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A number of different cell lines that exhibit a partial neuronal 
phenotype have been identified, but in many cases the full 
extent of their neuronal differentiation has not been directly 
addressed by functional studies. We have used electrophysi- 
ology and immunofluorescence to examine the formation of 
synapses and the development of neuronal polarity by murine 
embryonic stem (ES) cells and the mouse PI9 embryonic car- 
cinoma cell line. Within 2-3 weeks after induction by retinoic 
acid, subsets of P19 and ES cells formed excitatory synapses, 
mediated by glutamate receptors, or inhibitory synapses, me- 
diated by receptors for GABA or glycine. In ES-cell cultures, 
both NMDA and non-NMDA receptors contributed to the exci- 
tatory postsynaptic response. Staining with antibodies to 

growth-associated protein-43 and microtubule-associated 
protein-2 revealed segregation of immunoreactivity into sepa- 
rate axonal and somato-dendritic compartments, respectively. 
Consistent with our physiological evidence for synapse forma- 
tion, intense punctate staining was observed with antibodies to 
the synaptic vesicle proteins synapsin, SV2, and synaptophy- 
sin. These results demonstrate the in vitro acquisition by pluri- 
potent cell lines of neuronal polarity and functional synaptic 
transmission that is characteristic of CNS neurons. 
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Because CNS neurons differentiate in a complex environment that 
is largely inaccessible to experimental manipulation, relatively 
little is known about the intrinsic and extrinsic factors that deter- 
mine their ultimate phenotype. To address this question, a num- 
ber of systems that undergo all or part of the differentiation 
process in vitro have been explored. Several groups have isolated 
neuronal precursors from embryonic brain or have produced 
immortalized ccl1 lines by introducing oncogenes into dividing 
cells from the early CNS (for review, see Gage et al., 1995). A 
separate line of research has focused on the induction of neuronal 
differentiation in pluripotent cells derived from very early em- 
bryos. Acquisition of neuronal properties has been demonstrated 
for embryonic carcinoma cells, including mouse P19 cells (Jones- 
Villeneuve et al., 1982; McBurney et al., 1988) and human 
NTera-2 cells (Andrews, 1984; Pleasure et al., 1992) and, more 
recently, for embryonic stem cells (Bain et al., 1995), the totipo- 
tent cells that are used to generate transgenic mice (Capecchi, 
1989). 

For any cell type that differentiates in vitro, it is important to ask 
how far the cells progress along a given developmental pathway 
and how closely their final differentiated state corresponds to that 
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of native neurons. Two steps in the differentiation of CNS neurons 
that might serve as benchmarks for assessing the phenotype of 
neurons derived from cell lines or precursor cells are the estab- 
lishment of polarity and the formation of synaptic connections. 
Neurons, both in vivo and in culture, develop separate axonal and 
dendritic compartments that can be distinguished by their unique 
morphology, ultrastructure, and protein components (for review, 
see Craig and Banker, 1994). The establishment of polarity has 
been demonstrated for NTera-2 cells (Pleasure et al., 1992) but 
has not been directly examined for most other lines. 

Several cell lines that resemble peripheral nervous system neu- 
rons have been shown to form cholinergic synapses onto cocul- 
tured primary muscle cells (Nelson et al., 1976; Schubert et al., 
1977). Many closely related lines do not share this property 
(Nelson, 1976; Nirenberg et al., 1983) however, which suggests 
that cell lines differ widely in their ability to differentiate in vitro 
(Schubert et al., 1974; Fischbach and Nelson, 1977). For cell lines 
that resemble CNS neurons, relatively littlc is known about their 
ability to form synapses in vitro. Ultrastructural demonstration of 
synaptic profiles has been presented for the P19 cell line (McBur- 
ney et al., 1988) but physiological evidence for synaptic transmis- 
sion has not been reported for lines with a CNS phenotype. 
Although synapses mediated by glutamate receptors are among 
the most common in the nervous system, it has not been estab- 
lished whether any cell line can form functional glutamatergic 
synapses in vitro. Indeed, only recently have cell lines that express 
functional glutamate receptors been identified, including NTera-2 
(Younkin et al., 1993), P19 (Turetsky et al., 1993) and embryonic 
stem (ES) cells (Bain et al., 1995). Thus, a major unanswered 
question remains: whether pluripotent stem cells undergo suffi- 
cient differentiation in vitro to form functional synapses with 
properties expected of CNS neurons, or whether their in vi&~ 
development comes to a halt well short of this milestone. 
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We have examined this question using paired recordings from 
P19 or ES cells maintained in microisland cultures. In both cell 

types, subpopulations of cells formed excitatory synapses, medi- 

ated by glutamate receptors, whereas other cells formed inhibitory 

synapses mediated by receptors for GABA or glycine. Immun- 
ofluorescent double labeling revealed the establishment of neu- 

ronal polarity by both cell types, as well as the localization of 

synaptic vesicle antigens to presumptive sites of synaptic contact. 

MATERIALS AND METHODS 
CeN culrure. PI9 cells were induced to differentiate using a slight modi- 
fication of procedures described by Turetsky et al. (1993). Briefly, undif- 
ferentiated cells from the American Type Culture Collection (Rockville, 
MD) were propagated in minim% essential medium (MEM), 
ol-formulation (Gibco, Grand Island. NY). suunlemented with 10% fetal 
bovine serum (‘FBS; JRH Biosciences, L&cx:d: KS). For differentiation, 
-4 x IO” cells were suspended in 10 ml of (Y-MEM containing 5% FBS 
and 500 nM retinoic acid and seeded onto a 10 cm bacteriological culture 
dish. After 4 d (or in a few cases, 5 d) of retinoic acid treatment, 
aggregated cells were dissociated with Protease XXIII (1 mgiml, Sigma, 
St. Louis, MO) in Earle’s salt solution (Gibco), which lacked CaZi and 
Mg’+ but contained 200 WM EDTA, 20 7IIM glucose, and 25 7TIM NaHCO,. 
Dissociated cells were plated onto confluent primary glial layers or glial 
island cultures in (u-MEM plus 10% FBS. On the second day after plating, 
the growth medium was changed to MEM (Gibco) supplemented with 20 
IIIM glucose, 5% rat serum, and 250 FM glutamine. Cytosine arabinoside 
(Ara-C) was added at a final concentration of 10 pM to inhibit division of 
non-neuronal cells. Cultures were fed 2 d later with MEM + 5% rat 
serum lacking Ara-C, then every 4-5 d thereafter. 

ES cells (D3 line, obtained from Dr. David Gottlieb, Washington 
University) were maintained and induced as described previously (Bain et 
al., 1995) with some modifications. Cells were propagated in gelatin- 
coated (0.1% from bovine skin; Sigma) tissue culture flasks with DMEM 
(high glucose, with L-glutamine and sodium pyruvate; Gibco) supple- 
mented with 10% fetal calf serum (Gibco), 10% newborn calf serum 
(Gibco), 100 FM P-mercaptocthanol (Sigma), 1000 U/ml leukemia- 
inhibitory factor (Gibco), 10 FM thymidine, and 30 pM adenosine, cyti- 
dine, guanosine, and uridine. ES cells were passaged with Protease XXIII 
(1 mg/ml; Sigma) and induced with 500 nM all-truns retinoic acid accord- 
ing to the 4-/4+ protocol of Bain et al. (1995). After induction, aggre- 
gates were dissociated and plated onto gelatin-coated dishes or directly 
onto collagen islands (see below). At 2-3 d after plating, Ara-C was 
added (18 pM final concentration). When most of the cells appeared to be 
morphologically mature (-5 d after plating), the medium was changed to 
neurobasal medium with B27 supplements and 250 pM L-glutamine 
(NB + B27; Gibco). Cultures were fed every 4-5 d with NB + B27 until 
needed. 

Primary glial cultures were prepared from 2- to 5-d-old Long-Evans 
rats as described previously (Huettner and Baughman, 1986). Microisland 
cultures were prepared according to the method of Segal and Furshpan 
(1990). Culture dishes (35 mm) were coated with a thin layer of 0.15% 
agarose type II-A (Sigma), allowed to dry for 30 min, and sterilized for 1 
hr by ultraviolet (UV) irradiation. Droplets of type I rat tail collagen (1 
mg/ml in 0. I % acetic acid; Sigma) were sprayed onto the agarose-coated 
dishes. The dishes were UV-irradiated for 30 min before plating dissoci- 
ated cortical cells or ES cells. Glial cultures were maintained in MEM 
plus 5% rat serum for several days, and then Ara-C was added to halt glial 
cell division. Bcforc addition of PI9 cells, the glial cultures were treated 
with glutamate or NMDA (0.5-5 mM) to climinatc any rat cortical 
neurons. 

Electro@)~~ioloby. Pipettes were pulled from boralex capillaries. For 
current-clamp recordings, the internal solution consisted of (in mM): 140 
KCH,SO,, 0.5 EGTA, 5 KCI, I ATP, and IO HEPES, pH-adjusted to 7.4 
with KOH. Pipettes used for whole-cell voltage-clamp recordings con- 
tained either this same solution or, in most cases, contained (in mM) I40 
CsCH,SO,, IO EGTA, 5 CsCI, 1 ATP, and 10 HEPES, pH-adjusted to 7.4 
with CsOH. The culture dish was perfused at a rate of l-2 mlimin with 
Tyrode’s solution (in mM): 150 NaCI, 4 KCI, 2 CaCI?, 2 MgCl:, 10 glucose, 
and IO HEPES, pH-adjusted to 7.4 with NaOH. For most experiments, 
drug solutions were applied to the cells via local perfusion from a 
multibarreled delivery pipette placed 200-300 pm from the recording 
electrodes. Drugs were dissolved in normal or Mg-free Tyrode’s solution 
for most studies of synaptic transmission. 

Evoked postsynaptic responses were obtained by recording simulta- 
neously from two adjacent cells. One recording was obtained under 
current clamp with a Getting microelectrode amplifier, and the other was 
achieved with an Axopatch 200A patch-clamp amplifier in the whole-cell 
mode (Axon Instruments, Foster City, CA). Brief, depolarizing current 
steps were injected with the Getting amplifier at 0.1-l Hz while holding 
current in the follower cell was monitored for inward or outward deflec- 
tions. Postsynaptic currents that reliably followed the presynaptic action 
potential with a delay of l-5 msec were considered to arise from mono- 
synaptic connections. The follower cell was often clamped at -20 mV to 
better detect outward, IPSCs. If no postsynaptic current was observed 
with the Axopatch amplifier, the stimulus paradigm was reversed. A brief 
step to 0 mV was applied with the Axopatch amplifier as membrane 
potential was monitored with the Getting amplifier for depolarizing or 
hyperpolarizing deflections that were locked to the presynaptic stimulus. 

Output from the two amplifiers was digitized at 3-17 kHz with an 
IDA12120 computer interface (Indec Systems, Capitola, CA) controlled 
by in-house software using the Basic-Fastlab environment. Whole-cell 
currents were filtered at l-5 kHz (~3 dB, 4-pole Bessel). Membrane 
potentials recorded under voltage clamp were corrected for the junction 
potential between the internal solution and the bath solution. This 
potential was - 10 mV for pipettes containing CsCH,SO, and - I3 mV 
for pipettes containing KCH,SO,. Peak amplitudes of evoked and spon- 
taneous synaptic currents were determined by averaging three to five 
points around the peak or, in some cases, all points within 90%> of the 
absolute peak value. Some of the tracts shown in the figures have been 
digitally filtered at 1 kHz. Aminophosphonovalcratc (APV) was obtained 
from Cambridge Research Biochemicals (Wilmington, DE). 6-Cyano-7- 
nitroquinoxaline-2,3-dione (CNQX) was from Rcscarch Biochemicals 
(Natick, MA). Bicuculline, strychnine, and tetrodotoxin (TTX) were from 
Sigma. 

Inln7unofluo~escence. P19 cells on confluent glial layers or ES cells 
plated onto gelatin-coated coverslips were rinsed with Tyrode’s solution 
and incubated for 10 min in 0.1 M sodium phosphate, pH 7.4, containing 
4% p-formaldehyde and 0.1% glutaraldehyde. A second fixation for IO 
min was performed with 0.1 M sodium borate, pH 9.75, containing 4% 
p-formaldehyde. After four rinses with Tris-buffcrcd saline. pH 7.4, the 
cultures were incubated at 4°C for l-48 hr with blocking solution (BS): 
PBS containing 1% normal goat serum, O.O2c/r sodium azide, and 0.2% 
Polydet P-40. Cells were incubated overnight at 4°C with primary anti- 
bodies diluted in BS and then rinsed three times with PBS and incubated 
for 1 hr at room temperature with Iluoresccnt secondary antibodies 
diluted in BS. The covcrslius wcrc rinsed three times with PBS. mounted 
with Vectashield (Vector iahoratories, Burlingame, CA), and examined 
with a Zeiss Axioplan under cpi-illumination (63~ oil objective, 1.40 
numerical aperture; Carl Zeiss, Thornwood, NY). Images were acquired 
with a laser scanning confocal attachment (MRCIOOO, Bio-Rad, Her- 
cules, CA). Most of the figures show projections of five to nine separate 
focal planes, in which the fluorescein and Cy3 channels were acquired 
simultaneously (488 and 568 nm emission lines, 522 nm barrier for the 
fluorescein channel, 605 nm barrier for the Cy3 channel). In some cases, 
the two fluorophores were imaged sequentially to reduce the level of 
bleed-through between the two channels; no further corrections for 
bleed-through were used. 

The following dilutions wcrc used for primary and secondary antibod- 
ies: mouse anti-microtubule-associated protein-2 (anti-MAP-2; 1:200, 
clone AP20, Bochringer Mannheim, Indianapolis, IN); mouse anti-SV2 
(1:200, monoclonal supcrnatant of clone SP2IO; Buckley and Kelly, 1985); 
mouse anti-synaptophysin (l:lOOO, ascites; Jahn et al., 19X5); rabbit 
anti-growth-associated protein-43 (anti-GAP-43; l:lOOO, antiserum; 
Meiri et al., 1986); rabbit anti-synapsin (antibody G357; Siidhof et al., 
1989); Cy3-conjugated goat anti-rabbit Ig (1:300; Chemicon, Tcmecula, 
CA); fluorescein-conjugated goat anti-mouse Ig (I :200; Chemicon). 

RESULTS 

Neuronal polarity 
Pt9 and ES cells that have been induced with retinoic acid begin to 
produce neurites within l-2 d after settling onto a permissive sub- 

strate. Both cell types generate an extensive network of processes 
during the first week after plating (McBurney et al., 1988; Bain et al., 
1995). To determine whether these fibers become distinguished into 
separate axonal and dendritic compartments, we visualized the dis- 
tribution of GAP-43 (Skenc and Willard, 1981) and MAP-2 (Sloboda 
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et al., 1975) which are known to be restricted in native neurons to 
axons or dendrites, respectively (see also Craig and Banker, 1994). 
Immunofluorescent double labeling with antibodies to GAP-43 and 
MAP-2 is shown in Figure 1, A and B, for P19 cells 9 d after plating, 
and in Figure 2, A and @, for ES cells 17 d after plating. For both cell 
types, MAP-Zlike immunoreactivity was observed in the cell body, 
but was most intense in the thick tapering processes that emerged 
from the soma. Positive staining for MAP-2 was absent from the 
nucleus and from the majority of fine diameter neurites, although a 
few thin processes were lightly stained. By contrast, GAP-43-&e 
immunoreactivity was relatively weak in the soma and major pro- 
cesses, but was much more intense in the network of thin fibers that 
spread across the cultures. In addition, both P19- and ES-cell cul- 
tures contained many GAP-43-positive growth cones. In most of our 
experiments on mature P19- and ES-cell cultures, staining for 
GAP-43 was uniformly distributed along the thin neurites (e.g., Fig. 
lA,C). As has been reported previously both in vivo and in vitro 
(Meiri et al., 1988; Goslin et al., 1990), however, some cells in 
cultures displayed bright puncta of GAP-43-like immunoreactivity 
along fibers with a weaker, more uniform labeling pattern (e.g., Fig. 
2C). Although large- and small-diameter neurites were often ob- 
served in close contact, careful evaluation of fiber diameter and 
position in the GAP-43 and MAP-2 images made it possible to rule 
out double labeling of individual fibers by the two antibodies in most 
cases. 

We also examined the distribution of several proteins that are 
components of synaptic vesicles in native neurons, including synap- 
tophysin (Jahn et al., 1985; Wiedenmann and Franke, 198.5) SV2 
(Buckley and Kelly, 1985), and synapsin (Stidhof et al., 1989). In 
mature cultures of P19 or ES cells, immunoreactivity for these 
proteins was localized to discrete puncta that were arrayed along 
GAP-43-positive fibers (Figs. lC,D, 2C,D) or adjacent to MAP-Z 
positive cell bodies and dendrites (Figs. 1E,F, 2&F). Our preliminary 
experiments (N. Kulkarni and J. Huettner, unpublished observa- 
tions) on P19 and ES cells at earlier time points after plating suggest 
that segregation of GAP-43, MAP-5 and the synaptic vesicle anti- 
gens emerges gradually over the first 5-10 d after plating (see also 
Goslin et al., 1990; Dinsmore and Solomon, 1991; Fletcher et al., 
1991). In all cases, however, staining was found to be restricted to 
cells with neuronal morphology; flat background non-neuronal cells 
were not positively stained for any of the markers used in this study. 

Synaptic transmission 
Recordings from individual P19 cells grown in mass cultures for 
l-3 weeks revealed relatively little evidence for spontaneous syn- 
aptic activity, although in some cultures synaptic potentials or 
synaptic currents were occasionally observed (Fig. 3A; see also 
Turetsky et al., 1993). In contrast, ES cell-mass cultures exhibited 
a much higher frequency of spontaneous synaptic activity, as 
shown in Figure 4A. Both cell types displayed spontaneous exci- 
tatory and inhibitory postsynaptic responses. Our preliminary 
attempts to study evoked synaptic responses in mass cultures met 
with a low success rate. As has been noted previously in studies on 
neuronal cultures (Huettner and Baughman, 1988; Mennerick et 
a1.,,1995), synaptic contacts between adjacent cells are relatively 
rare in mass culture. To increase the likelihood that cells within a 
given field of view would become synaptic partners, we adapted 
the microisland culture system of Segal and Furshpan (1990). 
Dissociated ES cells were plated directly onto collagen spots that 
had been dried on a nonpermissive surface; P19 cells survived 
better when seeded onto preestablished islands of rat cortical 
astrocytes. 
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&ure I. Localization of immunoreactivitv for neuronal polaritv markers 
and synaptic vesicle antigens in P19 cells. A; B, Immunofludrescence double 
labeling of GAP-43-like (A) and MAP-2-like (B) immunoreactivitv. The 

\  I  \  I  i 
U~YOW points to a neurite strongly positive for the dendritic marker MAP-3 an 
awowheud indicates a fiber that exhibits strong immunoreactivity for the 
axonal marker GAP-43. C, D, Immunofluorescent double labeling of GAP- 
43-like (C) and synaptophysin-like (0) immunoreactivity. An unstained cell 
(astetiks) surrounded by GAP-43-positive fibers is shown. The arrowhead 
points to an immunoreactive puncta adjacent to a dendrite extending from 
the cell body. E, F, Immunofluorescent double labeling of synapsin-like (E) 
and MAP-2-like (F) immunoreactivity. Arrows point to examples of immu- 
noreactive puncta adjacent to two MAP-2-positive cell bodies. Cells were 
fixed 9 d (A, B), 20 d (C, D), and 9 d (E, F) after plating. Scale bar, 20 pm. 

Evoked synaptic responses were studied by recording simulta- 
neously from two cells on an island. Most of the P19-cell record- 
ings were obtained from islands with 2-5 cells, although some 
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Figure 2. Immunoreactivity for synaptic vesicle antigens and neuronal 
polarity markers in ES cells. A, B, Immunofluorescence double labeling of 
GAP-43-like (A) and MAP-2-like (B) immunoreactivity. The arrow points 
to a neurite strongly positive for the dendritic marker MAP-2; an arrow- 
head indicates a fiber that exhibits strong immunoreactivity for the axonal 
marker GAP-43. C, D, Immunofluorescent double labeling of GAP-43- 
like (C) and SV2-like (0) immunoreactivity. Armwhead points to puncta 
immunoreactive for SV2 adjacent to an unstained cell body (asferiskr). E, 
F, Immunofluorescent double labeling of synapsin-like (E) and MAP-2- 
like (F) immunoreactivity. Arrows point to examples of immunoreactive 
puncta adjacent to the cell body and dendrites of a MAP-2-positive 
neuron. Cells were hxed 17 d (A, B), 13 d (C, D), and 14 d (E, F) after 
plating. Scale bar: A-D, 20 pm; E, F, 25 pm. 

pairs were studied on islands of 30 or more cells. Because of the 
relatively low number of sparsely populated ES-cell islands, most 
recordings from ES-cell pairs were from islands with at least 20 

Figzue 3. Spontaneous activity and excitatory synaptic transmission in 
P19 cells. A, Spontaneous synaptic currents recorded in normal Tyrode’s 
solution 12 d after plating; 5 set of continuous recording is shown. Holding 
potential, -70 mV. B, I-V relationship for an evoked EPSC recorded 12 
d after plating. Each trace is an average of three to four sweeps. The plot 
shows the mean + SEM peak amplitude versus holding potential. C, 
EPSC antagonism by CNQX (10 wM) in a different neuron. Action poten- 
tials elicited in the presynaptic neuron (fop traces) and synaptic currents 
recorded in the postsynaptic neuron (bottom truces) are shown. Holding 
potential, -90 mV, 12 d after plating. Scale bars: A, 50 pA, 200 msec; B, 
40 pA, 30 msec; C, 60 mV, 20 pA, 30 msec. 

cells. Cells targeted for recording were phase-bright with multiple 
neurites. Two cells were judged to have formed a functional 
synapse if action potentials triggered in one of the cells (“driver”) 
reliably elicited a postsynaptic response in the other cell (“fol- 
lower”) with short latency (usually <5 msec). Responses with 
longer lag times that unreliably followed the presynaptic stimulus 
were considered to be polysynaptic. Functional synapses were 
observed in 12 of 13 PlPcell inductions and 4 of 5 ES-cell 
inductions. In the 12 PlB-cell inductions that yielded functional 
monosynaptic connections, the percentage of cells able to serve as 
drivers ranged from 9 to 40% with an average of 23 t 3% (97/808 
total cells). Similarly, in the 4 ES-cell inductions an average of 25 
+ 7% of cells were drivers (range 5-40%; 55/210 total cells). A 
majority of these connections were excitatory in both P19 (82%) 
and ES (78%) cells. Evidence for direct electrical coupling was 
observed in 7 PlPcell pairs but was not detected in any of the 
ES-cell pairs. Many of the P19- and ES-cell pairs that did not 
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A 

Figure 4. Spontaneous activity and excitatory synaptic 
transmission in ES cells. A, Spontaneous synaptic currents 
recorded in normal Tyrode’s solution 16 d after plating; 5 set 
of continuous recording is shown. Holding potential, -70 
mV. B, I-V relationship for an evoked EPSC recorded 34 d 
after plating. Each trace is an average of four sweeps. The 
plot shows the mean + SEM peak amplitude versus holding 
potential. C, EPSC antagonism by CNQX (10 PM). Top truces 
are action potentials from the presynaptic neuron (arrows 
point to an autaptic EPSP that is blocked by CNQX); bottom 
truces are postsynaptic currents (single sweeps). Holding 
potential, -90 mV, 40 d after plating. D, APV speeds the 
decay of an EPSC evoked at +50 mV, 23 d after plating. 
Three traces are shown superimposed. Control traces re- 
corded in normal Tyrode’s solution (2 mM Ca2’/2 mM Mg’+) 
at -70 mV and +50 mV, and a trace at +50 mV in the 
presence of APL’ (50 PM). Each trace is an average of four 
individual EPSCs. E, CNQX (10 pM) blocks the fast compo- 
nent of this EPSC recorded in Mg’+-free Tyrode’s solution 
at -70 mV, 28 d after plating. The slower component of the 
EPSC is blocked reversibly by addition of 2 mM Mg’+ 
(CNQX + M$+). Single traces are shown. Scale bars: A, 200 
pA, 200 msec; B, 40 pA, 40 msec; C, 40 mV, 80 pA, 30 msec; 
D, 20 pA, 30 msec; E, 100 pA, 100 msec. 
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CNQX 

E (Mg-free Tyrode’s) 

D 

CNQX CNQX + Mg CNQX WASH 

display a direct monosynaptic connection, nevertheless, did receive 
spontaneous synaptic activity or were connected by a polysynaptic 
circuit, which suggests that most cells were capable of forming syn- 
apses. Functional synapses were observed as early as 9 d after plating 
in P19 cells and I I d after plating in ES cells. Most recordings were 
obtained between 15 and 30 d after plating, but connected pairs were 
recorded for both cell types as late as 40 d after plating. 

Excitatory synapses 
Pl9 and ES cells form excitatory chemical synapses mediated by 
glutamate receptors. As illustrated in Figures 3C and 4C, the 
non-NMDA-receptor antagonist CNQX produced complete inhi- 
bition of EPSCs (recorded at -60 to -90 mV in the presence of 
2 mM Ca’+ and 2 mM Mg*+) in all of the ES cells studied (n = 23) 
and all but one of the P19 synapses tested (n = 30). Inhibition by 
10 PM CNQX was fully reversible with sufficient wash time. The 
reversal potential for EPSCs was determined for 4 P19 cells and 6 
ES cells by clamping the postsynaptic cell at holding potentials 
from -110 to +50 mV (corrected for junction potential). As 
shown in Figures 3B and 4B, most EPSCs demonstrated a linear 
current-voltage (I-v) relationship and reversed close to 0 mV, 
which is consistent with the known properties of non-NMDA- 
receptor channels expressed by these cells (Turetsky et al., 1993; 
Bain et al., 1995). In one P19 cell, the EPSC displayed an inwardly 
rectifying I-I/that reversed near 0 mV. 

We further analyzed 11 EPSCs from P19 cells and 11 EPSCs from 
ES cells recorded at -70 to -90 mV in normal Tyrode’s solution to 
determine their average rise times, decay times, and peak amplitudes 
(Table 1, Fig. 5D). Only EPSCs that demonstrated complete block 
and recovery from CNQX application were considered. The falling 

phase of most EPSCs was well described by a single-exponential 
function (Fig. 5D). The average decay constant in both P19 and ES 
cells was 4.1 msec, a value similar to that reported for native CNS 
neurons (Hestrin, 1992; Mennerick et al., 1995). Average rise times 
were also comparable with previously reported values. The peak 
amplitude of EPSCs ranged as high as 200 pA, but the average peak 
amplitude in both ES and P19 cells was on the order of 10-50 pA, 
which is significantly smaller than EPSCs typically recorded in hip- 
pocampal microcultures (see Bekkers and Stevens, 1989; Tong and 
Jahr, 1994; Mennerick et al., 1995). 

Miniature EPSCs 

Possible explanations for the relatively small amplitude of P19 and 
ES cell-evoked synaptic currents include a low number of synaptic 

Table 1. P19- and ES-cell postsynaptic currents 

lo-90% Decay Reversal 
Am litude 

‘; 
Rise time constant potential 

(PA (msec) (msec) II (mV) 

EPSC 

ES -492 17 1.7 z 0.3 4.1 2 0.7 I1 6 2 3 (I? = 6) 

PlY -60 i- 18 2.1 -t 0.3 4.1 2 0.4 11 0 2 3 (n = 4) 

mEPSC (ES) -8.8 2 0.8 1.9 2 0.2 4.2 i 0.3 6 ND 

IPSC 

ES (glycinergic) 66 2 28 0.7 z 0.3 182 4 4 -53 2 5 (II = 4) 

PI9 (GABAergic) 31 * Y 2.2 t 0.8 482 2 3 -71 ?2(?1=3) 

The amplitude, lo-90% rise time, and decay constant were determined for the 
average of 6-10 evoked synaptic currents in each cell. All of the miniature EPSCs 
(mEPSCs) were analyzed individually (see Fig. 5). Values denote mean t SEM; II, 
number of cells analyzed; ND, not determined. 
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contacts between the two cells, a low probability of transmitter 
release, and a small unitary synaptic event. To address this third 
possibility, we recorded spontaneous miniature EPSCs in 6 ES 
cells that were superfused with 0.5 PM ‘ITX to block sodium- 
dependent action potentials as well as strychnine (2 PM) and 
bicuculline (20 PM) to block spontaneous inhibitory synaptic cur- 
rents (see below). In one case, both evoked and miniature exci- 
tatory synaptic events were recorded in the same cell (Fig. 
SA,B,D). As shown in Figure 5, the time course of miniature 
EPSCs was similar to that of evoked synaptic currents. For the 6 
cells analyzed, the peak amplitude of miniature events ranged 
from 2 to 42 pA at -70 mV, which translates into a peak 
conductance range of 29-600 pS. In each case, the amplitudes of 
miniature EPSCs displayed a skewed distribution (Fig. 5C), as has 
been described previously in hippocampal and cortical neurons 
(Bekkers et al., 1990; Hestrin, 1992; Jonas et al., 1993; Liu and 
Tsien, 1995). The median peak conductance values ranged from 
76 to 136 pS (see Table 1 for mean peak amplitudes), which is 
consistent with previous measurements of mini amplitude in pri- 
mary neuronal cultures (Hestrin, 1992; Liu and Tsien, 1995; 
Mennerick et al., 1995). The frequency of miniature EPSCs in 
these 6 cells ranged from 2 to 20 Hz. 

NMDA receptors 
Because both P19 and ES cells are known to express functional 
NMDA receptors (Turetsky et al., 1993; Bain et al., 1995) it was 
of interest to determine whether these receptors contribute to the 
postsynaptic responses at excitatory synapses. Because NMDA- 
receptor channels are subject to voltage-dependent block by 
Mg’+ (Nowak et al., 1984) we compared the time course of 
EPSCs at negative and positive holding potentials and performed 
a number of experiments in Mg’+- free solutions. In several of the 
ES cells, depolarization to positive holding potentials unmasked a 
slow component of the EPSC that was sensitive to APV (Fig. 40); 
however, in most of the cells this component was relatively small. 
Clearer evidence for an NMDA-receptor contribution to ES-cell 
EPSCs was obtained in Mg’+-free solutions. In 3 ES cells, super- 
fusion with Mg’+-free Tyrode’s revealed a slow component of 

I 
Figure 5. Miniature and evoked EPSCs in ES cells. A, 
Individual miniature EPSCs recorded sequentially at -70 
mV in the presence of 0.5 FM ‘ITX, 34 d after plating. B, 
Average of 14 miniature events (including those in A). The 
monoexponential fit to the decay is shown as a dotted lilre 
(rdecay = 2.6 msec). C, Quartile plot of mini amplitudes from 
6 cells including the cell from A and B (hottom plot). Points 
(0) show the median amplitude for each cell. Lb~es span the 
range of highest and lowest quartile amplitudes. Number of 
events analyzed is shown in parentheses. D, Average of nine 
EPSCs evoked in the cell shown in A and B (T,,~~;,~ = 3.3 
msec). Current scale bars: A, 10 pA; B, 4 pA; D, 60 pA. Time 
scale bar (shown in D): 20 msec for A. B, and D. 

synaptic transmission that was blocked by 2 mM Mg2+ (Fig. 4E) or 
50 FM APV (data not shown), but was insensitive to 10 PM CNQX 
(Fig. 4E). In 9 other ES cells and 6 P19 cells tested with Mg’ ’ -free 
solutions, it was difficult or impossible to resolve an NMDA 
component to the monosynaptic EPSC; however, several of these 
cells (212 ES, 2/2 P19) were shown to express functional NMDA 
receptors as demonstrated by their sensitivity to exogenous 
NMDA (100 pM) application. We also applied Mg’+-free Ty- 
rode’s solution to many cell pairs (n = 96) that did not exhibit a 
monosynaptic response in normal medium. A few cells (6 ES, 9 
P19) displayed an increase in polysynaptic or spontaneous activity 
after switching into the Mg2+-free medium, and in most cells (4/4 
ES, 5/9 P19) this activity was suppressed by addition of 50 PM 

APV (data not shown). None of the cells, when perfused with 
Mg2+-free medium, displayed a monosynaptic connection that 
was entirely mediated by NMDA receptors. 

Inhibitory synapses 
Although a majority of synaptic connections in pairs of ES or P19 
cells were excitatory, a sizable minority of cells were inhibitory. 
IPSCs recorded in both cell types were challenged with the 
GABA,-receptor antagonist bicuculline and with the inhibitory 
glycine-receptor antagonist strychnine (Fig. 6). At 20 PM, bicucul- 
line blocked 3 of 6 P19 IPSCs but did not inhibit the IPSCs 
recorded in 5 ES cells. By contrast, 2 FM strychnine blocked 1 of 
4 IPSCs in P19 cells and 4 of 4 IPSCs tested in ES cells. Control 
experiments showed that these antagonist concentrations were 
selective for GABA and glycine receptors, respectively, although 
higher doses of strychnine (20-50 PM) produced significant inhi- 
bition of whole-cell GABA currents and GABAergic IPSCs (M. 
Finley and J. Huettner, unpublished observations), as described 
previously in hippocampal neurons (Shirasaki et al., 1991). The 
Z-I, relationship for IPSCs showed modest outward rectification, 
consistent with the difference in internal and external chloride 
concentrations (Fig. 6C,D). With our normal intracellular solution 
(5 mM ClI/140 mM CH,SO;), the reversal potential for P19- and 
ES-cell IPSCs fell somewhat positive to the Nernst potential for 
chloride (-90 mV), which probably reflects the finite permeability 
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@me 6. Inhibitory synaptic transmission in P19 and ES cells. A, An evoked IPSC recorded at -10 mV in a PlY cell culture was blocked by superfusion 
with 20 FM bicuculline methiodide but was unaffected by 2 pM strychnine. Each trace is the average of four IPSCs recorded 18 d after plating. B, In an 
ES cell culture 22 d after plating, bicucullinc had no cffcct on this IPSC, but 2 pM strychnine produced complete inhibition. Single traces are shown. 
Holding potential, -30 mV. C, D, Evoked IPSCs recorded at holding potentials from -90 to +30 mV in a PlY cell (C) 18 d after plating, and an ES cell 
(D) 25 d after plating. Both of these IPSCs were blocked by strychnine but not bicuculline. The average of three individual IPSCs is shown in C; single 
traces are shown in D. The plots show peak current (mean t SEM; II = 2-8) as a function of holding potential. Scale bars: A, 10 pA, 60 msec; B, 20 pA, 
60 msec; C, 50 pA, 60 msec; D, 200 pA, 30 msec. 

of these channels to CH,SO, (see also Bormann et al., 1987). 
Further analysis of P19- and ES-cell IPSCs (Table 1) revealed a 
significant difference in the decay time constants of bicuculline- 
sensitive IPSCs in P19 cells (48 msec) versus strychnine-sensitive 
IPSCs in ES cells (18 msec), but both values fell within the range 
observed in previous work on CNS neurons in slices (Edwards et al., 
1990; Takahashi et al., 1992; Krupp and Feltz, 1993) and primary 
cultures (Barker and Harrison, 1988). Peak IPSC amplitudes in P19 
and ES cells ranged from 18 to 150 pA at -10 to -30 mV. 

DISCUSSION 
Synapse formation 
Our physiological recordings have shown that P19 and ES cells 
form synapses with many of the properties expected for CNS 
neurons. For both cell types, -80% of the synapses were excita- 
tory connections, mediated by glutamate receptors. In their ki- 
netic properties, I-V relationships, and sensitivity to CNQX, vir- 
tually all of the EPSCs showed close similarity to the AMPA- 
receptor component of excitatory transmission that has been 
characterized in native neurons (Forsythe and Westbrook, 1988; 
Hestrin et al., 1990). The linear relationship between peak syn- 
aptic current and membrane voltage, with a reversal potential 
close to 0 mV, indicates that most synaptic AMPA receptors are 
likely to include the edited form of the GluRB subunit (Sommer 
et al., 1991), as suggested previously from analysis of whole-cell 
currents in these cells (Turetsky et al., 1993; Bain et al., 1995). 

In several of the ES cells, NMDA receptors contributed to the 
postsynaptic response. Synaptic currents mediated by NMDA 
receptors showed voltage-dependent blockade by extracellular 
Mg*+ and decayed more slowly than the AMPA-receptor com- 
ponent of postsynaptic current. These currents were inhibited by 
APV but were not reduced by CNQX (see also Hestrin et al., 
1990). Further evidence for involvement of NMDA receptors in 
excitatory transmission came from cells in which perfusion with 
Mg*+-free medium led to an APV-sensitive increase in polysyn- 
aptic activity (cf. Huettner and Baughman, 1988). In many cell 
pairs, however, including all of the P19 cells exposed to Mg’+-free 
medium, the monosynaptic EPSC did not include an NMDA- 
receptor component, suggesting that NMDA and non-NMDA 
receptors may not be colocalized at every excitatory synapse. By 
applying exogenous NMDA to these cells, we were able to show 
that they expressed functional NMDA receptors. Thus, the lack of 
an NMDA-receptor contribution to the EPSC reflects a specific 
deficit of activatable receptors at these synapses. Previous work 
(Bekkers and Stevens, 1989) on primary hippocampal neurons has 
shown that up to 20% of excitatory synapses do not exhibit any 
detectable NMDA-receptor component, whereas 10% of synapses 
may be mediated solely by NMDA receptors, without any contri- 
bution by AMPA receptors (see also Liao et al., 1995). It also has 
been shown both in slices (Liao et al., 199.5; Weisskopf and Nicoll, 
1995) and in cell culture (Forsythe and Westbrook, 1988) that 
different synapses onto an individual neuron may display very 
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different relative contributions by NMDA and non-NMDA recep- 
tors. In our P19- and ES-cell cultures, perfusion with Mg*+-free 
medium did not unmask an EPSC in any of the cell pairs that 
lacked an EPSC or IPSC in solutions that contained Mg’+. 

The amplitude, kinetics, and frequency of miniature EPSCs 
recorded in ES cells were on the same order as those reported 
previously for miniature EPSCs in primary neuronal cultures 
(Hestrin, 1992; Jonas et al., 1993; Liu and Tsien, 1995; Mennerick 
et al., 1995). However, the frequency and strength of evoked 
synaptic connections in both P19- and ES-cell cultures were lower 
than observed previously for CNS neurons (Huettner and Baugh- 
man, 1988; Bekkers and Stevens, 1989; Tong and Jahr, 1994; 
Mennerick et al., 1995). Our recordings from pairs of cells main- 
tained in microcultures showed that on average 20-25% of the 
cells evoked a monosynaptic response in a nearby follower. The 
mean amplitude of excitatory currents was -10-180 pA, whereas 
that of inhibitory currents was 20-150 pA (Table 1). Microculture 
studies of primary neurons have shown that 50-90% of all cell 
pairs formed monosynaptic connections, with the lower number 
coming from relatively large islands that had SO-100 potential 
target cells. Monosynaptic current amplitudes in neuronal micro- 
cultures are typically 11 nA (Bekkers and Stevens, 1989; Men- 
nerick et al., 1995), which is nearly 20 times larger than the EPSCs 
and IPSCs that we recorded in most ES- or P19-cell pairs. Our 
analysis of spontaneous miniature EPSCs suggests that the prop- 
erties of unitary events cannot explain this difference in the 
amplitude of evoked synaptic currents. Further work will be 
needed to determine whether the lower amplitude of the P19- and 
ES-cell synaptic currents is attributable to a low probability of 
release, fewer individual synaptic contacts between cell pairs, or 
some combination of factors. The lower percentage of monosyn- 
aptic connections between pairs of P19 or ES cells does not 
indicate that a significant population of cells is simply incapable of 
forming synapses. On the contrary, a majority of ES cells dis- 
played spontaneous synaptic activity, which indicates that most of 
the cells were able to receive synaptic inputs. In addition, many of 
the P19- and ES-cell pairs that did not exhibit short-latency 
responses nevertheless were connected via polysynaptic circuits. 
Finally, previous studies have shown that virtually all of the P19 
and ES cells with neuronal morphology express functional recep- 
tors for AMPA, NMDA, GABA, and glycine (Turetsky et al., 
1993; Bain et al., 1995) (our unpublished observations). 

In addition to the cells that formed excitatory synapses, a 
smaller number of cells made inhibitory synapses involving recep- 
tors for glycine or for GABA. Paired recordings from ES cells 
yielded only glycinergic inhibitory synapses; however, our prelim- 
inary experiments on spontaneous synaptic currents in mass cul- 
tures revealed several examples of IPSCs that were blocked by 
bicuculline (M. Finley and J. Huettner, unpublished observa- 
tions). Thus, our failure to observe GABAergic synapses in ES- 
cell microcultures is probably attributable to the relatively small 
number of IPSCs examined, rather than to an absolute lack of 
GABAergic ES neurons. Evidence for GABAergic function from 
previous studies of ES and P19 cells includes the demonstration of 
glutamic acid decarboxylase (GAD) mRNA expression by both 
P19 (Bain et al., 1993) and ES cells (Bain et al., 1995), as well as 
immunoreactivity for GAD, GABA, and GABA transaminase in 
subpopulations of P19-derived neurons (Staines et al., 1994). 

Neuronal differentiation 
Establishment of polarity and formation of synaptic connections 
with appropriate target cells are two key steps along the pathway 

of neuronal differentiation. Our results have shown that within 
2-3 weeks after induction by retinoic acid, pluripotent embryonic 
carcinoma cells (P19) and totipotent ES cells pass from a nearly 
(P19) or totally (ES) uncommitted phenotype to one that strongly 
resembles mature neurons without ever having experienced a 
normal in vivo environment. Therefore, a major conclusion of this 
study is that acquisition of the basic CNS neuronal phenotype 
does not require exposure to the intact embryo, but can occur 
entirely in vitro (cf. McBurney et al., 1988; Pleasure et al., 1992; 
Bain et al., 1995). 

One early attraction of neuronal cell lines was the possibility 
that these lines might develop into a single, homogeneous popu- 
lation of cells. Our results, together with earlier work on ES and 
P19 cells (Jones-Villeneuve et al., 1982, 1983; Bain et al., 1995), 
have demonstrated that multiple cell types, including both neu- 
rons and glia, are produced after induction with retinoic acid. This 
result is not surprising, given the fact that lineage studies in viva 
and in vitro have shown that both neurons and glia can be 
generated from a common progenitor, even at the final rounds of 
cell division during neurogenesis (Price et al., 1987; Turner and 
Cepko, 1987; Temple, 1989; Galileo et al., 1990). At this point, it 
is not clear how many distinct subtypes of neurons and glia can be 
derived from P19 or ES cells; however, it is of interest to note that 
transplantation studies of both normal (Fishell, 1995) and immor- 
talized (Renfranz et al., 1991; Snyder et al., 1992) CNS progenitor 
cells have shown that the local environment in which cells develop 
may exert a profound influence on their ultimate morphology and, 
presumably, on their overall phenotype. These transplantation 
studies suggest that CNS progenitors may be multipotential with 
respect to the cell types they can generate and that environmental 
cues may play a significant role in determining their phenotype 
(see also Gage et al., 1995). Thus, further work will be needed to 
determine whether the neurons generated in vitro, either from P19 
and ES cells or from embryonic CNS progenitors, represent a 
generic ground state, or whether they have acquired definitive 
cellular identities that directly correspond to specific ceil types of 
the brain or spinal cord. 

In evaluating neuronal differentiation, the importance of func- 
tional analysis cannot be overemphasized. Numerous previous stud- 
ies (Schubert et al., 1974; Nirenberg et al., 1983; Ryder et al., 1990) 
have shown that morphological appearance is not predictive of 
electrophysiological properties. In addition, many neuronal lines that 
produce mRNA for GABA- or NMDA-receptor subunits fail to 
express working receptors on their surface (Sucher et al., 1993; Hales 
and Tyndale, 1994). Indeed, a major conclusion from functional 
analysis of neuronal cell lines and precursor cells is that they display 
dramatic differences in their ability to differentiate. Early work on 
cell lines derived from neuroblastoma cells revealed that only a few 
lines were able to form synapses onto primary muscle cells in vitro 
(Nelson, 1976; Nirenberg et al., 1983). Similarly, cell lines derived 
from CNS tumors were shown to differ widely in their expression of 
neuronal characteristics (Schubert et al., 1974). More recent work 
(Ryder et al., 1990) on cell lines immortalized from CNS progenitors 
has suggested that these lines exhibit relatively incomplete differen- 
tiation in vitro, although the same cells may progress much further 
when engrafted into a normal host brain (Renfranz et al., 1991; 
Snyder et al., 1992). This difference between in vitro and in vivo 
differentiation may have been attributable to suppression of cell 
division in vivo (Cepko, 1988; LoPresti et al., 1992), but also may 
reflect a requirement for specific differentiation cues that were not 
available to cells in culture (Renfranz et al., 1991) (see also Kleppner 
et al., 1995; Magnuson et al., 1995). Although our results do not at all 



1064 J. Neurosci., February 1, 1996, 16(3):1056-1065 Finley et al. l Synapse Formation by Pluripotent Stem Cells 

discount a role for differentiation cues (see above), they clearly 

demonstrate that conditions in vitro do not preclude significant 

differentiation-continuously dividing and completely uncommitted 
stem cells can be induced to differentiate in vitro to the point that 

they are able to form functional synapses. Although much further 

work will be needed to understand the combination of intrinsic 
programs and environmental influences that underlie this pathway of 

development, our results greatly strengthen the argument that P19 

and ES cells provide an important model for both the early and late 

stages of neuronal differentiation. 
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