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Abstract

We conducted single cell metabolomics studies of live cancer cells through online single cell mass 

spectrometry (SCMS) experiments combined with a generalized comprehensive data analysis 

workflow. The SCMS experiments were carried out using the Single-probe device coupled with a 

mass spectrometer to measure molecular profiles of cells in response to two mitotic inhibitors, 

taxol and vinblastine, under a series of treatment conditions. SCMS metabolomic data were 

analyzed using a comprehensive approach, including data pre-treatment, visualization, statistical 

analysis, machine learning, and pathway enrichment analysis. For comparative studies, traditional 

liquid chromatography-MS (LC-MS) experiments were conducted using lysates prepared from 

bulk cell samples. Metabolomic profiles of single cells were visualized through Partial Least 

Square-Discriminant Analysis (PLS-DA), and the phenotypic biomarkers associated with 

emerging phenotypes induced by drug treatment were discovered and compared through a series 

of rigorous statistical analysis. Species of interest were further identified at both the single cell and 

population levels. In addition, four biological pathways potentially involved in the drug treatment 

were determined through pathway enrichment analysis. Our work demonstrated the capability of 

comprehensive pipeline studies of single cell metabolomics. This method can be potentially 

applied to broader types of SCMS datasets for future pharmaceutical and chemotherapeutic 

research.
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1. Introduction

Cell, as a fundamental component of living organisms, regulates cellular metabolic activities 

through a variety of biological pathways.[1, 2] In recent years, a tremendous number of 

metabolites that participate in rapid and subtle biological and physiological activities[3, 4] 

were intensively investigated to gain a profound perspective towards the dynamic nature of 

the cell.[5, 6] Metabolomics, serving as a bridge between cellular metabolism and 

phenotypes,[7, 8] becomes an increasingly intriguing research field where modern 

instrumentation and methodologies are involved.[9, 10] Among all techniques for 

metabolomics studies, mass spectrometry (MS) based approaches possess considerable 

advantages over others for providing a large amount of molecular information from complex 

samples. MS methods are widely used in metabolomic studies due to their high sensitivity to 

detect low-abundance cellular metabolites,[11] high mass resolution to resolve isobaric 

species,[12] flexible capabilities to be coupled to versatile chromatographic separations to 

enhance metabolite coverage,[13, 14] and wide selections of orthogonal yet compatible 

analytical methods to discriminant isomers.[15, 16] To date, the majority of current MS 

based cell metabolomic studies are carried out by analyzing cell lysates prepared from a 

large cohort of cells, and consequently, leading to an accumulative result of populations 

analyzed.[17] However, each cell is an individually functional unit that is encoded with 

heterogeneous genomic information, and presents diverse biological status in different 

microenvironment.[18] Single cell MS (SCMS), as an emerging field of study, appreciates 

such cell-to-cell heterogeneity masked by conventional liquid chromatography-mass 

spectrometry (LC-MS) methods through interrogating cellular contents of individual cells. A 
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number of SCMS techniques have been dedicatedly developed, and they are roughly 

classified as ion-beam based,[19] laser based,[20–23] probe based,[24–28] and other 

techniques.[29–32] Typically, they have been employed for distinguishing cellular 

fingerprints, identifying intracellular metabolites, and discovering new biological 

mechanisms through single cell metabolomic analysis (i.e., single cell metabolomics).[33, 

34] However, to the best of our knowledge, the majority of reported single cell metabolomic 

studies rely on the non-specialized software, which is either vendor-specific (MassLynx,[35, 

36] Compass Data Analysis,[29, 37] etc.) or derived from conventional LC-MS analysis 

(e.g., Decon2LS),[38] to process the datasets. Therefore, further efforts are needed to 

establish the standardized data analysis procedure for the single cell metabolomic analysis of 

data obtained from broader types of MS instruments. On the other hand, cells are sensitive to 

their surrounding microenvironment, and cellular metabolites have rapid turnover rate upon 

subtle changes,[39] which adds another layer of complexity to single cell metabolomics in 

native status. Facing those challenges, it is imperative to develop a comprehensive single cell 

metabolomics approach consisting of SCMS experiments and a generalized pipeline for 

SCMS metabolomic data analysis. Ultimately, a fully developed single cell metabolomics 

method can be used to capture metabolomic signatures of individual cells, identify metabolic 

phenotypes, and disclose underlying biological principles of live single cells.

In our single cell metabolomics approach, we used a miniaturized multifunctional sampling 

device, the Single-probe,[27, 40–45] coupled to MS to analyze live single cells in ambient 

conditions, followed by multivariate and univariate data analysis. We selected human 

cervical cancer cell line, HeLa, as our model system, to demonstrate changes of 

metabolomic profile of each cell upon exposure to external stimuli (i.e., anticancer drugs). 

Specifically, two types of mitotic inhibitors, paclitaxel (taxol) and vinblastine, were selected 

for a series of time- and concentration-dependent treatments. Both taxol and vinblastine 

inhibit cell mitotic process in G2/M phase by either stabilizing (taxol) or destabilizing 

(vinblastine) microtubules, and ultimately induce cell apoptosis.[46, 47] Although both drug 

compounds share similarities such as the binding target (microtubules) and IC50 values,[48] 

their influence on the cellular metabolism needs to be further understood at the single cell 

level.

Similar to the untargeted LC-MS metabolomics data handling procedures, our SCMS 

metabolomic data processing aims to discriminate metabolic phenotypes, discover 

phenotypic biomarkers (i.e., characteristic species closely related to specific phenotypes), 

and unveil related biological pathways. However, due to the nature of cell heterogeneity, 

each cell may have a different response to drug treatment resulting in varied metabolomic 

profiles. Therefore, it is impractical to directly apply the conventional metabolomic data 

analysis procedure to SCMS datasets, as the underlying assumption (i.e., homogeneity of 

variance) of a variety of statistical tests are challenged. Here, we developed a comprehensive 

approach to SCMS metabolomics studies by performing data pre-treatment, visualization, 

statistical analysis, machine learning, and pathway enrichment analysis (Figure 1).
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2. Experimental

2.1. SCMS data acquisition

Detailed fabrication procedure and working mechanisms of the Single-probe device are 

provided in our previous publications [27, 40] and briefly summarized in the Supporting 

Information (see “Fabrication and Working Mechanisms of the Single-probe” in the 

Supporting Information). To conduct the SCMS experiment, the Single-probe device is 

coupled to a Thermo LTQ Orbitrap XL mass spectrometer. The tip (size < 10 µm) of the 

Single-probe is inserted into a target cell to extract cellular contents through a liquid junction 

at the probe tip, and then the extracted mixture is driven towards the nano-ESI emitter for 

immediate ionization and MS detection (Figure 2B). Cell selection and penetration are 

precisely controlled by our in-house built XYZ-translational stage system (Figure 2A), and 

these processes are visualized using a stereo microscope (Figure 2C). The experimental MS 

parameters are listed as follows: ionization voltage +4.5 kV, mass range 150–1500 m/z 
(mass-to-charge ratio), mass resolution 60,000 at m/z 400, 1 microscan, and 100 ms max 

injection time and automatic gain control (AGC) on.

To study changes of metabolomic profiles of cancer cells induced by taxol and vinblastine, 

we cultured HeLa cells under normal condition (control), and treated them using a series of 

drug treatment conditions (Table 1). Individual cells in both control and treatments groups 

were randomly selected for analysis using the Single-probe SCMS technique (see “Sample 

Preparation” and “Single-probe SCMS” in the Supporting Information). We carefully 

designed our treatment conditions allowing for sufficient cellular metabolomic changes to be 

detected, while minimizing other factors (environmental perturbations, mutations, etc.) that 

could potentially interfere with phenotypic identification. In our experiments, 22–28 cells 

were sampled from the control group and each of those drug treatment groups.

2.2. SCMS data pre-treatment

Following online data acquisition, we performed a generalized comprehensive SCMS 

metabolomics data analysis, including multivariate and univariate analysis, to gain biological 

insights into raw data matrices (Figure 1). Particularly, to preserve metabolomic information 

of endogenous species from single cells while avoiding interference with other species 

(exogenous species from the sampling environment, detection noise, etc.), we conducted 

data pre-treatment that can be generally divided into three consecutive steps.

2.2.1. Generation of metabolomic peak list—The acquired raw data files (.raw) 

from our SCMS experiments were accessed using Xcalibur 3.0 (Thermo Fisher Scientific). 

A common cellular species with relatively high ion intensity, PC (34:1),[27] was selected as 

an indicator of successful MS detection of cellular contents from individual cells (Figure 

S1). We exported an averaged MS spectrum from each cell containing all detected peaks 

(i.e., m/z values) along with their corresponding ion intensities as the metabolic peak list. 

Similar lists of metabolites can be generated from all other major types of MS platforms, 

including quadrupole time-of-flight (qTOF), fourier transform-ion cyclotron resonance (FT-

ICR), and Orbitraps, using vendor-specific software.
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2.2.2. MS background removal—Under our experimental conditions, a raw file 

typically consists of more than 6,000 distinct peaks, which can be attributed to endogenous 

species (i.e., cellular metabolites), exogeneous species (i.e., from surrounding matrix such as 

cell culture medium and sampling solvent), and instrument noise. Based on the data obtained 

from 10 randomly selected cells, we estimated the total ion current (TIC) of exogenous 

species and noise are ~11 fold higher than that of endogenous species (Figure S2). This 

result could be attributed to both the extremely limited amount of analytes within a single 

cell (in picoliter range)[39, 49] and the reduced detection sensitivity due to the matrix effect.

[50] Because only the relative abundances of cellular metabolites from single cells were 

used in the downstream analysis, we excluded interfering ion as described below. First, we 

removed ion signals of exogenous species (i.e., background ion signals), which were 

detected from cell culture medium and the sampling solvent used in SCMS experiments. 

Second, we filtered out instrument noise, which may result in false positive discovery and 

unnecessary computational burden to data analysis. Instrument noise accounts for ~20–40% 

of the total number of peaks detected in SCMS experiments, and it was removed by 

eliminating ions with evidently lower ion intensities (< 103). Removing background and 

noise greatly reduced the dimensionality of SCMS data matrices and preserved the 

molecular information of endogenous cellular metabolites. Lastly, we normalized the ion 

intensity of each metabolite to TIC prior to the following data processing steps. It is worth 

noting that our background removal method is similar to those used in prevalent LC-MS 

metabolomics data analysis software (e.g., MZmine 2). However, discriminating instrument 

noise from low-abundance MS peaks of cellular metabolites is challenging. Other advanced 

noise removal algorithms, such as repetition rate filtering (RRF) that has been demonstrated 

effective in shotgun lipidomics,[51] can be incorporated in future studies.

2.2.3. Peak alignment and common species determination—The SCMS datasets 

obtained from the previous step were submitted to Geena 2[52] for MS peak alignment. We 

then utilized MetaboAnalyst[53, 54] to determine the common species, which are defined as 

cellular species that can be frequently detected from measured cells in each group. Here, we 

referred to the standard 80% rule (i.e., excluding species with > 20% missing values from all 

measured cells), a broadly accepted rule for feature selection in untargeted LC-MS 

metabolomics research,[55] as the criterion to determine common species. In addition, a 

missing value imputation (MVI) algorithm, K-nearest neighbor (KNN),[56] was employed 

to eliminate missing values and reduce false positive results in our analysis. Using the above 

data pre-treatment procedures, we promptly reduced the size of our datasets while retaining 

the essential metabolomic information from individual cells. However, this 80% rule may 

eliminate rare cells, which can be critical for a variety of biological mechanisms present in a 

large population of cells.[57, 58] To include more measured cells for SCMS data analysis, a 

lenient missing value threshold can be employed. However, applying a loose missing value 

threshold may reduce the statistical power, introduce bias, and increase computing demand.

[59]

2.3. SCMS data visualization.

To evaluate the differences of metabolomic profiles of single cells among all groups, we 

conducted the dimensionality reduction of pre-treated SCMS datasets, which facilitates the 
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visualization of high-dimensional data matrices in a low-dimensional space through 

multivariate analysis. Here, we employed Partial Least Square-Discriminant Analysis (PLS-

DA), a supervised method, to achieve phenotypic separation when the within-group variation 

(i.e., variation of cellular metabolite abundance within the control and each of the treatment 

groups) is pronounced.[60] To evaluate the quality of PLS-DA models and avoid data 

overfitting, the explained variation (R2) and the predictive ability (Q2) were calculated 

through a 10-fold cross validation procedure.[61] PLS-DA models with Q2 > 0.5 were 

considered to be robust,[62] and they were further analyzed using permutation tests[63] to 

identify significantly separated phenotypes. We performed 2,000 permutation tests for each 

model, and a small statistic p-value (< 0.05) indicated a significant phenotypic 

discrimination.

2.4. Discovery of phenotypic biomarkers

To study changes of metabolomic profiles of single cells induced by microenvironmental 

alternation (i.e., drug treatment) and discover phenotypic biomarkers, we utilized statistical 

methods to process SCMS metabolomic datasets after data pre-treatment.

2.4.1. Biomarkers from pairwise group comparison—To discover phenotypic 

biomarkers corresponding to a particular treatment condition, we utilized the pre-treated 

SCMS datasets from the control group and that treatment group for the PLS-DA. We then 

calculated Variable Importance in Projection (VIP) scores for all cellular species, and 

selected those with VIP scores >1.2, representing major contributions to group 

discrimination,[64] as biomarker candidates. These biomarker candidates were subsequently 

subjected to unpaired two-sample t-test for the comparison of abundances. Due to cell 

heterogeneity, cellular response to the drug treatment is different. Therefore, Levene’s test 

was conducted prior to t-test to evaluate the homogeneity of variance of each metabolite, 

allowing us to determine which type of t-test to be performed. Depending on the results from 

Levene’s test, we performed Student’s t-test (data with equal within-group variance) or 

Welch’s t-test (data with unequal within-group variance). Cellular species with both VIP 

scores > 1.2 and p-value (from t-test) < 0.05 were marked as potential biomarkers related to 

the examined phenotypes. More technical details can be found in “Terminology” section in 

the Supporting Information.

2.4.2. Biomarkers from multi-group comparison—To obtain common biomarkers 

reflecting the influence of drug molecules on cellular metabolism, we compared the ion 

abundance of detected species in the control and all treatment groups for each drug 

compound. First, similar to the pairwise group comparison in the previous step, we 

conducted Levene’s test to evaluate the homogeneity of variance for each metabolite among 

multiple examined groups. Second, to determine if there are statistically significant 

differences of metabolites among all groups, we used one-way (data with equal within-group 

variance) or Welch’s (data with unequal within-group variance) Analysis of Variance 

(ANOVA). Third, to rigorously select biomarkers (i.e., metabolites with significant 

abundance change), we then performed two types of post hoc tests for metabolites with p-

value < 0.05 (from ANOVA): Tukey’s HSD (Honestly Significant Difference) and Games-

Howell tests for one-way ANOVA and Welch’s ANOVA tests, respectively. Cellular species 
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with p-values < 0.05 (from both the ANOVA and the corresponding post hoc tests) among 

all examined groups were highlighted as biomarkers. The above procedures have been 

previously used in LC-MS metabolomics studies to discover biomarkers corresponding to 

dyslipidemia progression.[65] All above statistical analyses were performed in R 

environment with functions available in Metabox, a toolbox for metabolomic studies.[66] 

More technical details can be found in “Terminology” and “Source Code Availability” in the 

Supporting Information.

2.4.3. Tentative assignment and identification of biomarkers—To identify 

discovered biomarkers, their accurate m/z values were compared with those registered at 

online metabolome database, METLIN[67] and HMDB[68]. Moreover, we performed online 

MS/MS analysis of biomarkers with relatively higher abundance at the single cell level, 

whereas conventional LC-MS/MS experiments were also carried out as a complimentary 

approach to molecular identification at the population level (see “Complimentary LC-MS 

Analysis and LC-MS/MS Identification” in the Supporting Information).

2.5. Potential biological pathways

Mummichog, a program for data analysis in untargeted metabolomics studies,[69] was used 

in the current work to address potential biological pathways involved in drug treatment at the 

single cell level. Unlike many other available programs, Mummichog only utilizes the 

information of accurate m/z values, rather than identified metabolites, to perform pathway 

enrichment analysis.[70] Required inputs, such as m/z values, t-test p-values, and fold 

change of all cellular species, were fulfilled based on results from the data analysis as 

described in the previous steps, and Mummichog was operated using default settings.

3. Results and discussion

3.1. Metabolic response to drug treatment

To study cellular metabolic response and visualize phenotypic separation induced by drug 

treatment, we constructed PLS-DA models for SCMS datasets collected from the control 

and each of those drug treatment groups. As shown in Figure 3, a data point represents the 

metabolomic profile of a single cell, and the cell-to-cell heterogeneity can be reflected by 

the distribution of data points within a group.[71, 72] The phenotypic separation can be 

visualized by the distance of data points between two groups. Generally, the first PLS-DA 

component explains more than 25% of variance (i.e., Component 1 > 25%) in all score plots, 

and significant phenotypic discrimination (p < 0.0035) between two groups is further 

demonstrated through permutation tests (Figure S3). However, the overlapped regions can 

still be observed between the control and a “shorter” treatment time condition (i.e., TaxA, 

VinA, TaxC, or VinC) for both drugs. In contrast, complete group separation (no overlapped 

region) can be observed between the control and a “longer” treatment time condition (TaxB 

or VinB). This trend is also visually reflected on PLS-DA score plots containing multiple 

groups (Figure S4), in which a complete phenotypic separation is only observed between the 

control and “longer” treatment time condition. From a biological perspective, though 

cellular xenobiotic activity was reported to be both time- and concentration-dependent,[73] 

our SCMS results demonstrate that treatment time has a more significant influence on cells’ 
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metabolomic profiles, at least at early treatment stage (e.g., treatment time < 6 h). To 

validate our SCMS results, we prepared lysates using cells, which were treated under the 

same conditions as those in the SCMS experiments, for LC-MS analysis (see 

“Complimentary LC-MS Analysis and LC-MS/MS Identification” in the Supporting 

Information). We further conducted principal component analysis (PCA) of the LC-MS 

results (Figure S5), and obtained similar trends observed in the SCMS studies: longer 

treatment time resulted in more evident changes of cellular metabolomic profiles. In 

addition, we compared the number of metabolites detected using the LC-MS and SCMS 

approaches. As shown in the Venn diagram (Figure S6), 230 cellular metabolites can only be 

detected in the SCMS datasets; these metabolites are likely to have rapid turnover rates, and 

therefore could be potentially lost during the lengthy LC-MS sample preparation process. 

On the other hand, due to significantly larger amounts of cellular species contained in the 

cell lysate and chromatographic separation (i.e., minimized matrix effect) in the LC-MS 

measurement, more metabolites were detected in the LCMS (1612) than SCMS 

measurements (340). Thus, traditional LC-MS measurements can provide complementary 

information to our novel SCMS studies.

Despite significant phenotypic separation demonstrated by permutation tests (Figure S3) for 

each PLD-DA analysis, certain types of uncertainties are regarded as “noise”,[74] including 

cell heterogeneity and technical variation (e.g., the sampling process, ionization stability, 

and instrument condition in SCMS experiments), and they may interfere with phenotypic 

separation in the SCMS data. To evaluate the influence of such “noise” on our data analysis, 

we employed a well-established machine learning algorithm in metabolomics studies, 

random forest,[75] to perform phenotypic classification. Each pair of pre-treated SCMS 

datasets were subjected to the classification, and results are summarized in the confusion 

matrices (Tables S1–S6) and pie plots (Figure 4). Among them, cells in the control and a 

“shorter” time treatment condition yielded a low misclassification rate (6–11%, Figures 4A, 

4C–4D, and 4F), implying a minor interference of such “noise” on the phenotypic 

separation. More interestingly, the misclassification rate is even lower (0 and 2%, Figures 4B 

and4E) in the pair of datasets from the control and a “longer” treatment time condition, 

agreeing with the complete separation observed in the PLS-DA score plots (Figure 3). To 

our best knowledge, this is the first report of employing random forest as an alternative 

approach to evaluate the influence of the “noise”[74] on phenotypic separation in single cell 

metabolomics studies.

3.2. Study of phenotypic biomarkers

As previously reported, the magnitude of the abundance change of cellular metabolites 

represents the degree of difference between phenotypes.[76] Therefore, metabolites with 

significant abundances change after drug treatment are suitable candidates for phenotypic 

biomarkers, and they may arise biological interest and further suggest related cellular 

xenobiotic activities. Through our biomarker selection criteria as described above, we 

discovered a variety of phenotypic biomarkers corresponding to multiple treatment 

conditions (Tables S7–S15 in the Supporting Information), followed by tentative assignment 

of those biomarkers based on accurate mass. To further confirm the chemical identities of 

tentatively labeled biomarkers, we performed MS/MS analysis at the single cell level for 
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those with relatively higher ion abundances. Six phenotypic biomarkers, i.e., [PC(16:0) + 

Na]+ (m/z 518.3194), [PC(18:0) + Na]+ (m/z 546.3506), [SM(34:1) + Na]+ (m/z 725.5539), 

[PC(32:1) + Na]+ (m/z 754.5345), [PC(34:1) + Na]+ (m/z 782.5660), and [PC(36:2) + Na]+ 

(m/z 808.5813), were identified from single cells (Figure S7). As a complimentary approach 

to enhance the biomarker identification, LC-MS/MS was also utilized to analyze cell lysates. 

In addition to the above six identified biomarkers, three more identifications, i.e., [PC(34:1) 

+ H]+ (m/z 760.5860), [PC(34:2) + Na]+ (m/z 780.5561), and [PC(36:3) + Na]+ (m/z 
806.5643), were obtained (Figure S8). The majority of the identified biomarkers are 

phospholipids, which are related to the regulation of cell signal transduction in response to 

external stimuli.[77] Heat maps were constructed to intuitively visualize the relative 

abundances of the discovered biomarkers of cells in each treatment group (Figures S9 and 

S10). The overall color clusters (i.e., red and blue) matched well with cell attributes, 

although slight color variations can be observed for each biomarker among multiple cells 

likely due to cell heterogeneity.

3.3. Potential biological pathways

As biomarkers are tightly related to biological pathways regulating cellular metabolism,[78] 

we used the biomarkers discovered from our SCMS studies to unveil potential biological 

pathways related to metabolomic response to the drug treatment (Figure S11). We found two 

pathways, biopterin metabolism (p-value = 0.025) and glycerophospholipid metabolism (p-

value = 0.041), were significantly enriched by taxol treatment. Other two pathways, bile acid 

biosynthesis (p-value = 0.021) and de novo fatty acid biosynthesis (p-value = 0.043), were 

significantly enriched by vinblastine treatment. The altered biopterin metabolism may be 

attributed to enzymatic activities related to guanosine triphosphate (GTP) cyclohydrolase I, 

which regulates biopterin metabolism[79] and is sensitive to drug treatment.[80] 

Glycerophospholipid metabolism involves a variety of phospholipids, which are responsible 

for cellular signal transduction[77] sensitive to surrounding microenvironment.[81] Bile 

acids are cell signaling molecules that are closely related to the regulation of energy and 

metabolic homeostasis,[82] and our SCMS results achieved good agreement with previous 

publications reporting a suppressed bile acid metabolism following vinblastine treatment.

[83] De novo fatty acid biosynthesis has been reported to be suppressed upon drug 

treatment.[84] Our results, from the perspective of single cell metabolomics, suggest that 

those biological pathways may be significantly influenced by the treatment of mitotic 

inhibitors. It is worth noting that MS experimental conditions, such as the solvent 

composition[85], ionization polarity[86], and instrument type and tuning, can affect the 

detection sensitivity of different classes of species. Because our SCMS measurements were 

conducted under the same condition (i.e., using acidified acetonitrile sampling solvent, 

positive ion mode, and only one model of mass spectrometer), metabolites detected in the 

current study are likely within a limited coverage range. Therefore, more comprehensive 

experimental conditions can be used in future studies for broader coverage of metabolites, 

and ultimately enhance the statistical power in pathway enrichment analysis.
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4. Conclusions

We performed live single cell metabolomics studies using the Single-probe SCMS 

experiments in combination with a generalized comprehensive data analysis procedure. 

Cellular response to two mitotic inhibitors, taxol and vinblastine, were investigated and 

compared under multiple treatment conditions. Through the visualization using PLS-DA and 

the following permutation tests, our SCMS metabolomics results showed a rapid emergence 

of new phenotypes upon drug treatment. Similar trends were observed from traditional LC-

MS experiments utilizing lysates prepared from population cells treated under the same 

conditions. Phenotypic biomarkers corresponding to two or multiple treatment conditions 

were discovered through statistical tests, with some of those further identified at both single 

cell and population levels. Based on the information of discovered biomarkers, potential 

biological pathways related to drug treatment were unveiled using the pathway enrichment 

analysis. Our methodology holds a promising potential to be readily coupled to other SCMS 

datasets produced from broader types of MS based analytical approaches to implement 

metabolomics at the single cell level, and ultimately gain insights into biological principles 

that regulate cellular metabolism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Live single cell metabolomics was performed using MS and comprehensive 

data analysis.

• Cells’ metabolomic response to anticancer drugs was investigated.

• Phenotypic biomarkers reflecting drug treatment were discovered and 

identified.

• Biological pathways related to drug treatment were revealed at the single cell 

level.
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Figure 1. 
Workflow of SCMS data analysis consisting of data pre-treatment, multivariate analysis, and 

univariate analysis. This generalized procedure can be coupled to raw datasets obtained from 

broader types of SCMS platforms for single cell metabolomic analysis.
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Figure 2. 
Experimental setup of the Single-probe SCMS system. (A) Key components of the in-house 

developed Single-probe SCMS platform. (B) A zoomed-in photo of the Single-probe and 

illustration of its working mechanism. (C) The insertion of the Single-probe tip into a single 

cell monitored using a high-resolution digital stereo microscope during a SCMS experiment.
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Figure 3. 
PLS-DA score plots in 2D space for phenotypic discrimination between the control and a 

drug treatment group, including (A) TaxA, (B) TaxB, (C) TaxC, (D) VinA, (E) VinB, and (F) 

VinC. Each data point represents the metabolomic profile of an individual cell, and the 

ellipse highlights the 95% confidence region.
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Figure 4. 
Cellular species correctly classified (yellow) and misclassified (blue) by random forest 

classification between the control and a drug treatment group, including (A) TaxA, (B) 

TaxB, (C) TaxC, (D) VinA, (E) VinB, and (F) VinC, determined from confusion matrix 

(Table S1–S6).
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Table 1.

HeLa cells in the control and treatment groups for SCMS experiments.

Condition Drug Concentration (µM) Time (h) Group Name Number of Cells

Control N/A N/A N/A Control 23

Treatment

Taxol

0.1 2 TaxA 25

0.1 6 TaxB 28

1.0 2 TaxC 22

Vinblastine

0.1 2 VinA 28

0.1 6 VinB 23

1.0 2 VinC 24
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