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ABSTRACT After entering a cell, intracellular pathogens must
evade destruction and generate a niche for intracellular
replication. A strategy shared by multiple intracellular pathogens
is the deployment of type III secretion system (T3SS)- and type IV
secretion system (T4SS)-injected proteins (effectors) that
subvert cellular functions. A subset of these effectors targets
activities of the host cell’s endoplasmic reticulum (ER). Effectors
are now appreciated to interfere with the ER in multiple ways,
including capture of secretory vesicles, tethering of pathogen
vacuoles to the ER, and manipulation of ER-based autophagy
initiation and the unfolded-protein response. These strategies
enable pathogens to generate a niche with access to cellular
nutrients and to evade the host cell’s defenses.

INTRODUCTION
Multiple intracellular pathogens utilize the type III se-
cretion system (T3SS) and type IV secretion system (T4SS)
to target functions of the host cell’s endoplasmic reticulum
(ER). While pathogens such as Legionella pneumophila
andBrucella abortushave longbeen known to replicate in
association with the ER (1, 2), the connection of vacuoles
containing other intracellular pathogens, such asCoxiella
burnetii (3, 4), Anaplasma spp. (5, 6), and Chlamydia
trachomatis and its relatives (7, 8), with the ER has been
recognized relatively recently. However, manipulation of
ER function is not limited to pathogens that replicate
within a vacuole, as cytosolic pathogens such asOrientia
tsutsugamushi (9, 10) and Rickettsia rickettsii (11) also

target ER-based functions via secreted effectors to pro-
mote their intracellular growth.

Recent progress in large-scale analyses of secreted
proteins and in genetic analysis of previously intractable
intracellular bacteria such asC. trachomatis,C. burnetii,
and Ricksttsia spp. has led to an explosion in identifi-
cation of new T3SS and T4SS effectors, and for some of
these effectors, exciting recent advances have revealed
how their interactions with host components contribute
to the intracellular replication cycle of these organisms.
This review focuses on recent progress in understanding
how interactions with the ER mediated by secreted
effectors (primarily of T4SS and T3SS) promote infec-
tion by intracellular bacteria.
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THE ER: A BIOSYNTHESIS AND SIGNALING
HUB OF THE CELL
The ER performs multiple functions that are critical to
cellular homeostasis. Approximately one-third of the
mammalian cell’s proteome is targeted to the ER, and
accordingly, its best-characterized role is that of the
“factory” for correct folding of proteins that ultimately
function in the plasma membrane, the extracellular
space, or secretory compartments such as the ER itself,
the Golgi, secretory vesicles, and lysosomes. Within the
ER lumen, protein folding is assisted by ER-resident
chaperones, such as the Hsp70 chaperone BiP, which
binds hydrophobic protein regions, thereby preventing
their aggregation (reviewed in reference 12). The major-
ity of secretory proteins are further modified by addition
of glycans to asparagine residues, referred to as N-linked
glycosylation. This modification increases the solubility
and stability of hydrophobic proteins and promotes their
cellular targeting and function (reviewed in reference 13).
As protein folding proceeds, resident ER proteins and
chaperones also perform quality control to ensure that
misfolded or aggregated proteins do not accumulate, as
they can disrupt ER function. If a protein is terminally
misfolded and cannot be refolded to a functional con-
formation, it is targeted to the ER-associated degradation
(ERAD) pathway, wherein the misfolded protein is ex-
tracted from the ERmembrane to the cytosol while being
tagged with polyubiquitin chains, resulting in proteo-
somal degradation (reviewed in reference 14).

In addition to its role in protein folding, the ER is site
of lipid biosynthesis and central regulator of lipid levels
throughout the cell (reviewed in reference 15). The ER
produces the main phospholipids composing cellular
membranes, as well as less abundant membrane com-
ponents. Enzymes that synthesize cholesterol are also
located in the ER. After their synthesis, these lipids are
distributed from the ER to their sites of function in the
cell via the secretory pathway or via membrane contact
sites with other organelles (see below). Further, under
conditions of excess nutrition, ER-localized enzymes
synthesize triacylglycerides for energy storage within
lipid droplets in the cell. Together, these ER-based
functions are critical for maintaining cellular lipid ho-
meostasis. As vacuolar pathogens replicate, their vacuole
needs to expand, and thus an association with the ER
could provide membrane lipids needed to enlarge the
intracellular niche. Lipids produced by the ERmight also
provide biosynthetic material to intracellular pathogens
for generation of membrane lipids or for energy (16).

Within the structure of the ER, specialized membrane
domains are organized to carry out specific functions.

Specific subdomains of the ER give rise to peroxisomes,
organelles that sequester enzymes for β-oxidation of
very-long-chain fatty acids as well as for metabolism of
cholesterol, bile acids, and polyamines (17, 18). Another
set of specialized ER domains are the membrane contact
sites (MCS) that form between ER and other organelles
in the cell, including mitochondria, the Golgi appara-
tus, the plasma membrane, endosomes, and peroxi-
somes (reviewed in reference 19). These are sites where
organelles are tethered to each other via interactions
between proteins in apposing membranes. The MCS
between ER and mitochondria, for example, are exten-
sive and play essential roles in mitochondrial division
(20) and calcium signaling between the ER and mito-
chondria (21, 22). The ER proteins VAPA and VAPB
tether multiple organelles in the cell to the ER via MCS,
including the Golgi, endosomes, and the plasma mem-
brane (19). Of particular interest for thinking about
how pathogens could associate with the ER after uptake,
it is now appreciated that endosomes associate with
the ER, and these contacts become more extensive as
endosomes mature; in fact, endosomes remain tightly
associated with the ER throughout their trafficking
(23), suggesting a potential point of contact between
pathogen-containing endosomes and the ER that might
be exploited by pathogens.

In response to a stimulus such as amino acid starva-
tion, yet another specialized ER domain known as the
omegasome forms, providing one of the pathways to
initiate autophagy, a process in which cellular com-
ponents are recycled to provide nutrition to the cell
(reviewed in reference 24). The omegasome contains the
protein DFCP1 and is enriched in phosphatidylinositol-
3-phosphate, which is thought to increase the membrane
curvature to initiate formation of the phagophore, the
double membrane that is characteristic of autophago-
somes (25).

BACTERIAL STRATEGIES FOR CO-OPTING
ER FUNCTION
Recent work has identified how the ER functions
outlined above can be subverted by intracellular bacte-
rial pathogens to generate a replicative niche, gain
nutrients for growth, or spread from cell to cell. While
Brucella abortus was recently shown to replicate with
the ER lumen (26), other pathogens, including Legio-
nella pneumophila, Chamydia spp., Simkania negeven-
sis, Anaplasma spp., and C. burnetii, reside in a vacuole
that during some part of their replicative cycle is tethered
to the ER via membrane contact sites between the
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pathogen-containing vacuole and the ER (2, 4, 6–8). Yet
another group of pathogens, exemplified by R. rickettsii
and Orientia tsutsugamushi, reside in the host cell’s
cytosol and secrete effectors that target ER functions
(11, 27). The following section reviews recent advances
in our understanding of how pathogen effectors interact
with the ER.

Subversion of Vesicular Trafficking Between
the ER and Golgi Apparatus
Brucella abortus, a zoonotic pathogen causing abortion
in ruminants and febrile infections in humans, utilizes its
T4SS to replicate intracellularly in multiple cell types,
with the macrophage being the best studied (reviewed in
reference 28). After uptake by macrophages, B. abortus
is able to avoid degradation in lysosomes (reviewed in
reference 29) and replicates within the ER (26). To
establish this replicative niche, B. abortus utilizes its
T4SS to interact with ER exit sites, where ER-to-Golgi
transport is initiated, in a manner that is dependent on
the small GTPase Sar1 (30), though the effectors medi-
ating the association with ER exit sites have not yet been

identified (Fig. 1). B. abortus also requires Golgi-to-ER
transport for the maintenance of its replicative niche, as
the small GTPase Rab2 contributes to intracellular
replication of B. abortus (31). To date, approximately
15 T4SS effectors have been shown to be translocated
into infected host cells (28). Recently, the T4SS effector
BspB (Table 1) was found to alter secretory trafficking
from both ER to Golgi and from the Golgi to the ERGIC
(ER-to-Golgi intermediate compartment) to the ER by
interacting with the conserved oligomeric Golgi (COG)
complex (24). This interaction between BspB and the
COG complex diverts Golgi-derived vesicles toBrucella’s
replicative compartment, thereby promoting its intra-
cellular replication—possibly by providing membrane
for expansion of the bacterial niche (Fig. 1). In addition
to BspB, several B. abortus effectors, including BspA,
BspD, BspK, and VceC, accumulate in the ER after ec-
topic expression (32–35), suggesting that they may per-
turb the early secretory pathway, but how these effectors
function remains to be determined.

Legionella pneumophila, which naturally infects
amoebae but causes opportunistic respiratory infections

FIGURE 1 Hijacking of vesicular traffic between ER and Golgi by T4SS effectors of
B. abortus (left) and L. pneumophila (right). It has been proposed that like B. abortus,
L. pneumophila also intercepts Golgi-ER traffic (90). Abbreviations: ERGIC, ER-to-Golgi
intermediate compartment; ERES, ER exit site; COG, conserved oligomeric Golgi complex.
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TABLE 1 Secreted pathogen effectors that localize to the ER or modulate its function

Pathogen
(secretion system) Effector Activity Reference(s)

Brucella abortus
(VirB T4ASS)

BspB Impairs ER-to-Golgi secretory trafficking; interacts with the COG
complex in the Golgi and redirects membrane vesicles from the Golgi
to Brucella vacuole

91

VceC Localizes to ER (ectopic expression); induces ER stress; interacts with
BiP/GRP70

32–34

BtpA (TcpB/Btp1) Induces ER stress; binds microtubules; inhibits TLR signaling 75–78
BspA Unknown; localizes to ER on ectopic expression 35
BspD Unknown; localizes to ER on ectopic expression 35
BspK Unknown; localizes to ER on ectopic expression 35

Legionella pneumophila
(Dot/Icm T4BSS)

Lgt1 Inhibits the IRE1 pathway of the UPR; inhibits translation elongation by
glucosylation of eukaryotic elongation factor 1A

82–84

Lgt2 Inhibits the IRE1 pathway of the UPR; inhibits translation elongation by
glucosylation of eukaryotic elongation factor 1A

82, 84, 92

SidE Localizes to the cytoplasmic face of the LCV; regulates ER tubule
rearrangement and recruitment of ER markers to the LCV via
modulating ubiquitination

64, 93–95

SidC Ubiquitin ligase and PI4P binding activity; promotes the association of
LCVs with the ER by recruiting ER vesicles

66, 68, 96

SdeA, -B, -C Promote ER reorganization by progressive ADP-ribosylation of ubiquitin
and transfer of phosphoribosyl moiety to Rtn4

64, 94, 95, 97

Ceg9 Tethers the LCV to the ER via association with Rtn4 61
SidM/DrrA Recruits Rab1 to LCV; acts as a GEF to recruit vacuoles to the LCV and

as a GDF for Rab1; AMPylates Rab1
39, 41, 42, 47, 50,
98–100

LidA Interacts with GTP-Rab1 to maintain it in the active conformation 43, 45, 101
SidD Catalyzes AMP release from Rab1 47
AnkX Transfers phosphocholine to Rab1 50
RalF Acts as a GEF to activate ARF 37
Lem3 Reverses activity of AnkX by removing phosphocholine from Rab1 52
SetA Glycosylates Rab1 102, 103
LepB Inactivates Rab1 via RabGAP activity; manipulates phosphoinositide

composition of the Legionella-containing vacuole via
phosphatidylinositide 4-kinase activity

48, 104, 105

Lpg1137 Cleaves syntaxin 17 at the mitochondrion-associated ER membrane
and blocks autophagy

106

RavZ Delipidates Atg8 (LC3-II) at the phagophore to inhibit autophagosome
formation

70

LpSpl Sphingosine-1-phosphate lyase disrupts host sphingolipid biosynthesis
and inhibits autophagy during infection

71

Chlamydia trachomatis
(T3SS)

CT229 C. pneumoniae homolog Cpn0585 recruits Rab1 from the ER to the
inclusion membrane (effector that recruits Rab1 to C. trachomatis
inclusion has yet to be identified)

107

IncD Mediates contact with the ER at MCS via binding to ceramide transfer
protein CERT

54, 108

IncV Tethers the C. trachomatis inclusion to the ER via interactions with VAPs 55
MrcA Interacts with the Ca2+ channel inositol-1,4,5-trisphosphate receptor,

type 3, to promote release of bacteria from infected cells
109

Coxiella burnetii
(Dot/Icm T4BSS)

ElpA Localizes to the ER on ectopic expression and blocks secretory traffic 59

Anaplasma spp.
(VirB T4ASS)

Ats-1 Nucleates autophagosomes by interacting with Beclin and recruitment
of DFCP1 and ATG14L to the pathogen-containing vacuole

5, 72

Orientia tsutsugamushi
(T1SS)

Ank4 Interacts with eukaryotic chaperone Bat3 to transiently impede
ER-associated protein degradation

9

Ank9 Destabilizes the ER and Golgi by binding COPB2 and induces
ATF4-dependent UPR

27

Rickettsia rickettsii
(Rvh T4ASS)

RARP-2 Forms membranous structures in association with the ER;
contributes to lysis of infected host cells.

11
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in humans, also uses its T4SS (called Dot/Icm) to target
trafficking between the Golgi and the ER (reviewed in
reference 36). Of the over 300 Dot/Icm effectors identi-
fied to date, a subset targets the function of the early
secretory pathway. RalF, the first L. pneumophila T4SS
effector to be identified, acts as a guanine nucleotide ex-
change factor (GEF) for ARF1, a small GTPase that
regulates secretory membrane transport, primarily be-
tween the Golgi and ER (37). Several effectors target
Rab1, the small, membrane-associated GTPase that
regulates ER-to-Golgi vesicular transport. Rab1 cycles
between GDP-bound (inactive) and GTP-bound (active)
forms, with the assistance of multiple cellular factors (Fig.
1 and Table 1). GEFs activate Rab1 by converting GDP-
Rab1 into GTP-Rab1. GTP-Rab1 then interacts with its
target proteins in the membrane transport pathway to
promote tethering and fusion of membrane vesicles
(reviewed in reference 38). To inactivate GTP-Rab1,
GTPase-activating proteins (GAPs) stimulate the GTPase
activity of Rab1 to convert it to inactive GDP-Rab1. The
interaction of GDP-Rab1withmembranes is regulated by
GDP dissociation inhibitor (Rab-GDI), which extracts it
from membranes, and by a GDI displacement factor
(GDF), which targets Rab1-GDP to membranes to restart
the Rab cycle. Rab1 is recruited to the Legionella-
containing vacuole (LCV) via the activity of the Dot/Icm
effector SidM (also known as DrrA [39]). Biochemical
analysis of SidM has revealed multiple activities for
modulating Rab1 activity (reviewed in references 36 and
40). A C-terminal phosphatidylinositol-4-phosphate
(PI4P) binding domain of SidM mediates its association
with the LCV after its secretion by the T4SS (41). The
central domain of SidM has GDF/GEF activity for Rab1,
which displaces Rab-GDI from Rab1-GDP and mediates
GDP exchange for GTP, leading to its association with
the membrane of the LCV. After recruiting Rab1 to the
LCV, SidM uses its N-terminal domain, which contains
adenylyltransferase activity, to covalently modify Rab1
by AMPylation (adenylylation) of a tyrosine residue. This
modification of Rab1 prevents its interaction with GAPs,
and as a result, Rab1 remains in its GTP-bound form and
becomes constitutively active (42). Modification and
recruitment of Rab1 by SidM are assisted by a second
Dot/Icm effector, LidA (39, 43), which interacts with
GTP-bound Rab1 (and with other Rab-GTP complexes
as well [44, 45]). This manipulation of Rab1 activity
enables L. pneumophila to recruit ER-derived vesicles,
thereby remodeling its phagosome into a compartment
supporting its replication (46).

Over the time of cellular infection by L. pneumophila,
additional effectors are translocated that act in an an-

tagonistic manner to SidM and LidA on Rab1 activity.
SidD acts to de-AMPylate Rab1 (47), which restores its
GTPase activity. Subsequently, LepB promotes hydro-
lysis of GTP by Rab1 (48), thereby enabling its extrac-
tion from the LCV by host Rab-GDI proteins. The time
course of effector secretion and Rab1 modulation by
L. pneumophila suggests that early during infection,
recruitment and activation of Rab1 are beneficial for
replication. However, prolonged activation of Rab1
may elicit cellular responses that are detrimental to in-
tracellular infection, since ectopic expression of SidM/
DrrA is cytotoxic to cells (42).

An additional covalent modification of Rab1,
phosphocholination, is mediated by AnkX (49). Inter-
estingly, while AMPylation targets a conserved tyrosine
residue in Rab1, AnkX targets the adjacent serine resi-
due. AnkX contains both ankyrin repeat domains and a
FIC (filamentation induced by cyclic AMP) domain,
which utilizes CDP-choline as a substrate for phospho-
cholination of Rab1 (50). It appears that Rab1 can only
be either AMPylated or phosphocholinated at once, as
only one or the other modification was identified per
Rab1 molecule (50). Phosphocholination of Rab1
appears to promote its activity in a manner similar to
AMPylation. Similarly to AMPylation, AnkX-mediated
phosphocholination can be reversed by a second effector,
Lem3 (51, 52). It was recently found that an endogenous
host protein, transforming growth factor β-activated
kinase (TAK1), regulates Rab1 by phosphorylation at
the same site as modified by AnkX and SidM, suggesting
that these T4SS effectors mimic the host’s own regula-
tory mechanism to co-opt Rab1 function (53).

One puzzling observation is that despite the multiple
effectors that modulate Rab1 activity during Legionella
infection, Rab1 itself appears to be dispensable for in-
tracellular replication. A possible explanation for this
finding is that a subset of effectors, such as SidM, AnkX,
and LidA, appear to target multiple GTPases (44, 45,
50) and that these additional activities may act in par-
allel with perturbation of Rab1 function to promote the
intracellular life cycle of L. pneumophila.

Tethering of Pathogen-Containing Vacuoles
to the ER
Several intracellular pathogens, including L. pneumo-
phila, C. burnetii (3, 4), Anaplasma spp. (5, 6), and
Chlamydia spp., replicate in vacuoles that are closely as-
sociated to the ER but do not appear to fuse with it. This
lifestyle is shared by Simkania negevensis, an organism
related phylogenetically to Chlamydia and that naturally
infects amoebae and, similar to L. pneumophila, causes
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opportunistic respiratory tract infection (7, 8). While
the effectors mediating association with C. burnetii,
Anaplasma spp., and S. negevensiswith the ER remain to
be identified, recent work has identified T3SS and T4SS
effectors that promote association of vacuoles containing
C. trachomatis and L. pneumophila with the ER (Fig. 2).

Chlamydia spp. are obligately intracellular pathogens
that cause genital tract and ocular (C. trachomatis)
or respiratory tract (C. pneumoniae and C. psittaci)
infections. Both pathogens replicate within a vacuole
termed an inclusion that has membrane contact sites
with the ER. In C. trachomatis, the T3SS substrate IncD
localizes to the inclusion membrane and mediates con-
tact with the ER at membrane contact sites that also
contain VAPA/B, the lipid transfer protein CERT, and
the ER calcium sensor STIM1 (7, 54). A second T3SS
effector, IncV, interacts with VAPA/B at the membrane
contact sites between the inclusion and the ER (55). A
C. trachomatis incV mutant exhibited decreased asso-
ciation of its inclusion with the ER but no overall
intracellular growth defect, suggesting both the impor-
tance of IncV in ER tethering and the involvement of
additional effectors in this process. Association of the

chlamydial inclusion with the ER, especially with CERT,
may promote acquisition of lipids to promote replication
of Chlamydia either for nutrition or for expansion of the
inclusion membrane during bacterial replication.

C. burnetii is a zoonotic pathogen that causes Q fever,
which can manifest with both acute and chronic pathol-
ogies (56). It utilizes a T4SS related to theLegionellaDot/
Icmapparatus to promote its intracellular replication (57,
58). Over 100 C. burnetii Dot/Icm substrates have been
identified to date, but only a few have been characterized
functionally (56). The vacuole containing C. burnetii,
termed the parasitophorous vacuole, is decorated with
calnexin and is tethered to the ER via membrane contacts
that contain the host sterol-binding protein ORP1L, a
protein that interacts with VAPA/B at ERMCS (4).While
the effectors mediating this tethering remain to be iden-
tified, multiple T4SS effectors, including Cbu0372,
Cbu1576, and ElpA, localize on ectopic expression to the
ER (59, 60), and Cbu0635 interferes with the secretory
pathway (58), suggesting that these and/or other T4SS
effectors may play a role in interactions with the ER.

Recent evidence suggests tethering of vacuoles con-
taining Legionella to the ER during the early stage of

FIGURE 2 Role of pathogen effectors in tethering of pathogen-containing vacuoles to
the ER. Abbreviations: Rtn4, reticulon 4; LCV, Coxiella large-cell variant; SCV, Coxiella
small-cell variant; RB, Chlamydia reticulate body; EB, Chlamydia elementary body.
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infection (Fig. 2). The Dot/Icm effector Ceg9 interacts
with the ER protein reticulon 4 (Rtn4) shortly after
uptake of bacteria, suggesting that recruitment of the ER
helps to develop the replicative niche forL. pneumophila
(61). In the host cell, Rtn4 helps generate the tubular
morphology that is characteristic of the peripheral ER
(62) and participates in the formation of plasma
membrane-ER MCS that function in cellular Ca2+ ho-
meostasis (63). Like Rab1, Rtn4 is targeted by multiple
Dot/Icm effectors, including the SdeA to -C proteins,
which modulate Rtn4 function via ubiquitination (64).
Intriguingly, the Sde proteins perform a sequential set of
reactions to transfer ubiquitin to Rtn4:ADP-ribosyl
transfer to ubiquitin, followed by a nucleotidase/
phosphohydrolase reaction that removes AMP and
transfers phosphoribosylated ubiquitin to Rtn4 (64).
The early targeting of Rtn4 after L. pneumophila entry
to the cell and the localization of Rtn4 to plasma
membrane-ER MCS raise the possibility that L. pneu-
mophila could co-opt these MCS early during cellular
infection to associate with the ER. Another Dot/Icm
substrate involved in tethering the LCV to the ER is
SidC, which is anchored to the cytosolic face of the LCV
via binding of PI4P (65–67). Recruitment of ER proteins
to the LCV by SidC requires a ubiquitin ligase activity in
its N terminus (68). Taken together, these findings sug-
gest that pathogens use multiple strategies to tether their
replicative vacuoles to the ER.

Subversion of Autophagy Initiation at the ER
The L. pneumophila T4SS effector protein RavZ is se-
creted from the LCV and targets to omegasomes via its
ability to interact with the lipid phosphatidylinositol-3-
phosphate, which is enriched at these sites (69). There,
the cysteine protease activity of RavZ irreversibly
deconjugates lipids from ATG8 proteins (LC3-II) in the
early-stage autophagosomal structures. As a result, the
biogenesis of autophagosomes at the ER is inhibited
(70). Since a ravZ mutant does not have a replication
defect (70), it is unknown whether this activity promotes
intracellular replication of L. pneumophila; however,
RavZmay act in concert with other effectors, such as the
inhibitor of sphingolipid biosynthesis LpSpl (71), to
modulate autophagy. In contrast to L. pneumophila,
Anaplasma phagocytophilum, which replicates within
neutrophils, activates autophagy via a T4SS effector,
Ats-1, to promote its replication (5). Ats-1 has an
N-terminal domain that nucleates autophagosomes by
interacting with Beclin 1, a protein crucial to initiation of
autophagy, to recruit the ER-localized autophagy initi-
ation proteins ATG14L and DFCP1 to the A. phago-

cytophilum inclusion (5). This subversion of autophagy
initiation recruits autophagosomes to the inclusion,
effectively delivering nutrients for intracellular replica-
tion of A. phagocytophilum (72).

Effector Modulation of the ER UPR
The unfolded-protein response (UPR) is a response to
perturbation of ER function (broadly termed ER stress)
that is initially cytoprotective and promotes return to
homeostasis but can lead to apoptosis in the case of un-
resolved stress. The cellular response to ER stress is
transmitted via three membrane sensors, IRE1α (inositol-
requiring enzyme 1), ATF6 (activating transcription fac-
tor 6), and PERK (protein kinase RNA-like ER kinase).
This response is linked to innate immunity via signaling
through cytosolic pathways (reviewed in references 73
and 74). Secreted effectors have been identified that both
induce and inhibit the UPR during intracellular infection.
The B. abortus T4SS effector VceC localizes on ectopic
expression to the ER, and during infection it activates
IRE1α, initiating a proinflammatory arm of the UPR (32,
34) that activates NF-κB. This response could be benefi-
cial to B. abortus in the bovine placenta, as placental
inflammation in this context triggers abortion, driving
transmission of the pathogen in its natural reservoir (32,
34). A second T4SS effector, BtpA (also called TcpB or
Btp1) (75), triggers all three branches of the UPR during
Brucella melitensis infection (76), but rather than local-
izing to the ER, BtpA binds microtubules (77, 78). It is not
known how microtubule stabilization by BtpA links to
UPR induction, but potential mechanisms could include
altering interaction of integral ER membrane proteins
with microtubules or effects on microtubule-dependent
vesicular transport in the secretory pathway (79).

Like B. abortus, O. tsutsugamushi, the obligate in-
tracellular agent of scrub typhus, activates the UPR (9,
27). Two T1SS-secreted effectors have been implicated
(Table 1): Ank4, an ankyrin repeat protein, interacts at
the cytosolic face of the ER with Bat3, a host cytosolic
chaperone involved in ERAD (80), to inhibit UPR-
induced ERAD during the early (nonreplicative) phase
ofO. tsutsugamushi infection. Later, Ank4 expression is
downregulated, which releases repression of ERAD,
making amino acids available for intracellular replica-
tion of O. tsutsugamushi, which provides an important
source of nutrition, since this bacterium is auxotrophic
for several amino acids (81). Ectopically expressed Ank9
binds the Golgi protein COPB2, involved in Golgi-to-ER
vesicular trafficking, and Ank9 also traffics from Golgi
to the ER, where it disrupts organelle morphology and
induces the UPR. Ectopic Ank9 expression phenocopies
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disruption of the Golgi and ER, as well as inhibition
of protein secretion, observed in cells infected with
O. tsutsugamushi (27).

L. pneumophila activates the UPR at the transcrip-
tional level (82) but suppresses the downstream trans-
lation of UPR target transcripts by translocating five
T4SS effectors (Lgt1 to -3, SidI, and SidL) that inhibit
translation elongation. The L. pneumophila effectors
function by glycosylation of a conserved serine residue in
host elongation factor 1A (83). Translation inhibition
effectively reduces the basal load of protein entering the
ER for protein folding, which is a physiologic activator
of IRE1α (82, 84); thus, the outcome of this interaction
is to inhibit the IRE1α pathway. The ability to block
IRE1α signaling is shared by S. negevensis, which
encodes both the T3SS and T4SS in its genome; however,
the effectors that mediate this activity remain to be dis-
covered (8). Blockade of the IRE1α pathway may be
beneficial in the context of bacterial infection either to
reduce innate immune signaling downstream of this
pathway or to block induction of apoptosis in response
to uncontrolled ER stress. Interestingly, blockade of the
UPR is a strategy shared by viral pathogens, which, via
their subversion of the ER for production of virions,
trigger ER stress (85).

CONCLUSIONS AND PERSPECTIVE
The biosynthetic capacity of the ER and its extensive
network of contacts with other cellular organelles make
it a logical target for exploitation by T3SSs and T4SSs
of different intracellular pathogens. Pathogens such as
L. pneumophila and C. burnetii have dedicated a sub-
stantial part of their genome coding capacities to se-
creted effectors that modulate their host cells, which
highlights the importance of these interactions to their
biology (56, 86, 87). Recent progress in understanding
the biology of T3SS and T4SS effectors has revealed
novel mechanisms utilized by intracellular bacteria to
co-opt multiple functions of the ER, including protein
secretion, lipid biosynthesis, membrane tethering, and
autophagy initiation, to promote their replication. While
our understanding of how individual effectors modulate
ER function is growing, for the majority of effectors, the
molecular mechanisms of action remain unknown.

One of the challenges to identifying effector functions
and understanding their roles in the context of infection
has been the redundancy of effector function. However,
elegant approaches have been employed in C. tracho-
matis and Mycobacterium tuberculosis to generate
interaction networks (88, 89) for secreted effectors

that, together with newly developed methodologies for
genetic manipulation of the obligate intracellular path-
ogens, will facilitate functional and mechanistic studies
of effector proteins and uncover new strategies by which
they manipulate ER biology.
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