5 933 cells), further stressing the high degree of
correspondence between PARV-immunostaining and NGF
mRNA hybridization (Figs. 3, 4). In the hilar region, however,
67% of NGF mRNA-positive neurons (n 5 244) were unlabeled
using PARV antibodies.
The patterns of CALR- and CALB-immunostaining were

markedly different from that described for PARV-
immunoreactivity (Celio, 1990; Gulyás et al., 1991, 1992; Mietti-
nen et al., 1992; Tóth and Freund, 1992). Thus, both CALR- and
CALB-positive interneurons were present mainly in the plexiform
layers outside the hippocampal cell layers (Figs. 1D,F, 4). In
addition, the dentate granule cells and their axons, the mossy
fibers, and also a subpopulation of pyramidal neurons in the upper
half of the pyramidal layer in CA1 displayed CALB-
immunoreactivity (Fig. 1D). In sections hybridized for NGF
mRNA and immunoreacted for CALB or CALR, double-labeled
neurons were observed with both calcium-binding proteins (Figs.
2C–F, 4). The percentages of CALB- and CALR-immunoreactive

interneurons expressing NGF mRNA were low in the CA1 and
dentate regions (5–17%, Table 1), the degree of colocalization
being higher for both calcium-binding proteins in the CA3 and
hilar regions (;30%, Table 1). Double-labeled NGF/CALB- and
NGF/CALR-positive neurons were present within all hippocam-
pal layers intermingled with immunoreactive neurons, which did
not display hybridization signals (Fig. 4). Most NGF/CALB-
positive neurons, however, were located in the stratum oriens,
whereas NGF/CALR-immunoreactive neurons tended to be
abundant, particularly in the hilus and in the stratum lucidum and
radiatum in CA3. In contrast, for both calcium-binding proteins,
immunoreactive cells in the stratum radiatum and lacunosum
moleculare of CA1 were hardly seen to display NGF hybridiza-
tion. With the exception of granule cells, CALB- and CALR-
immunoreactive neurons represented 5.5% (n 5 703 cells) and
18.2% (n 5 875 cells), respectively, of the total NGF mRNA-
positive population. These results, together with that of PARV-
immunostaining, emphasize that NGF gene expression is differ-
entially regulated in several subsets of GABAergic hippocampal
interneurons. Moreover, we did not find evidence for the expres-
sion of NGF mRNA in pyramidal neurons, either in sections
immunolabeled for CALB (which stain some pyramidal neurons
in CA1) or in Nissl-stained material (not shown).
We also investigated whether NT3 and BDNF were expressed in

GABAergic hippocampal interneurons. In agreement with former
data (Ernfors et al., 1990; Rocamora et al., 1992; Lauterborn et al.,
1994), the granule cells in the dentate gyrus and the pyramidal
neurons in CA2 exhibited positive NT3 hybridization (Fig. 1C). In
addition, clusters of autoradiographic silver grains were seen scat-
tered through the several hippocampal layers, especially in the CA3
region. Approximately 16% of PARV-positive neurons in the hip-
pocampus showed hybridization for NT3 mRNA, most of them
being located within or close to the pyramidal layer (Figs. 2G,H, 4,
Table 1). We found almost no CALB-positive interneurons labeled
for NT3 mRNA, but a significant and consistent proportion of
CALR-immunoreactive cells displayed NT3 mRNA hybridization
(13%, Table 1). NT3/CALR-positive neurons were more abundant
in the CA3 region and in the hilus, but they also occurred in the
remaining hippocampal fields (Fig. 4). In both PARV- and CALR-
immunoreacted sections, we observed clusters of autoradiographic
silver grains over numerous immunonegative neurons (not shown),
thus suggesting that other types of interneurons, which are not
visualized using calcium-binding protein immunocytochemistry, do
express NT3 mRNA.
Sections hybridized for BDNF mRNA showed the characteris-

tic pattern of expression for this neurotrophin (Hofer et al., 1990;
Isackson et al., 1991), with the pyramidal and granule cell layers
being heavily labeled (Fig. 1E). As shown with PARV, CALR, or
CALB antibodies, however, hippocampal interneurons did not
express BDNF mRNA (Fig. 3). Taken together, the present data
demonstrate a differential regulation of neurotrophic factors in
hippocampal GABAergic neurons, with NGF mRNA being ex-
pressed in most PARV-immunoreactive cells and in a subset of
CALR- and CALB-positive neurons, and NT3 mRNA expression
restricted to a small subpopulation of PARV- and CALR-
containing cells and to interneurons lacking these calcium-binding
proteins.

Neurotrophin expression in postsynaptic targets of the
GABAergic septohippocampal pathway
To determine whether hippocampal interneurons expressing NGF
and NT3 mRNAs were targets of the GABAergic septohippocam-
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pal afferents, a triple-labeling approach was undertaken. To label
septohippocampal fibers, the anterograde tracer PHAL was in-
jected in the medial septum/diagonal band. Sections were hybrid-
ized with radioactive riboprobes and then subjected to a double-

immunoperoxidase reaction, allowing the identification of both
afferent axons and target neurons. Although the DAB-cobalt
reaction product faded slightly during the autoradiographic pro-
cessing and resulted in a dark brown color, the PHAL-labeled

Figure 1. Distribution of NGF, NT3, and BDNF mRNAs in sections from the dorsal hippocampus immunostained for calcium-binding proteins. All pairs
of photomicrographs are from the same section except in C and D. A, B, Dark-field photomicrograph (A) illustrating NGF mRNA autoradiographic
labeling in a PARV-immunoreacted section (B). NGF mRNA hybridization is observed in the dentate gyrus and in cells scattered throughout the
hippocampal layers (small arrows). PARV-immunoreactivity is concentrated around the main cell layers. C, Dark-field image showing NT3 hybridization
signals in the dentate granule cell layer and in the CA2 pyramidal layer. D, CALB-immunoreacted section showing immunolabeling in dentate granule
cells and their axons, the mossy fibers (small arrows). Some nonpyramidal immunoreactive neurons are observed in several layers. E, F, A pair of
photomicrographs of the same field showing BDNF mRNA hybridization (E) and CALR-immunostaining. F, BDNF transcripts are detected in the
dentate granule cell layer and in the pyramidal cell layer. CALR-immunopositive nonpyramidal neurons are present in the different hippocampal layers.
CA1, CA2, CA3, Hippocampal fields;DG, dentate gyrus; h, hilus; sg, stratum granulare; sm, stratum moleculare; so, stratum oriens; sp, stratum pyramidale;
sr, stratum radiatum. Scale bar, 200 mm.
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Figure 2. Expression of NGF and NT3 mRNAs in hippocampal interneurons identified with calcium-binding protein immunocytochemistry. Pairs of
photomicrographs show the same fields focused at either the plane of the tissue sections or the overlying autoradiographic emulsion. Double-labeled
neurons are indicated by arrows. A, B, Several PARV-positive neurons express NGF mRNA in the CA1 region. C, D, One CALR-immunolabeled neuron
in the stratum lucidum (sl) of CA3 is overlaid by autoradiographic silver grains after NGF hybridization. E, F, Two CALB-positive neurons in stratum
oriens (so) of CA3 show positive hybridization for NGF. G, H, Several PARV-immunopositive neurons in the pyramidal layer (sp) of CA3 express NT3
mRNA; open arrow points to a PARV/NT3-negative interneuron. Scale bar, 50 mm.
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fibers were clearly discernible on the basis of their dark color and
the typical pericellular arrangement and size of the terminal axons
(Fig. 5).
As described elsewhere (Freund and Antal, 1988; Acsàdy et al.,

1993), two types of PHAL-labeled fibers could be distinguished.
One group of axons was very thin and varicose, displaying numer-
ous small “en passant” boutons (0.3–0.8 mm in diameter) at
regular spacing, corresponding to the cholinergic fibers. The
GABAergic septohippocampal fibers, the second type of PHAL-
labeled axons, were easily identified by their distinctive morphol-
ogy, with thick fibers having clusters of large axon terminals (0.5–2
mm). As seen in double-immunostained material, these clusters of
boutons typically formed basket-like, pericellular arrays around
the somata and dendrites of GABAergic interneurons (Fig. 5).
Previous electron microscopic studies have demonstrated that
these large boutons form GABAergic synapses on their target
cells (Freund and Antal, 1988; Gulyás et al., 1990).
The hybridization patterns for NGF, NT3, and BDNF mRNAs

in this material did not differ from sections obtained from animals
that had not been injected with PHAL, either in the distribution
or in the intensity of autoradiographic signals. This indicates that
possible changes in the expression of neurotrophic factors caused
by surgery or iontophoresis (Balları́n et al., 1991) are undetectable
at the survival times used here. As expected, virtually every
PARV-positive neuron in the dentate gyrus, hilus, and CA3 that
was surrounded by PHAL-labeled axon terminals (Figs. 5A,B, 6),
and thus receiving input from GABAergic septohippocampal fi-
bers, displayed positive hybridization for NGF mRNA (86–95%,
Table 1), the percentage being lower in CA1 (75%). In addition,
there were NGF/PARV-positive neurons that were not contacted
by PHAL-labeled baskets; this may be attributable to the fact that
only a fraction of septohippocampal axons were filled by our
PHAL injections.
In CALB-immunoreacted sections, up to 59% of the immu-

nopositive neurons contacted by PHAL-labeled boutons displayed
NGF mRNA hybridization (Figs. 5E,F, 6; Table 1). Considering
that CALB/NGF-positive neurons represent only 24% of the total
CALB-positive population, the above data indicate that GABAer-
gic septohippocampal fibers have a preference for terminating on
CALB/NGF-positive cells, compared with CALB/NGF-negative
neurons. The same holds true, although markedly less, for PHAL-
positive baskets terminating around CALR-immunoreactive neu-
rons (39% vs 23%, Table 1; Figs. 5C,D, 6). Moreover, such a
preference was observed consistently in the different hippocampal
subfields, for both CALB and CALR (Table 1). GABAergic
septohippocampal, PHAL-labeled baskets terminating onto
CALR- and CALB-immunoreactive neurons that were NGF
mRNA-negative were present mainly in the stratum radiatum of
the hippocampus proper (Fig. 6), suggesting that they might
belong to particular subpopulations of interneurons. These results
show that GABAergic septohippocampal fibers have a preference
for terminating on NGF mRNA-positive interneurons displaying
PARV-, CALB- or CALR-immunoreactivities.
As described above, there were PHAL-labeled baskets around

both immunostained and immunonegative neurons that did not
express NGFmRNA. To ascertain whether some of these neurons
might express NT3 or BDNF mRNAs, PHAL-labeled sections
were also hybridized for these neurotrophins. Consistent with our
double-labeling observations, PHAL-positive baskets were ob-
served terminating on CALB/NT3-positive neurons only very ex-
ceptionally. In contrast, 23% and 11% of the PARV- and CALR-
immunoreactive neurons that were innervated by PHAL-labeled

Figure 3. Lack of BDNF expression in hippocampal interneurons. A, B,
Pair of photomicrographs illustrating PARV-positive interneurons (arrows
in A) in the CA3 region, which are unlabeled with the BDNF riboprobe
(B). C, Several CALR-positive interneurons (arrows) in the CA3 region
show negative hybridization for BDNF mRNA; dashed lines label the
pyramidal layer (sp). Notice the dense hybridization signals in the pyra-
midal layer. sr, Stratum radiatum; so, stratum oriens. Scale bar, 50 mm.
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boutons were overlaid by silver grains, indicating that some
GABAergic septohippocampal fibers terminate on NT3 mRNA-
expressing interneurons (Fig. 5G,H; Table 1). Such triple-labeled,
NT3-positive neurons were particularly frequent in the stratum
radiatum of CA3 and in the stratum oriens of CA1 (Fig. 6). No
GABAergic septohippocampal fibers were seen to terminate
around neurons showing positive hybridization for BDNF mRNA.

DISCUSSION
NGF mRNA is differentially expressed in distinct
subsets of hippocampal interneurons
An essential step in unraveling the functions of neurotrophic
factors is to determine which neuronal subsets express each neu-

rotrophin and to establish their association with specific afferent
systems (Davies, 1994). Neurotrophic factors are expressed at
high levels in the hippocampal region (Gall and Isackson, 1989;
Ernfors et al., 1990, 1991; Hofer et al., 1990; Isackson et al., 1991;
Gall et al., 1991; Rocamora et al., 1992, 1994; Lauterborn et al.,
1994). By taking advantage of the simple, laminated structure of
the hippocampus, it has been concluded that dentate granule cells
coexpress variable amounts of transcripts encoding for NGF,
BDNF, and NT3. In addition, most pyramidal neurons express
BDNF mRNA, whereas NT3 transcripts are localized exclusively
to a subset of pyramidal neurons in the CA2. In contrast, the low
density and scarcity of hybridization signals for NGF mRNA in

Figure 4. Camera lucida drawings from dorsal hippocampal sections illustrating the distribution of nonpyramidal neurons immunoreactive for the
calcium-binding proteins (CBP) PARV, CALB, and CALR, expressing NGF (left) and NT3 (right) transcripts. Double-labeled cells are represented by
filled circles. Immunoreactive neurons showing no NGF mRNA hybridization signal are indicated by open circles. Triangles in the PARV-immunoreacted
section (top, to the left) indicate the distribution of NGF-positive/PARV-negative neurons. Plots represent the distribution of cells within one tissue
section. CA1, CA3, Hippocampal fields; DG, dentate gyrus; h, hilus; sg, stratum granulare; sm, stratum moleculare; so, stratum oriens; sp, stratum
pyramidale; sr, stratum radiatum. Scale bar, 500 mm.
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Figure 5. Expression of NGF and NT3 mRNAs in hippocampal interneurons receiving GABAergic septohippocampal input after PHAL injections in
the septum. Triple-labeled neurons are indicated by large arrows. A, B, A PARV-positive neuron in stratum radiatum (sr) of the CA1 region is contacted
by several PHAL-labeled, GABAergic septohippocampal boutons forming a pericellular array (small arrows), and it expresses NGF mRNA. C, D,
Expression of transcripts encoding for NGF in a CALR-positive hilar neuron (h) receiving input from GABAergic septohippocampal axons (small arrows).
A CALR-positive neuron not innervated by GABAergic fibers is lacking NGF mRNA (open arrow). E, F, A triple-labeled, CALB-positive neuron in
stratum oriens (so) of CA3 expresses NGF mRNA. G, H, Expression of NT3 mRNA in a PARV-positive interneuron in the hilar region of the dentate
gyrus is surrounded by PHAL-labeled boutons (small arrows) in a basket-like fashion. Notice the dense NT3 hybridization in the granule cell layer (sg).
sp, Stratum pyramidale. Scale bar, 50 mm.
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the pyramidal layer have led to controversial data regarding
whether hippocampal pyramidal cells express transcripts for this
neurotrophin. Using a double in situ hybridization technique, a
recent study has shown that .90% of hippocampal neurons
expressing NGF mRNA also expressed transcripts for the GABA
biosynthetic enzyme glutamic acid decarboxylase (Lauterborn et
al., 1993). Our results indicating that GABAergic interneurons
identified by calcium-binding protein immunocytochemistry ex-
hibit NGF mRNA hybridization agree with this observation. In
addition, we show that NGF is differentially expressed in distinct
subsets of hippocampal interneurons and that a small subset of
these neurons express NT3 mRNA.

Our results show that most PARV-immunoreactive interneu-
rons (82%) express NGF mRNA. The actual percentage may be
even higher, because NGF mRNA-expressing neurons with the
somata cut at the bottom of the tissue section were probably
falsely considered negative, so that virtually every PARV-
immunoreactive neuron in the hippocampus may be NGF-
positive. In contrast, only 23–24% of hippocampal interneurons
that are immunoreactive for CALB and CALR express NGF.
Furthermore, double-labeled, CALB- and CALR-positive neu-
rons have characteristic distribution patterns, being concentrated
in the hilus and the stratum oriens and radiatum, which indicates
that they might belong to a unique immunoreactive subpopula-

Figure 6. Camera lucida drawings showing the distribution of triple-labeled cells (circles) innervated by PHAL-labeled fibers that express either NGF
(left) or NT3 (right), and one of the three calcium-binding proteins (CBP). The distribution of neurons showing calcium-binding protein immunostaining
and PHAL-labeling but not expression of neurotrophins is indicated by open circles. Plots represent the distribution of cells within one tissue section,
except for the CALB-immunoreacted section (two sections). Abbreviations as in Figure 4. Scale bar, 500 mm.
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tion. Our results also show that all together, the interneurons
immunostained for PARV (71%), CALB (5%), and CALR (18%)
account for nearly 94% of the total NGF-positive population in
the hippocampus, with the exception of granule cells. These data
support the conclusion that interneurons are a major source of
NGF production in the hippocampus and that hippocampal in-
terneurons that are not visualized using calcium-binding proteins
as markers (e.g., those containing certain neuropeptides; M. Pas-
cual, N. Rocamora, L. Acsàdy, T. F. Freund, E. Soriano, unpub-
lished data) represent only a minor population.
The calcium-binding proteins PARV, CALB, and CALR are

present in functionally different classes of hippocampal interneu-
rons (Katsumaru at al., 1988; Soriano et al., 1990; Gulyás et al.,
1991, 1993a; Miettinen et al., 1992; Han et al., 1993; Soriano and
Frotscher, 1993a; Buhl et al., 1994; Miles et al., 1995; Soltesz et al.,
1995). Thus, PARV-positive cells are responsible for perisomatic
inhibition controlling the pattern of output of principal cells,
whereas CALB-immunoreactive neurons produce dendritic inhi-
bition regulating the efficacy and plasticity of synaptic input. In
addition, both subsets of interneurons fire at different frequency
and mediate their inhibitory actions via distinct GABA receptors.
CALR-positive cells seem to be involved in the synchronization of
inhibitory cell activity (Gulyás et al., 1995). We can only speculate
about the mechanisms that could be responsible for the synthesis
of NGF in some interneurons but not in others. Because NGF
expression is regulated by synaptic activity (Zafra et al., 1990,
1991; Ernfors et al., 1991; Gall et al., 1991; Rocamora et al., 1992,
1994), however, it is possible that the expression of NGF mRNAs
mostly in PARV-positive interneurons may be determined by the
highly active, “fast-spiking” electrophysiological behavior of this
particular population.

Subsets of hippocampal interneurons express NT3 but
not BDNF mRNA
In addition to expressing NGF, some hippocampal interneurons
express NT3 mRNA, whereas BDNF mRNA is absent from
nonpyramidal cells. The lack of BDNF expression in nonpyrami-
dal neurons agrees with studies reporting localization of BDNF

mRNA in pyramidal and granule cells (Hofer et al., 1990; Isack-
son et al., 1991). Furthermore, findings in transgenic mice lacking
the BDNF gene and studies reporting TrkB expression in hip-
pocampal interneurons indicate that these neurons are dependent
on the trophic support of BDNF (Jones et al., 1994; Marty et al.,
1996).
NT3 mRNA is expressed in a small percentage of hippocampal

interneurons (16 and 13% of PARV- and CALR-positive cells,
respectively). Although we have not performed double-labeling
experiments, the high number of NGF/PARV-positive neurons
indicates that NT3 and NGF mRNAs are likely to be coexpressed
in some PARV-positive neurons. Additional analyses are needed
to ascertain whether expression of NT3 and NGF mRNAs may
overlap in CALR-immunoreactive neurons. Finally, there were
many NT3 mRNA-positive/CALR-negative neurons in the plexi-
form layers, where PARV-immunoreactive neurons are absent,
indicating that additional classes of interneurons that do not
display calcium-binding proteins are likely to synthesize NT3.

Hippocampal interneurons expressing NGF and NT3
are preferential targets of the GABAergic
septohippocampal pathway
Neurotrophic factors are believed to be involved in the formation,
maintenance, and plasticity of specific afferent connections, and in
the survival of afferent neurons. Depending on their laminar
location, the different hippocampal interneurons receive distinct
patterns of innervation from intrinsic and extrinsic afferents. For
instance, interneurons in the hilus and stratum lucidum receive
their principal input from the mossy fibers (Gulyás et al., 1992;
Soriano and Frotscher, 1993b), and GABAergic neurons whose
dendrites are restricted to other layers, such as the stratum lacu-
nosum moleculare or the dentate molecular layer, receive their
major inputs from the entorhinal cortex or the commissural/
associational system (Lacaille and Schwartzkroin, 1988; Soriano et
al., 1990; Gulyás et al., 1991). Although NT3 might be involved in
the specification of the major afferent systems to the hippocam-
pus, the wide regional and laminar distribution of interneurons
expressing NGF, together with the lack of Trk transcription in the

Table 1. Percentages of interneurons expressing NGF and NT3 and of triple-labeled cells in the different hippocampal regions

DG H CA3 CA1 TOTAL

NGF % (n) % (n) % (n) % (n) % (n)
PARV 82.6 (201) 93.8 (130) 81.3 (487) 80.0 (509) 81.8 (1327)
PARV1PHAL 95.2 (42) 94.6 (56) 86.3 (175) 75.2 (105) 85.5 (378)
CALR 5.2 (134) 28.3 (159) 31.5 (355) 17.0 (270) 23.0 (918)
CALR1PHAL 31.3 (16) 41.9 (37) 53.3 (78) 27.3 (33) 38.8 (164)
CALB 9.0 (22) 28.6 (28) 33.2 (241) 16.0 (250) 24.0 (541)
CALB1PHAL (3) 55.5 (9) 60.5 (119) 41.2 (51) 59.0 (182)

NT3
PARV 5.0 (179) 18.4 (125) 18.1 (276) 19.2 (416) 16.3 (996)
PARV1PHAL 9.3 (43) 26.4 (53) 26.1 (73) 30.6 (111) 23.3 (280)
CALR 0.8 (122) 5.6 (177) 24.1 (356) 9.9 (342) 13.1 (997)
CALR1PHAL (16) 7.7 (46) 25.8 (71) 1.8 (57) 11.2 (190)
CALB (36) (39) 1.9 (204) (232) 0.8 (511)
CALB1PHAL (3) (18) 2.5 (80) (55) 1.3 (156)

Percentages of neurons immunoreactive for the calcium-binding proteins PARV, CALR, and CALB, showing positive hybridization for NGF and NT3 mRNAs, with respect
to the number of immunoreactive neurons. Data are presented for the different hippocampal subfields (CA1, regio superior; CA3, regio inferior; H, hilus; DG, dentate gyrus),
and for the entire hippocampus (TOTAL). The percentage of calcium-binding protein/PHAL-labeled neurons showing NGF or NT3 hybridization (triple-labeled neurons) with
regard to the number of double-labeled cells (calcium-binding protein/PHAL-positive) is also indicated. The number of cells counted is indicated in parentheses.
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entorhinal cortex and hippocampus itself (Gibbs and Pfaff, 1994),
does not support an involvement for this neurotrophic factor in
the establishment of the main afferent connections to interneu-
rons. In contrast, the GABAergic septohippocampal pathway
shows a high degree of synaptic specificity, with afferent fibers
terminating almost exclusively onto different subsets of hippocam-
pal GABAergic interneurons (Freund and Antal, 1988; Gulyás et
al., 1990), indicating that the formation of this connection re-
quires the involvement of highly specific cell-to-cell interactions.
Here we studied whether hippocampal GABAergic cells express-
ing neurotrophins were postsynaptic targets of GABAergic sep-
tohippocampal axons. Our results show that virtually all PARV-
immunoreactive interneurons innervated by GABAergic
septohippocampal afferents express NGF mRNA. A good corre-
lation is also observed for CALR- and CALB-positive interneu-
rons, with roughly half the number of PHAL-labeled septohip-
pocampal baskets terminating onto immunoreactive neurons
expressing NGF. Taking into account that the number of PARV-
immunoreactive interneurons in the hippocampus is at least
threefold the number of CALR- and CALB-positive interneurons
(our unpublished observations; also see Celio, 1990; Gulyás et al.,
1991, Miettinen et al., 1992), we conclude that a large proportion
of GABAergic septohippocampal fibers (; 80%) terminate on
NGF mRNA-expressing hippocampal interneurons.
We found that some GABAergic septohippocampal fibers also

terminate on interneurons expressing NT3 mRNA. NT3 is trans-
ported retrogradely by some septohippocampal neurons after
injections of this neurotrophin into the hippocampus (DiStephano
et al., 1992), and its specific receptor, TrkC, is expressed in the
septal region (Merlio et al., 1992; Lamballe et al., 1994). There
could be two different types of GABAergic septohippocampal
neurons selectively contacting either NGF- or NT3-expressing
hippocampal interneurons. It is equally possible that the same
GABAergic septohippocampal neuron could form connections
simultaneously onto NGF- and NT3-producing cells. Experimen-
tal studies after axotomy or target ablation have not provided
evidence for a role of NT3 as a trophic factor for septohippocam-
pal neurons (Burke et al., 1994), although the involvement of NT3
in the specification of the septohippocampal connections or in the
modulation of synaptic plasticity remains to be elucidated. In
addition, a few PHAL-labeled baskets were observed around
interneurons that do not express NGF or NT3. For instance, the
CALB-positive population in the stratum radiatum and lacuno-
sum moleculare in CA1 do not express NGF or NT3 mRNAs,
although they receive afferent input from GABAergic septohip-
pocampal axons (Freund and Antal, 1988). We cannot rule out at
present that these particular populations of interneurons might
synthesize other neurotrophic factors, such as NT4.

Possible functions of NGF and NT3 in the GABAergic
septohippocampal pathway
One possible function for NGF in the GABAergic septohip-
pocampal pathway could be the establishment and maturation of
this connection and its maintenance in adults. The high correla-
tion between the timing of formation of the GABAergic septo-
hippocampal pathway and the onset of NGF expression in the
hippocampus (Linke and Frotscher, 1993; Lauterborn et al., 1994;
Supèr and Soriano, 1994; Li et al., 1995), as well as studies
indicating the presence of the low-affinity NGF receptor in devel-
oping GABAergic septal neurons (Arimatsu and Miyamoto, 1989,
1991), all favor this hypothesis. Moreover, GABAergic septohip-
pocampal neurons show high-affinity binding for NGF in vitro

(Dreyfus et al., 1989) and are likely to transport NGF retrogradely
from the target hippocampal region (Cooper et al., 1994). In the
adult, however, GABAergic neurons do not express the low-
affinity p75 receptor nor the high-affinity Trk receptor (Batchelor
et al., 1989; Kiss et al., 1993; Steininger et al., 1993; Gibbs and
Pfaff, 1994; Sovreviela et al., 1994; Holtzman et al., 1995). This
suggests that the actions of NGF on GABAergic neurons may be
mediated by mechanisms independent of the high-affinity NGF
receptor, perhaps involving TrkB and TrkC receptors (Horvath et
al., 1993; Knipper et al., 1993, 1994; Chao and Hempstead, 1995;
Itoh et al., 1995). In line with this, GABAergic septohippocampal
neurons express both TrkB and TrkC (M. Pascual, N. Rocamora,
E. Soriano, unpublished data; also see Merlio et al., 1992; Ring-
stedt et al., 1993; Lamballe et al., 1994). Clearly, additional studies
are needed to ascertain whether neurotrophins play a role in the
developmental specification and maintenance of the GABAergic
septohippocampal connections.
Recent studies provide evidence that neurotrophic factors act-

ing directly on presynaptic terminals can potentiate developing
neuromuscular synapses (Lohof et al., 1993) and enhance both
synaptic strength at mature Schaffer collateral-CA1 synapses
(Kang and Schuman, 1995) and the release of acetylcholine from
hippocampal synaptosomes (Knipper et al., 1994). The GABAer-
gic septohippocampal pathway has a profound effect on the elec-
trical activity of the hippocampus by inhibiting hippocampal in-
terneurons, which in turn produces a strong disinhibition and/or
synchronization of principal cells (Tóth et al., 1995). It is tempting
to speculate that NGF produced and released by interneurons
may be one of the mechanisms that mediates the high efficiency of
GABAergic septohippocampal synapses.
Finally, the present results, together with the multiple recipro-

cal interactions between the medial septum and the hippocampus
(Tóth et al., 1993), provide a basis for understanding the complex
regulation of NGF gene expression in the hippocampus. Activa-
tion of cholinergic septohippocampal afferents is known to in-
crease NGF mRNA expression in the hippocampus (Lindefors et
al., 1992, Berzaghi et al., 1993; Freedman et al., 1993). The finding
that acetylcholine acting through cholinergic-muscarinic receptors
activates hippocampal inhibitory neurons, whereas it decreases
electrical activity in principal cells (Brunner and Misgeld, 1994), is
consistent with the notion that the above-mentioned NGF up-
regulation is mediated by hippocampal interneurons. In turn,
activation of the GABAergic septohippocampal pathway is likely
to downregulate NGF production in hippocampal interneurons,
because GABA decreases NGF gene expression (Zafra et al.,
1991). Thus, production of NGF by interneurons may be under a
dual and opposing influence of the cholinergic and GABAergic
septohippocampal systems. In addition, because NGF transcrip-
tion is dependent on neuronal activity (Zafra et al., 1990, 1991;
Ernfors et al., 1991), expression of NGF in interneurons is likely
to reflect and be under the control of the average activity of large
principal cell populations in the hippocampus. Interneurons are
ideally suited for this task, because each interneuron receives a
convergent input from large numbers of principal cells (Gulyás et
al., 1993b). Thus, NGF production by interneurons acting as
“sensors” of hippocampal activity might also be used to control
the overall density of cholinergic afferents and to promote plastic
changes and sprouting of this system, in response to increased
hippocampal activity such as in learning and memory processes.
In conclusion, the present results showing that particular sub-

sets of hippocampal interneurons are a major source of NGF
production, and some interneurons also express NT3, indicates
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that under physiological conditions, activation of synaptic inputs
onto these neurons is likely to play a prominent role in regulating
the production of neurotrophic factors in the hippocampus. More-
over, the finding that NGF- and NT3-expressing interneurons are
preferential targets of the GABAergic septohippocampal pathway
suggests a role for these neurotrophic factors in the formation and
physiological functioning of this connection, in addition to the
well known effects of neurotrophins on cholinergic septohip-
pocampal neurons.

REFERENCES
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H, Ibáñez CF (1995) Muscle-derived neurotrophin-4 as an activity-
dependent trophic signal for adult motor neurons. Science
268:1495–1499.

Gall CM, Isackson PJ (1989) Limbic seizures increase neuronal produc-
tion of messenger RNA for nerve growth factor. Science 245:758–761.

Gall CM, Murray K, Isackson PJ (1991) Kainic acid-induced seizures
stimulate increased expression of nerve growth factor mRNA in rat
hippocampus. Mol Brain Res 9:113–123.

Gerfen CR, Sawchenko PE (1984) An anterograde neuroanatomical
tracing method that shows the detailed morphology of neurons, their
axons and terminals: immunohistochemical localization of an axonally
transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L).
Brain Res 290:219–238.

Gibbs RB, Pfaff DW (1994) In situ hybridization detection of trkA
mRNA in brain: distribution, colocalization with p75NGFR and up-
regulation by nerve growth factor. J Comp Neurol 341:324–339.
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Gulyás AI, Miles R, Hájos N, Freund TF (1993a) Precision and variabil-
ity in postsynaptic target selection of inhibitory cells in the hippocampal
CA3 region. Eur J Neurosci 5:1729–1751.
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