
Integrating Quality of Life and Survival Outcomes 
Cardiovascular Clinical Trials: Results from the PARTNER Trial

Jacob V. Spertus1, Laura A. Hatfield, PhD2, David J. Cohen, MD MSc3,4, Suzanne V. Arnold, 
MD MHA3,4, Martin Ho, MSc5, Philip G. Jones, MS3,4, Martin Leon, MD6, Bram Zuckerman, 
MD5, and John A. Spertus, MD MPH3,4

1Department of Statistics, University of California, Berkeley CA

2Department of Health Care Policy, Harvard Medical School, Boston, MA

3Saint Luke’s Mid America Heart Institute, Kansas City MO

4University of Missouri – Kansas City, Kansas City MO

5Center for Devices and Radiologic Health, Food and Drug Administration, Bethesda MD

6Columbia University, New York, NY

Abstract

Background—Survival and health status (e.g., symptoms and quality of life) are key outcomes 

in clinical trials of heart failure treatment. However, health status can only be recorded on 

survivors, potentially biasing treatment effect estimates when there is differential survival across 

treatment groups. Joint modeling of survival and health status can address this bias.

Methods and Results—We analyzed patient-level data from the PARTNER 1B trial of 

transcatheter aortic valve replacement (TAVR) versus standard care. Health status was quantified 

with the Kansas City Cardiomyopathy Questionnaire (KCCQ) at randomization, 1, 6, and 12 

months. We compared hazard ratios for survival and mean differences in KCCQ scores at 12 

months using several models: the original growth curve model for KCCQ scores (ignoring death), 

separate Bayesian models for survival and KCCQ scores, and a Bayesian joint longitudinal-

survival model fit to either 12 or 30 months of survival follow-up. The benefit of TAVR on 12-

month KCCQ scores was greatest in the joint model fit to all survival data (mean difference = 33.7 

points; 95% CrI: 24.2, 42.4), followed by the joint model fit to 12 months of survival follow-up 

(32.3 points; 95% CrI: 22.5, 41.5), a Bayesian model without integrating death (30.4 points; 95% 

CrI: 21.4, 39.3), and the original growth curve model (26.0 points; 95% CI: 18.7, 33.3). At 12 

months, the survival benefit of TAVR was also greater in the joint model (hazard ratio = 0.50; 95% 

CrI: 0.32, 0.73) than in the non-joint Bayesian model (0.54; 95% CrI: 0.37, 0.75) or the original 

Kaplan-Meier estimate (0.55; 95% CI: 0.40, 0.74).

Conclusions—In patients with severe symptomatic aortic stenosis and prohibitive surgical risk, 

the estimated benefits of TAVR on survival and health status compared with standard care were 

greater in joint Bayesian models than other approaches.
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Patients with heart disease seek treatments to extend survival and optimize their health 

status; their symptoms, function, and quality of life.1, 2 Accordingly, many clinical trials 

include patient-reported outcomes alongside mortality to measure the impact of treatment on 

patients’ health status. Most trials have reported mortality and health status results 

independently, such that the health status outcomes are reported only in surviving patients 

who are able to complete the health status questionnaires. Although this approach has appeal 

due to its simplicity, it is likely to provide biased estimates of the treatment effect that is 

most relevant to patients and providers. Specifically, we are interested in counterfactual 

health status at a specific point in time for an average individual under each treatment if they 

survived to that time. To that end, we aim to account for informatively missing data due to 

death. Contrary to a summary of health status among survivors, this endpoint is likely to be 

what physicians and patients most care about when weighing treatment decisions. An 

example illustrates this point: suppose treatment and control have no effect on an 

individual’s quality of life, but treatment keeps everyone alive while control kills people 

with very low quality of life. Looking at observed averages we would conclude that control 

is better in terms of quality of life (though worse in terms of survival). Weighing this 

evidence with her physician, a patient who really values having a high quality of life may 

conclude that she should be on control, though this is clearly a bad choice. The obvious 

problem is that the quality of life among survivors is not really what matters, and averages of 

observed quality of life (among survivors) are biased by the counterfactual effect that is 

really of interest. When outcomes are correlated, joint modeling provides a way to estimate 

the endpoint of interest with less bias than separate analyses, while also potentially 

increasing the precision of both health status and survival effect estimates.3–7

While a number of potential strategies have been proposed for this purpose,8–11 there has 

been growing interest in the use of Bayesian models to jointly model survival and 

longitudinal health status outcomes, largely driven by successful applications in oncology 

and HIV research.12–16 A joint modeling approach can enable survival data to inform 

estimates of longitudinal health status trajectories, thereby partially addressing the problem 

of informatively missing health status data by estimating a counterfactual average health 

status trajectory had all subjects survived. Furthermore, the precision of treatment effect 

estimates on both survival and health status may be better than separate or sequential 

estimates.15 Joint modeling is possible in a frequentist paradigm, but we present it in a 

Bayesian framework here. The Bayesian version has several advantages in that uncertainty 

summaries (e.g. posterior intervals) are non-asymptotic, model assessment is simplified, and 

priors can be used to incorporate historical data or regularize models that have many free 

parameters. 17, 18 To date, Bayesian joint modeling approaches have mostly focused on 

improving the power of clinical trials by incorporating patients’ health status into the 

survival estimates, as opposed to using the survival data to improve the health status 

estimates.12, 15 To clarify the impact of such approaches on the estimates of health status, we 

applied joint modeling to a cardiovascular clinical trial in which the experimental treatment 

had an impact on both survival and health status. Specifically, we applied a Bayesian joint 

model of survival and health status to describe the outcomes of patients with severe, 

symptomatic aortic stenosis and extreme surgical risk who were not candidates for surgery 

and were randomized to either transcatheter aortic valve replacement (TAVR) or standard 
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therapy (including a combination of medical management and balloon valvuloplasty) in the 

Placement of Aortic Transcatheter Valves PARTNER 1B trial.19, 20 We compared these 

estimates with alternative modeling approaches including the original analysis and a more 

standard Bayesian model that didn’t jointly model the outcomes. These analyses can 

highlight the potential benefits of a joint-modeling analytic approach using a Bayesian 

framework to provide a deeper understanding of the benefits of TAVR on patients’ health 

status and survival.

METHODS

The PARTNER 1B trial data used in this analysis is not publicly available. Stan code for our 

joint models is printed in the supplementary appendix (Appendix C). Complete R code and 

original Stan files are available online as a zip file.

PARTNER 1B Trial Data

The PARTNER 1B trial was a randomized, open-label trial designed to test TAVR in patients 

with severe, symptomatic aortic stenosis for whom surgical aortic valve replacement 

(SAVR) was considered to present a prohibitive risk for surgery. Eligible patients were 

randomized to TAVR (performed by a transfemoral approach using the balloon expandable 

Sapien valve) or standard care, consisting of drug therapy and/or balloon valvuloplasty. As 

previously described, the primary results of the PARTNER 1B trial demonstrated that TAVR 

led to substantial improvements in both survival19 and health status.20 In the Reynolds et al 

paper reporting the health status results of the PARTNER 1B trial, longitudinal random-

effect growth curve models were used to estimate health status trajectories while adjusting 

for covariates including prespecified patient characteristics and functions of follow-up time.
20 We performed secondary analyses of the patient-level data from this study to examine the 

impact of a Bayesian joint modeling approach on both outcomes. The study was approved 

by IRB at each site, and all patients provided informed consent. The Saint Luke’s Health 

System’s Institutional Review Board reviewed the project and determined this secondary 

analysis not to be human subjects research.

Outcomes

Health status was evaluated using the Kansas City Cardiomyopathy Questionnaire (KCCQ),
21 a 23-item, disease-specific questionnaire that quantifies patients’ symptoms, physical and 

social limitations, self-efficacy, and quality of life due to heart failure.21–24 The KCCQ has 

undergone extensive reliability and validity testing in various heart failure populations,21 

including those with severe aortic stenosis.22 Each domain is converted to a range of 0–100, 

where higher scores indicate fewer symptoms, less functional limitation, and better quality 

of life. The Symptom, Physical Limitation, Social Limitation and Quality of Life scales can 

be combined to form the KCCQ overall summary scale (KCCQ-OS), which also ranges 

from 0 to 100, with higher scores indicating better health status. Lower KCCQ scores have 

been associated with increased risk of death, including in patients undergoing TAVR.6, 25 

Changes of 5, 10, and 20 points correspond to small, moderate or large clinical 

improvements, respectively.23 The KCCQ was administered prior to randomization and at 1, 

6 and 12 months later, providing a longitudinal trajectory summarizing surviving patients’ 
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health status over time. Mortality was measured as death from any cause. At the time of 

database lock for the quality of life study, all patients had been followed for survival for at 

least 1 year and up to 30 months.

Joint Modeling Approach

To address informatively missing health status data due to death, we specified a piecewise 

linear model for the mean health status trajectories with intercepts at baseline and 1 month 

and with a linear slope between months 1 and 12. This model (fully specified in Appendix 

A) was chosen based on observing a large improvement in health status immediately after 

TAVR or standard therapy, and an approximately linear trend afterwards. Treatment effects 

were parameterized with two coefficients, one for the difference between treatment and 

standard care at 1 month and a second for the difference in post-1-month slopes. Baseline 

average scores were constrained to be the same in the two treatment groups, which was felt 

to be reasonable owing to randomization and was empirically verified in the study sample. 

The errors were assumed to be Gaussian and individuals had 3 Gaussian random effects: a 

baseline intercept, a 1-month intercept, and a post-1-month slope.

Survival times were modeled using a Weibull distribution, with a single shape parameter and 

a regression model for the scale parameter. The regression model included an indicator of 

treatment group and two of the individual-level random effects: the 1-month intercept and 

the post-1-month slope of KCCQ scores. The coefficient on the treatment indicator 

quantifies the treatment effect in the survival sub-model. The coefficients on the individual-

level random effects quantify the relationship between the health status trajectories and 

hazard of death. Positive coefficients on the random effects would indicate that higher health 

status scores at 1 month and more positive slopes are associated with shorter survival. In this 

joint model, survival times also influence the individual-level random effects, which helps 

account for censoring of health status by death. We specified weakly informative priors 

following best practices in Bayesian data analysis.17

To fit the model to the KCCQ-OS data, we first transformed the scores to make them 

suitable for a Gaussian model. We trimmed scores of 0 and 100 to 1 and 99, then divided by 

100 and applied a probit transformation. Given that the KCCQ-OS does not have a score of 

1 or 99, the trimmed scores remained the lowest and highest possible. The resulting 

transformed KCCQ-OS scores were approximately normally distributed (see Figure S1 in 

Appendix B). All data analyses were done using R software, version 3.3.1. Model code was 

written in Stan for Hamiltonian Monte Carlo (HMC) sampling, and fit with the ‘rstan’ 

package and is provided in Appendix C.26 The modeling of means using frequentist t-tests 

and regression estimates generate confidence intervals (CI) around the point estimates, 

whereas the Bayesian analyses generate credible intervals (CrI). We assessed convergence of 

our HMC chains using R-hat statistics, where an R-hat below 1.1 indicated reasonably good 

convergence, and by visually examining trace plots.17

We compared multiple approaches to illuminate features of the analyses that influence the 

estimates of health status outcomes. These comparators include the original estimates of 

health status outcomes, which were based on longitudinal growth curve models that ignored 

death,20 and the Bayesian model of health status data we specified with no sharing of 
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information through joint random effects (termed the ‘separate’ Bayesian analysis). 

Furthermore, we included two implementations of our joint Bayesian model: one using 

survival data only through to 12 months to match the primary survival analysis19 and one 

using up to 30 months of survival data to examine whether including all available data can 

further improve joint model fitting and inferences. To determine the extent to which survival 

data actually informed health status estimates in our joint modeling procedure, we examined 

the survival coefficients of the random 1-month intercept and post-1-month slope random 

effects. As they are complicated and mostly of technical interest, the results for the joint 

random effects are presented in Appendix D.

RESULTS

Patient Population

Table 1 displays baseline patient characteristics and observed outcomes of the 358 

randomized patients. The population was elderly, with a mean age of 83.2 ± 8.4 years, 

46.4% were male, and 91.3% were white. By design, the population was at high risk for 

SAVR (mean STS score of 11.5), and patients had high rates of cerebrovascular disease and 

chronic obstructive pulmonary disease.

At 1 month, the raw data indicated significantly more mean KCCQ-OS improvement in the 

TAVR group than in the standard care group. People in the standard care group had worse 

KCCQ-OS scores at 12 months than at 1 month, indicating a decline in health status over 

time. In contrast, patients treated with TAVR experienced improved health status, on 

average, throughout the year of observation. 1-year survival was also significantly worse in 

the standard care group than in the TAVR group (49% vs 69%; p<0.01).

Impact of Joint Modeling on Health Status Inference

Figures 1 and 2 plot the KCCQ-OS results in two distinct ways. Figure 1 plots the estimates 

from different methods overlaid on each other to facilitate comparison, with separate panels 

for treatment group. Figure 2 plots each method in a separate panel and includes 95% CIs or 

CrIs for each estimated trajectory. These plots show that both joint approaches estimated 

lower health status in the standard care group than either the longitudinal growth curves or 

the separate Bayesian model. Furthermore, all 3 Bayesian models estimated slightly higher 

health status in the TAVR group at 12-months, though as we accounted for increasing 

amounts of survival data the health status trajectories in TAVR-treated patients slightly 

decreased. Including survival data in the joint model changed the estimated trajectories for 

the standard care group: the estimate for standard care 12-month KCCQ-OS was 33 from the 

full survival joint model compared with 44 from the separate Bayesian model and 41 from 

the longitudinal growth curve model. In terms of inference, the joint methods exhibited 

wider credible intervals than either the growth curves (which estimated frequentist 

confidence intervals) or the separate Bayesian model. However, including more survival data 

led to tighter credible intervals, as shown in the comparison of plots 2C and 2D.

These differences were also apparent in the effect estimates, defined as the difference in 

estimated KCCQ scores between TAVR and standard therapy health status at each timepoint 
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(Table 2). The joint Bayesian methods estimated a larger treatment benefit than either the 

original growth curve model or the separate Bayesian model. In addition, using the full 30-

months of survival follow-up data led to a slightly larger KCCQ effect estimate than using 

only 12 months of survival data.

Impact of Joint Modeling on Survival Inferences

The hazard ratio of TAVR is 0.50 (95% CrI: 0.32, 0.73) from the joint model, which 

indicates a nominally larger treatment benefit compared with the original finding of a hazard 

ratio of 0.55 (95% CI: 0.40, 0.74), or compared to a Bayesian Weibull model with no joint 

parameters (0.54; 95% CrI: 0.37, 0.75).

DISCUSSION

As patient-centered outcomes assume increasing importance in both clinical trials and 

shared decision-making, there is a need for analytic strategies to obtain estimates of the 

health status benefits when there is informatively missing data, such as censoring by death. 

This is particularly important in conditions where mortality is common, including heart 

failure and severe aortic stenosis. In this study, we jointly modeled survival and health status 

using a Bayesian framework to estimate the impact of mortality on the longitudinal health 

status benefit of TAVR and to refine the estimates of the survival benefit from TAVR.

We compared our findings to those based on longitudinal growth curve models reported in 

Reynolds et al (2011).20 As in this paper, the longitudinal endpoints of interest were 

counterfactual health status trajectories, and not observed averages among survivors. That 

analysis assumed that the informative missingness could be handled by covariate adjustment. 

We took a different approach that did not make this assumption, though it did require other 

assumptions about the form of the model, which we discuss below. We focused our attention 

on applying joint modeling to the PARTNER 1B data and comparing substantive inferences 

to past analyses. We refer the interested reader to our bibliography for more details on the 

benefits and drawbacks of joint models from a technical perspective. 12–16, 18, 27–29

Integrating mortality and health status demonstrated increased treatment benefits of TAVR 

compared with medical therapy on both outcomes. Thus, the true benefits of TAVR (in terms 

of both health status and survival) may have been underestimated by the original analyses, 

which ignored informative censoring and treated each endpoint separately. These findings 

illustrate the potential value of joint modeling to enrich a discussion between patients and 

providers regarding the anticipated health status patients could expect to experience at a 

specific time (e.g. 1 year) should they live that long. Without such an approach, current 

estimates of health status have likely over-estimated the health status that a patient can 

expect to experience, due to the fact that sicker patients (i.e. those with worse heath status) 

are more likely to die over the course of a trial. This is especially problematic when different 

treatments imply different survival rates, as effect estimates based on observed longitudinal 

data are biased by the differential survival.

Our work extends prior research on the use of joint models to analyze clinical trials. To date, 

joint modeling has been largely restricted to clinical trials in oncology and HIV/AIDS. 
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While this approach may reflect a greater focus in those fields on analyzing treatments in 

terms of both survival and quality of life, joint modeling has also been used to improve the 

precision of survival hazard estimates using longitudinal biomarkers or patient-reported 

outcomes.12, 14–16 In contrast, cardiovascular trials have traditionally focused on survival or 

other discrete events, and have only recently begun to emphasize health status outcomes, 

which have typically been analyzed separately and either reported among survivors or 

modeled using observed covariates.20 Indeed, to our knowledge, this is the first application 

of joint modeling of health status and survival data in a cardiovascular clinical trial.

In particular, applying a joint Bayesian model can enable more accurate assessment of 

treatment benefits among patients with a highly mortal cardiovascular condition. Previous 

treatment estimates derived from surviving patients describe the average health status of 

survivors. However, since patients with worse health status are also less likely to survive, 

this analytic approach may underestimate the true health status benefit of treatment. In 

contrast, by explicitly considering the interrelationship between survival and health status, 

the joint modeling approach provides an estimate of the health status benefit that individual 

patients would be expected to achieve had they survived to 12 months. We believe that this is 

the type of information that a prospective patient would want to know when trying to decide 

whether to undergo a major procedure.

In terms of 12-month survival, the joint model assuming a Weibull distribution estimated 

slightly better survival compared with the Kaplan-Meier estimate, especially in the TAVR 

group. Indeed, the hazard of death for TAVR treatment was 50% lower than standard 

therapy, which was slightly larger than the originally reported treatment effect of a 45% 

reduction in mortality.19

Limitations

This study should be interpreted in the context of several potential limitations. First, given 

the study design, there were relatively few health status measurements per person (no more 

than 4). In using 3 parameters (a baseline intercept, a 1-month intercept, and a post 1-month 

slope) to define each person’s recovery, the model fit many parameters to relatively sparse 

longitudinal data. In the future, collection of more longitudinal measurements per subject 

could allow for more flexible models and lead to improved precision. Modeling a bounded 

health-status outcome was also challenging. We opted to transform the KCCQ-OS scale to 

fit a Gaussian model and then back-transform for inference. Our Bayesian approach 

facilitated this, as we could transform posterior draws and still ensure correct inference. 

However other modeling choices are defensible, and the treatment effect estimates may be 

sensitive to the parametric form of the model and data transformations. For future studies, 

alternative approaches, including a Beta or zero-augmented Beta distribution to model the 

outcome on its original scale, should be considered.13 Moreover, we had to make additional 

assumptions about the data in order to use parametric sub-models for the longitudinal 

trajectories and survival, e.g. that post-1-month health status trajectories were approximately 

linear and survival could be modeled as a Weibull. These assumptions were necessary to fit a 

joint model that could account for differential survival, despite having limited longitudinal 

health status measurements. If more data points were available, these assumptions could be 
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relaxed by fitting more flexible sub-models. In addition, while the PARTNER 1B trial was 

an excellent study with which to explore joint modeling methods given the profound 

influence of TAVR on both survival and health status, the impact of a joint modeling 

approach in less effective treatments needs to be explored. Finally, these methods remain 

unfamiliar to clinicians. While we have attempted to provide intuitive explanations for our 

approach and for the interpretation of our results, this work represents an early application of 

joint modeling in cardiovascular disease. Greater experience with these methods and 

alternative explanations may improve the ability to convey the results of analyses that 

integrate survival and health status.

Conclusions

In summary, this study provides the first example in the cardiovascular literature of 

integrating survival and health status outcomes in a randomized clinical trial using a joint 

Bayesian framework. We found that in patients with severe, symptomatic aortic stenosis and 

extreme surgical risk who were randomized to either TAVR or standard medical therapy, the 

estimated benefits of TAVR on both survival and health status were greater than those 

observed in analyses that considered those outcomes separately. Since death informatively 

censors health status observations, this approach may provide a better means of integrating 

these two clinically important outcomes than assuming that health status scores are 

representative of the overall population of patients in a clinical trial after adjusting for 

observed covariates. It would be reasonable for future studies to consider incorporating these 

methods to generate a more accurate estimate of the survival and health status benefits of 

cardiovascular therapies.
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Figure 1: Estimated KCCQ-OS score trajectories for TAVR and standard care according to the 
original longitudinal growth curves and Bayesian models.
Estimated population KCCQ-OS trajectories. Different estimation methods are overlaid and 

confidence/credible interval ribbons are suppressed for clarity.
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Figure 2: Estimated KCCQ-OS scores for each estimation method with confidence/credible 
interval ribbons.
Estimated population level KCCQ-OS scores from baseline (0-months) to 12-month. Panels 

show (from left to right, top to bottom) longitudinal growth curve model, Bayesian 

piecewise linear model fit with no joint parameters, Bayesian piecewise linear model with 

joint random effects utilizing 12-months of survival data, and Bayesian piecewise linear 

model with joint random effects utilizing the full 30-months of survival data. Sold lines with 

points are joint model estimates, ribbons are 95% credible intervals. Standard care group is 

in red, TAVR is blue.
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Table 1:

Baseline Characteristics and 1-Year Outcomes

Variable TAVR (N = 179) Medical Therapy (N = 179)

Age, years ± SD 83.1 ± 8.6 83.2 ± 8.3

Male sex, % 45.8 46.9

White race, % 92.2 90.5

COPD, % 41.3 52.5

Cerebrovascular Disease, % 27.4 27.4

STS Mortality Risk Score ± SD 11.2 ± 5.8 11.9 ± 4.8

KCCQ-OS

 Baseline ± SD 36.2 ± 20.5 34.4 ± 20.1

 1-Month ± SD 61.6 ± 26.2 49.2 ± 24.3

 6-Month ± SD 70.7 ± 23.0 50.5 ± 26.1

 12-Month ± SD 69.4 ± 25.4 47.0 ± 24.6

1-Year Survival (95% CI) 0.69 (0.63, 0.76) 0.49 (0.42, 0.57)

SD = standard deviation; STS = Society of Thoracic Surgeons; COPD = chronic obstructive pulmonary disease; CI = confidence interval.
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Table 2:

Estimated Health Status Benefits

Original Longitudinal 
Growth Curves (95% 

CI)

Separate Bayesian 
Model (95% CrI)

Joint Model with 12-
Month Survival Data 

(95% CrI)

Joint Model with 30-
Month Survival Data 

(95% CrI)

1-Month KCCQ-OS Effect 13.3 (7.6, 19.0) 16.7 (9.6, 23.7) 17.4 (9.9, 24.4) 17.1 (9.8, 24.0)

6-Month KCCQ-OS Effect 20.8 (14.7, 27.0) 23.1 (16.3, 29.7) 24.3 (17.5, 30.9) 24.8 (18.0, 31.5)

12-Month KCCQ-OS Effect 26.0 (18.7, 33.3) 30.4 (21.4, 39.3) 32.3 (22.5, 41.5) 33.7 (24.2, 42.4)

KCCQ-OS Effect = Difference in Estimated Mean KCCQ-OS between the TAVR and standard of care groups. CI = confidence interval, CrI = 
credible interval.
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