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A recent computational theory suggests that visual processing
in the retina and the lateral geniculate nucleus (LGN) serves to
recode information into an efficient form (Atick and Redlich,
1990). Information theoretic analysis showed that the represen-
tation of visual information at the level of the photoreceptors is
inefficient, primarily attributable to a high degree of spatial and
temporal correlation in natural scenes. It was predicted, there-
fore, that the retina and the LGN should recode this signal into
a decorrelated form or, equivalently, into a signal with a “white”
spatial and temporal power spectrum. In the present study, we
tested directly the prediction that visual processing at the level
of the LGN temporally whitens the natural visual input. We
recorded the responses of individual neurons in the LGN of the
cat to natural, time-varying images (movies) and, as a control,
to white-noise stimuli. Although there is substantial temporal

correlation in natural inputs (Dong and Atick, 1995b), we found
that the power spectra of LGN responses were essentially
white. Between 3 and 15 Hz, the power of the responses had an
average variation of only 610.3%. Thus, the signals that the
LGN relays to visual cortex are temporarily decorrelated. Fur-
thermore, the responses of X-cells to natural inputs can be well
predicted from their responses to white-noise inputs. We there-
fore conclude that whitening of natural inputs can be explained
largely by the linear filtering properties (Enroth-Cugell and Rob-
son, 1966). Our results suggest that the early visual pathway is
well adapted for efficient coding of information in the natural
visual environment, in agreement with the prediction of the
computational theory.
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In natural environments, visual signals are highly redundant, so
the representation of the input by the activity of photoreceptors is
inefficient. Efficiency of information coding, however, potentially
has significant evolutionary and computational advantages (Atick,
1992). It is thus reasonable to assume that an important task of
the early stages of the visual pathway is to recode the incoming
visual signals to improve efficiency (Barlow, 1961, 1989; Atick and
Redlich, 1990; Atick, 1992).
The primary sources of redundancy in the visual signals at the

level of the photoreceptors are the temporal and spatial correla-
tions in natural scenes. The activity of photoreceptors is not
independent at different times and between different cells. In
other words, much information is represented repetitively over
time and by different neurons. To improve efficiency, the neuronal
signals must be recoded into a decorrelated form. When trans-
formed into the frequency domain, this decorrelation is expressed
as the flattening or “whitening” of the temporal and spatial power
spectra of the neuronal signals. Previous studies have shown that
the power spectrum of light intensity in the natural visual envi-
ronment obeys a simple statistical rule: it is proportional to 1/k2,
where k is the spatial frequency and, at low spatial frequencies,

1/v2, where v is the temporal frequency (Field, 1987; Dong and
Atick, 1995a,b).
It has been proposed that the retina and the lateral geniculate

nucleus (LGN) are dedicated to recoding and whitening the input
signals (Barlow, 1961, 1989; Atick and Redlich, 1990; Atick,
1992). Using information theory (Shannon and Weaver, 1949) to
assess the efficiency of information representation, Atick and
coworkers performed a series of theoretical studies of retinal and
geniculate processing. They derived a theory of retinal processing
that successfully explained the spatial and, in the primate, the
chromatic receptive fields of retinal ganglion cells for the entire
range of adaptation levels. Their only assumptions were that
retinal processing serves to spatially whiten natural inputs and
that there was a certain level of noise (Atick and Redlich, 1992;
Atick et al., 1992). Theoretical analysis of temporal decorrelation
led to an explanation of not only the temporal tuning properties of
LGN neurons but also the existence of lagged and nonlagged cells
(Dong and Atick, 1995a), which have been observed experimen-
tally in the cat (Mastronarde, 1987; Humphrey and Weller,
1988a,b).
The spatial and temporal response properties of the LGN cells

of the cat have been well characterized over the past few decades
(So and Shapley, 1981; Dawis et al., 1984; Saul and Humphrey,
1990). It is not certain, however, to what extent the responses of
LGN neurons to the simple stimuli used in these studies can
predict their function in coding natural visual signals. In particu-
lar, nonlinearities such as the contrast gain control (Shapley and
Victor, 1978, 1981), rectification at zero spikes per second, and
saturation can profoundly alter the responses to stimuli with
different statistics. Because the visual system develops—and, of
course, evolved—in the natural environment, an important step in
understanding its function would be to study the input–output
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relationship with stimuli that resemble natural scenes. The major
difficulty in studying the visual system with natural stimuli resides
in the complexity of the input signal and the lack of appropriate
methods for characterizing it. To overcome this difficulty, we used
a statistical approach to study the visual system with a complex
input ensemble. In contrast to the conventional, deterministic
approach, in which the properties of neurons are studied by
correlating their responses to individual, simple stimuli, the sta-
tistical approach characterizes both input and output by measur-
ing their ensemble properties. As demonstrated in our studies,
this approach can provide new insights into the function of the
visual system and may prove to be an important complement to
conventional approaches.
In this experimental investigation, we characterized the statis-

tical properties of LGN neurons in response to natural visual
input. We tested directly the hypothesis that the representation of
natural visual information at the LGN is temporally decorrelated.
Movies of natural scenes were used as visual inputs, responses of
single LGN neurons were recorded, and their temporal correla-
tions and power spectra were analyzed. Our results largely con-
firm the prediction based on the assumption of efficient coding
and information–theoretic analysis. Further investigation of the
mechanism of recoding indicates that the temporal whitening of
natural signals is largely attributable to the linear filtering prop-
erties of LGN neurons [see Golomb et al. (1994) for a similar
relationship between linear response properties and temporal
coding by LGN neurons].

MATERIALS AND METHODS
Physiological preparation
Adult cats ranging in weight from 2 to 3 kg were used in all the
experiments. The animals were initially anesthetized with ketamine HCl
(10 mg/kg, i.m.), followed by sodium pentothal (20 mg/kg, i.v., supple-
mented as needed). A local anesthetic (lidocaine) was injected before all
incisions. Anesthesia was maintained for the duration of the experiment
with sodium pentothal at a dosage of 6 mg/hr.
A tracheostomy was performed for artificial ventilation. Then the cat

was transferred to a Horsley–Clarke stereotaxic frame. The cat was
suspended by clamping the spinous process of one of the lumbar verte-
brae to minimize respiratory movements.
Pupils were dilated with a topical application of 1% atropine sulfate,

and the nictitating membranes were retracted with 10% phenylephrine.
Eyes were refracted, fitted with appropriate contact lenses, and focused
on a tangent screen. The positions of the areae centrales were plotted
with the aid of a fundus camera. Eye positions were stabilized mechani-
cally by gluing the sclerae to metal posts attached to the stereotaxic
apparatus.
A craniotomy (;0.5 cm in diameter) was made over the LGN, and the

underlying dura was removed. The hole was filled with 3% agar in
physiological saline to improve the stability of the recordings.
The animal was paralyzed with Norcuron (0.2 mg/kg/hr, i.v.) and

artificially ventilated. Ventilation was adjusted so that the end-expiratory
CO2 was near 3.5%. Core body temperature was monitored and main-
tained at 388C. The electrocardiogram and electroencephalogram were
also monitored continuously.

Electrophysiological recording
Individual LGN neurons were recorded with a single tungsten electrode
or a multielectrode array (System Eckhorn, Marburg, Germany) (Eck-
horn and Thomas, 1993). The array allows seven fiber electrodes to be
positioned independently with a vertical accuracy of 1 mm. We used a
glass guide tube to restrict the lateral scattering of the electrodes in the
array. The inner diameter at the tip of the guide tube was ,400 mm. All
recordings were made in layer A or A1 of the LGN.
Recorded signals were amplified, filtered, and passed to an 80486 PC

running Datawave Discovery software (Broomfield, CO). The system
accepts inputs from up to eight single electrodes. Up to eight different
waveforms can be discriminated on a single electrode, but two or three is

a more realistic limit. The waveforms of the spikes were saved on disk.
The spike discrimination was first done roughly during the experiment.
The sorting was carried out more rigorously in postprocessing.

Visual stimulation
The data-acquisition PC contained an AT-Vista graphics card (Truevi-
sion, Indianapolis, IN), which was used to present a variety of visual
stimuli at a frame rate of 128 Hz. All stimuli were programmed using
subroutines from a runtime library, YARL, written by Karl Gegenfurtner.
Spatiotemporal white-noise stimuli were generated to map the receptive
fields of the neurons. The system is well suited for the efficient real-time
production of these stimuli using the m-sequence temporal signal (Sutter,
1987; Reid and Shapley, 1992). Spatially, the white-noise stimuli were
made up of 16 3 16 grids of square regions (pixels). The pixel sizes were
adjusted to map receptive fields with a reasonable level of detail (0.2–0.48
at 5–108 eccentricity). For every frame of the stimulus, the pixels were
either black or white according to the m-sequence. The receptive field
maps of the neurons were calculated using the reverse correlation method
(Jones and Palmer, 1987). For each delay between stimulus onset and
action potential, the average spatial stimulus that preceded each impulse
was calculated. This calculation was performed with the fast m-transform
(Sutter, 1987). Full-field white noise, in which the whole screen was
temporally modulated by a single m-sequence signal, was also used to
study the dynamics of some neurons in response to low spatial frequency
stimuli.
Drifting gratings of various spatial and temporal frequencies were used

to measure the spatial and temporal tuning properties of the neurons.
Contrast reversal gratings were used in the null test to make the X/Y
classification (Enroth-Cugell and Robson, 1966; Hochstein and Shapley,
1976). Only X-cells were included in the analysis, because this is the type
of cells on which the computational theory was based. Few lagged cells
were encountered with these electrodes, and none was included in this
study.
Video recordings of time-varying natural scenes were used as stimuli to

study the statistical properties of the LGN response. It was assumed that
all the long sequences of natural, time-varying images have common
statistics, i.e., they tend to have the same spatiotemporal power spectra
(Field, 1987; Dong and Atick, 1995a,b) regardless of the details of the
images. Because we were interested in the coding of natural scenes in
general, we chose not to impose any restriction in our selection of movies
other than that they were not disproportionally dominated by static
scenes. Up to 10 different movies were used. Figure 1a shows an image
from Casablanca, one of the movies used in the experiments. The power
spectra of the LGN responses to different movies were qualitatively very
similar, as long as the movies were longer than several minutes. We
therefore pooled all the data in the analysis. In some experiments, a
videocassette recorder and a television monitor were used to present
movies 20–60 min long. In others, movie clips 2–3 min long were
presented repetitively over a similar duration with the computer software
Media Player. There was a small 15 Hz artifact in these movies, as can be
seen from the small secondary peaks in Figure 2a, cells 2 and 3. The
AT-Vista board was not used for studying the statistical properties of the
LGN responses, because its limited memory precluded the presentation
of long movies with appropriate statistics (see below).
For the linear prediction of the response to natural scenes, we pre-

sented eight different short movies with the AT-Vista board. These short
movies were digitized segments of video recordings. The use of the Vista
board in this study was necessary, because the prediction of the instan-
taneous firing rate signals requires precise spatiotemporal alignment
between the receptive fields, which were measured with white noise, and
the movie stimuli. Because of the limited memory of the Vista board,
each movie was restricted to 16 sec long. Each frame contained 64 3 64
pixels, with a spatial resolution of 0.28/pixel. To test the linear prediction,
short movies were in fact desirable, because multiple repeats were re-
quired to assess the reproducibility of the responses. To obtain an
“actual” response, each movie was repeated eight times. A post-stimulus
time histogram (PSTH) was obtained for the response to each repeat with
a bin width of 7.7 msec (the same as the interframe interval of the short
movies and the white-noise stimuli). The instantaneous firing rate of the
LGN neuron was calculated as the PSTH averaged over all eight repeats
or over interleaved repeats—1, 3, 5, 7 or 2, 4, 6, 8.

Data analysis
Calculation of autocorrelation function. The recorded spike train was
originally represented as a list of times for the occurrence of spikes with
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a resolution of 0.1 msec. This list was binned with a bin width of 5 msec
to yield a spike-rate signal sampled at 200 Hz. The autocorrelation
function of this signal was then computed. So that only the contribution
from different spikes was considered, the total number of spikes was
subtracted from the central bin of the autocorrelation function.
Calculation of power spectrum. We calculated the two-sided power-

spectral density functions of the spike trains by Fourier transforming
overlapping segments of data and windowing (Press et al., 1988). The
spike trains (20–60 min long) were binned with a bin width of 4 msec and
divided into 4 sec segments, with 2 sec overlaps between consecutive
segments. For each segment, a Welch window was applied to reduce the
spectral leakage caused by the finite duration of the segments (Harris,
1978), and a two-sided power spectrum was calculated using the standard
fast Fourier transform procedure, with a frequency resolution of 0.25 Hz
and a range from 2125 to 125 Hz. Finally, the power spectrum of the
whole spike train was obtained by averaging all the data segments.
Linear prediction of responses to natural movies. We predicted the

responses of LGN cells to natural visual inputs by performing a linear
convolution of the spatiotemporal receptive fields with the luminance
signals of the movies, followed by a rectification procedure. The under-
lying assumption is that the output, which is the firing rate of the LGN
neuron, is the result of a rectifying spike-generation mechanism operating
on the intracellular potential, which is linearly related to the visual input
(Rodieck, 1965; Enroth-Cugell and Robson, 1966; Brodie et al., 1978).
Because, of course, we did not record the intracellular signal, its receptive
field was calculated from the spike train recorded extracellularly. The
receptive field of the intracellular potential is equivalent to the first-order
Wiener kernel (Marmarelis and Marmarelis, 1978) calculated from the
spike rate multiplied by a factor of 2, assuming a perfect half-wave
rectification of the LGN cells in response to white noise. (This is a
reasonable first-order assumption, since the resting-state firing rate or the
threshold for spike generation is, in general, much lower than the re-
sponse to the white-noise stimuli with a 100% contrast.) The linear
convolution is given by:

R~t! 5 O
x, y, t

2 z K~x, y, t9! z S~x, y, t 2 t9!,

where R(t) is proportional to the estimated intracellular potential but in
units of impulses per second; K(x, y, t9) is the first-order Wiener kernel of
the neuron measured in units of impulses per second per unit contrast;
S(x, y, t 2 t9) is the luminance of individual pixels in the movie, normal-
ized so that the mean luminance of the entire movie is 0 and the minimum
value is 21; and x and y are the positions of the pixels. The white-noise
stimuli used for measuring the receptive fields had the same pixel size
and frame rate as those of the movies. These two stimuli were spatially
aligned so that the correspondence between the pixels in the receptive
field K(x, y, t9) and those in the movies S(x, y, t 2 t9) could be
determined unambiguously.
The intracellular potential R(t) thus estimated had both positive and

negative values. The output of the neuron O(t) was predicted by applying
a simple rectification procedure, which presumably simulates the spike-
generation mechanism:

O~t! 5 ~R~t! 1 N! z H~R~t! 1 N!,

where H is the Heaviside step function defined as:

H~x! 5 1, x . 0

0, x # 0.

When N is positive, it represents the resting-state firing rate of the cell;
when negative, N represents the threshold for spike generation. The value
of N was adjusted so that the predicted mean firing rate ^O(t)& over the
duration of the movie was equal to the actual mean rate of the same cell.

RESULTS
Responses of LGN neurons to natural scenes and white noise
In the first part of the study, we characterized the statistical
properties of the LGN spike trains in response to time-varying
natural visual stimuli. A typical image is shown in Figure 1a. The
position of the stimulation monitor was adjusted so that the re-
ceptive field of the LGN neuron fell within the screen. The movies
were presented to the cat, and the spike trains of LGN neurons

were recorded for 20–60 min to accumulate a minimum of 10,000
spikes. Autocorrelation functions and power spectra of these
spike trains were calculated. Figure 2, a and b, shows the auto-
correlation functions and the power spectra, respectively, of three
LGN neurons in response to movies. Figure 2c summarizes the
power spectra of 51 LGN neurons. For 45 cells, the mean firing
rate during the period of movie presentation was 13.1 impulses/
sec, whereas that in the absence of visual stimuli was 6.0 impulses/
sec. Among these, 33 cells showed an increase in mean firing rate
by at least 2 impulses/sec during stimulation by movies. A consid-
erable degree of temporal variation of the instantaneous firing
rate was observed during the movie presentations, in apparent
correspondence to various movie scenes. These observations sug-
gest that the spiking activity of the LGN neurons was significantly
modulated by the natural visual input.
The autocorrelation functions of the responses to movies (Fig.

Figure 1. Visual stimuli used in the current study: natural scenes and
spatiotemporal white noise. a, A single frame from the movie Casablanca,
which, together with other movies, was used as a natural stimulus. b, A
single frame from spatiotemporal white noise with 100% contrast. A
complete white-noise stimulus consists of 215 frames of these pseudoran-
dom checkboard patterns.
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Figure 2. The responses of LGN neurons evoked by natural visual stimuli. a, Autocorrelation functions of the spike trains of three LGN neurons in
response to movies. The small secondary peaks for cells 2 and 3 were attributable to a weak 15 Hz artifact in the Media Player movies; see Materials and
Methods. b, Power spectra of the same neurons between 0 and 15 Hz. The power spectral density is in units of (impulses/sec)2/Hz. c, Summary of the
power spectra of 51 cells in response to movies. For the sake of clarity, each power spectrum is normalized by its own value at 5–6 Hz.
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Figure 3. The responses of LGN neurons evoked by white-noise stimuli. a, Autocorrelation functions of the same LGN neurons as those shown in Figure
2, a and b, evoked by full-field white noise. b, Power spectra of these neurons. c, Summary of the power spectra of 75 LGN neurons in response to full-field
white noise, normalized as described in Figure 2c. All the power spectra shown here had positive slopes. Some spectra showed small slopes, because they
were less well modulated by white-noise stimuli relative to their noise levels.
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2a) showed narrow peaks (centered at 0 msec with half widths of
10–20 msec) and were essentially flat beyond the peak. This
indicates that the LGN output was temporally decorrelated. The
decorrelation is also revealed by the power spectra of the re-
sponses (Fig. 2b,c), which are equivalent to the Fourier transforms
of the autocorrelation functions. The spectra were largely flat
between 3 and 15 Hz, consistent with the theoretical prediction
that the natural visual signals at the level of the LGN are white.
Thus the redundancy at the level of the photoreceptors is largely
eliminated at the LGN. As discussed below, the deviation from
whiteness in the power spectra beyond the range of 3–15 Hz can
be accounted for by the finite duration of the neuronal impulse
response and the requirement of optimal coding in the presence
of noise (Atick and Redlich, 1992).
As a comparison with the temporally decorrelated response to

natural scenes, we analyzed the autocorrelations and power spec-
tra of LGN neurons in response to a white-noise input (Sutter,
1987). White noise provides a rich input ensemble, the statistical
structure of which differs from that of natural input; therefore, it
provides an appropriate control stimulus. Figure 3a shows the
autocorrelation functions of the white-noise responses of
the same LGN neurons as those shown in Figure 2a. In contrast
to the responses to natural input, the autocorrelation functions of
the white-noise responses exhibited a dip between 10 and 100
msec. This is reflected in their power spectra, which showed a
positive slope between 1 and 10 Hz (Fig. 3b). Figure 3c summa-
rizes the power spectra of 75 LGN neurons in response to full-
field white noise. The great majority of these spectra showed a

positive slope between 3 and 15 Hz and significantly deviated from
whiteness.
To quantify the difference between the power spectra in Figures

2c and 3c, each power spectrum was fitted with a quadratic
function between 3 and 15 Hz to smooth the data. The average
deviation of these smoothed spectra from their midpoint was
10.8% 6 7.3 for the responses to natural stimuli (Fig. 2c) but was
50.7 6 20.6 for the responses to white noise (Fig. 3c). We
presented white-noise stimuli both before and after the movie
stimuli and observed a consistent difference between the temporal
characteristics of the responses to movies and to white noise.
Spatiotemporal white noise (Fig. 1b) and full-field white noise
evoked responses with similar power spectra. Thus the LGN cells
under study were visually driven, and the power spectra of their
responses depended on the nature of the input. As shown below,
the LGN responses to white-noise input reflect their temporal-
filtering properties, which form the basis of efficient recoding of
natural scenes.

Linear prediction of the responses to natural stimuli
To bridge the statistical and the deterministic approaches and to
understand the mechanism of recoding at the LGN, we examined
whether the temporal whitening of natural visual input can be
accounted for by the classical response properties of geniculate
cells. It is well known that both retinal and geniculate X-cells
behave as approximately linear filters (Enroth-Cugell and Rob-
son, 1966; Hochstein and Shapley, 1976; Derrington and Fuchs,
1979; Dawis et al., 1984), and the temporal-tuning properties of

Figure 4. Temporal-filtering properties of an LGN neuron measured with different methods. a, Power spectrum of an LGN spike train in response to
full-field white noise with 100% contrast. b, The square of the Fourier transform of the temporal receptive field measured with the same full-field white
noise as in a. For a perfect linear filter, this should be equivalent to the power spectrum of the response, as shown in a, except for the presence of
additional noise in a. The fact that a and b have the same shape but differ in amplitude by a factor of 2 is caused largely by the rectification. c, The square
of the temporal-tuning function of the same neuron. The temporal-tuning function is defined as the amplitudes of responses to sinusoidally modulated
inputs with unit contrast but at different temporal frequencies. In this experiment, it was measured with spatially uniform, but temporally modulated
stimuli at 25% contrast. All three functions were normalized by the power of their respective input and therefore reflect the intrinsic tuning properties
of the neuron. The fact that c has a higher amplitude than both a and b suggests either a saturation in the response to 100% contrast full-field white noise
or a contrast gain-control mechanism. The unit of all three power spectra is (impulses/sec)2/Hz.
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LGN neurons, as reflected by the power spectra of their responses
to white noise (see Discussion), are roughly the inverse of the
power spectra of natural inputs (Dong and Atick, 1995a,b). It is
likely, therefore, that the temporal whitening of natural inputs is
largely attributable to the linear filtering properties of X-cells.
Figure 4 provides a qualitative demonstration of the sort of
arguments used in the theoretical literature. It shows the power
spectrum of an X-cell in response to 100% contrast full-field white
noise (Fig. 4a), the square of the Fourier transform of its impulse
response (Fig. 4b), and the square of its actual temporal tuning
function (see legend to Fig. 4c). The temporal tuning function was
measured with full-field, temporally modulated sinusoidal stimuli
at 25% contrast between 0.5 and 15 Hz. All three functions were
approximately proportional to v2, the inverse of the temporal
power spectra of natural inputs in the range of low spatial fre-
quencies. It is worth noting, however, that the magnitudes of the
response sensitivity measured with these three methods showed a
two- to threefold difference. This reflects the existence of nonlin-
earities such as the contrast gain control (Shapley and Victor,
1978, 1981), rectification, and response saturation. To investigate
in more detail the extent to which the linear-filtering properties
contribute to the whitening of natural input, we tested whether
the responses to natural scenes can be predicted by the linear
convolution of the luminance signals of the movies and the spa-
tiotemporal receptive fields of the neurons (Brodie et al., 1978).
The spatiotemporal receptive fields of the cells were measured

with white-noise stimuli and the reverse-correlation method. Fig-
ure 5b shows the time evolution of an on-center/off-surround
receptive field between 0 and 116 msec. The magnitudes of center
and surround components (the impulse responses) of the recep-

Figure 5. Convolution of the spatiotemporal receptive fields of the LGN
neurons and the short movies. a, Sixteen consecutive frames of a movie,
with an interframe interval of 31.1 msec and a spatial resolution of 64 3
64 pixels. b, Receptive field of an on-center/off-surround X-cell. The 16
graphs represent the spatial receptive fields at 16 consecutive temporal
frames, with an interframe interval of 7.7 msec. Each graph shows a 14 3
14 portion of the entire kernel, chosen to include both center and sur-
round. The pixel luminance indicates the sign and magnitude of neural
excitation evoked by a light signal at the position of the pixel. The
magnitude of the contrast between pixels is roughly proportional to neural
excitation in impulses per second. The grid separating the pixels is set to
the mean luminance. The size and the signature of the surround are best
appreciated by noting the large region where the receptive field is darker
than the background grid (i.e., where the grid appears light). For the sake
of clarity, the receptive field has been spatially magnified relative to the
movie. The white squares in a indicate the areas in the images that
correspond to each frame in b. To measure the actual responses, each
frame in a was repeated four times so that the movie and the white-noise
stimuli had the same frame rate.

Figure 6. Summed impulse responses for the pixels in the center and
those in the surround of the receptive field shown in Figure 5b. Responses
were measured in terms of the average increase in the firing rate, in
impulses per second, after the light phase of the stimulus. The center of
the receptive field was defined by the following procedure. First, the
largest single response of the spatiotemporal receptive field (as mapped
with the luminance stimulus) was located. This peak defined the position
of the greatest sensitivity at the optimal latency. Next, the spatial receptive
field was analyzed at the peak latency. Contiguous spatial positions were
included in the center if the responses were of the same sign as the
strongest response and were greater than two SD above the measurement
noise. The measurement noise was estimated by examining the calculated
responses at long delays between stimulus and response, i.e., when any
correlation was spurious. The surround was defined as all the remaining
pixels (shown in the 14 3 14 portion of the entire screen).
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Figure 7. Comparison of the predicted and the actual responses to a natural movie. a, Top trace, The predicted response of an X-cell to a movie, as
calculated by convoluting the movie with the spatiotemporal receptive field of the neuron, with a subsequent rectification. Middle trace, The actual firing
rate of the same neuron in response to the movie, as averaged from the responses to one set of repeats: 1, 3, 5, 7. Bottom trace, The actual response
averaged from the other set of repeats: 2, 4, 6, 8. b, The predicted (top trace in Fig. 7a) versus the actual response (middle trace in Fig. 7a, Actual 1) at
corresponding temporal frames. c, The response averaged from one set of repeats (2, 4, 6, 8, bottom trace, Actual 2) versus that from the interleaved set
(1, 3, 5, 7, middle trace, Actual 1).
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Figure 8. Summary of correlation coefficients between the predicted and the actual responses to natural movies. a, Scatterplot of correlation coefficients
between the predicted and the actual responses to eight short movies, indexed from 1 to 8. Each point represents the data from one cell. All 49 cells
studied were included in the plot. b, Correlation coefficients between the actual responses averaged from interleaved repeats (1, 3, 5, 7 vs 2, 4, 6, 8). Data
from all 49 cells were included. c, Correlation coefficients shown in b versus those shown in a, for the same cells and same movies. The fact that there
are more points above the diagonal line than below indicates that the actual–actual correlation is, on average, better than the predicted–actual correlation.
It is also clear from this plot that these two correlation coefficients are correlated. This suggests that the degree of correlation between the predicted and
the actual responses depends largely on the noise level in the actual responses.
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tive field are illustrated in Figure 6. Given the spatiotemporal
receptive fields, we compared the predicted and the actual re-
sponses to eight different short movies, each 16 sec long. Linear
convolution of the movie (Fig. 5a) and the receptive field (Fig.
5b), followed by a rectification (see Materials and Methods), was
used to obtain the predicted firing rate as a function of time. To
measure the actual responses, each movie was presented eight
times. The instantaneous firing rate was calculated as the PSTH
averaged over multiple repeats. We found that the basic features
of the predicted responses closely resemble those of the actual
responses. Figure 7a shows a 4 sec sample of the predicted
response of one LGN neuron to a movie (top trace), its actual
response averaged from repeat 1, 3, 5, 7 (middle trace), and that
averaged from repeat 2, 4, 6, 8 (bottom trace). The variability of
the actual responses measured in different repeats can be appre-
ciated by comparing the middle and the bottom traces in Figure
7a. This was, in general, comparable to the difference between the
predicted (top trace) and the actual responses. A more precise
comparison was made by plotting the predicted versus the actual
response (Fig. 7b) and the actual response averaged from one set
of repeats versus that from another (Fig. 7c), all sampled at 128
Hz. Similar correlation was found in both cases, suggesting that
the difference between the predicted and the actual responses can
be accounted for largely by the intrinsic variability of the neuronal
response.
The correlation coefficients between the predicted and the

actual responses for 49 cells, each tested with eight movies, are
summarized in Figure 8a. The average correlation coefficient
between the predicted and the actual responses for the same
movies was 0.48 6 0.11 (SD). This was significantly higher than
the average correlation between the predicted and the actual
responses for different movies (0.004 6 0.05, SD), which repre-

sents the correlation by chance. The correlation coefficients be-
tween the actual responses averaged from interleaved repeats, i.e.,
repeat 1, 3, 5, 7 and 2, 4, 6, 8, are summarized in Figure 8b, and
the correlation between the actual responses from interleaved
repeats versus that between the predicted and the actual re-
sponses is shown in Fig. 8c for all 49 cells studied. The actual-
actual correlation is comparable to but slightly better than the
predicted-actual correlation. We believe that this can be ac-
counted for, at least partly, by the fact that the predicted and the
actual responses were calculated based on two recordings sepa-
rated in time and that the condition of the neurons was likely to
change over time.
We calculated the power spectra of the predicted and the actual

responses evoked by the 16 sec short movies. Figure 9, a and b,
shows the power spectra of the predicted and the actual re-
sponses, respectively, of one LGN neuron. They agreed quantita-
tively. These power spectra, however, were not white. This was
attributable to the imperfect statistics of the short movies, because
the response of the same cell evoked by a long movie exhibited a
power spectrum that was white between 3 and 15 Hz (Fig. 9c).
Taken together, these results indicate that the responses of LGN
cells to natural stimuli can be well predicted from their linear
receptive-field properties. Thus the whitening of natural visual
signals at the level of the LGN can be largely, if not entirely,
explained by the linear filtering properties of the cells.

DISCUSSION
In the present study, we have directly confirmed the prediction
that the representation of natural visual information at the level of
the LGN is temporally decorrelated, particularly between 3 and
15 Hz. It is important to note that the power spectrum of the LGN
activity was white only in response to natural input but not to our

Figure 9. Linear prediction of the power spectrum in response to natural movies. a, Power spectrum of one cell in response to a short movie, calculated
from the predicted firing rate. b, Power spectrum of the same cell in response to the same movie, calculated from the actual response. These spectra were
not white, attributable to the imperfect statistics of the short movie. The power spectrum of the same neuron in response to a long movie is shown in c.
All the power spectral-density functions are in units of (impulses/sec)2/Hz.
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control stimulus (white noise). This suggests that white (i.e.,
random) patterns of activity are not the intrinsic property of LGN
neurons. Rather, the early visual pathway has specifically adapted
for efficient coding of natural visual information during evolution
and/or development.
We would like to point out that the concept of “efficient coding”

has been used with a rather specific definition in this paper; it is
only one of several mechanisms that may facilitate sensory pro-
cessing. The temporally decorrelated signal at the LGN is still a
faithful, point-to-point and moment-to-moment representation of
natural visual input. The improvement of efficiency at this level is
independent of the meaning or importance of particular visual
scenes. Another useful strategy in sensory processing is to selec-
tively amplify important signals and/or suppress the unimportant
ones. This is likely to be achieved at higher levels of the brain and
is distinct from the efficient coding discussed here.
The power spectra of LGN neurons in response to natural

input deviate significantly from whiteness beyond the range of
3–15 Hz. The failure of whitening below 3 Hz is not surprising,
considering the finite duration of the impulse responses of
these cells. For a typical LGN cell, the impulse response
function has a duration of less than 200 msec. The finite
memory of the system limits its ability to selectively attenuate
signals below 2–3 Hz. This deficiency, however, may be allevi-
ated at higher levels of the visual pathway, where the neurons
tend to integrate visual information over a longer period (Ham-
ilton et al., 1989; Reid et al., 1991). The failure of whitening
above 15 Hz may be related to the theoretical finding that
whitening at higher frequencies is not advantageous for opti-
mal coding in the presence of noise (Atick and Redlich, 1992).
At high frequencies, noise may dominate in the visual input.
The attenuation of high frequency signals could therefore serve
to avoid amplification of this noise. As a concrete example, it
has been demonstrated that the receptive field properties of
visual neurons change at different adaptation levels (Shapley
and Enroth-Cugell, 1985; Purpura et al., 1988, 1990). This is
consistent with the theory of efficient coding, because at low
adaptation levels photon noise begins to dominate at higher
frequencies.
The temporal tuning of geniculate cells measured in our exper-

iments seemed somewhat different from those reported by several
other investigators. This may be explained by the differences in
experimental procedures. It is well known that retinal X-cells
resemble low-pass temporal filters for low-contrast input and
become more bandpass with high-contrast stimuli (Shapley and
Victor, 1978; 1981). The use of relatively high-contrast, supra-
threshold input in our studies may explain the prominent band-
pass temporal tuning that was not observed in some studies using
low-contrast stimuli (Lehmkuhle et al., 1980). In addition, differ-
ent recording electrodes may result in differences in sampling of
cells. This may explain why cells recorded in our experiments
have, in general, higher cutoff frequencies than those studied by
Saul and Humphrey (1990) and Hamamoto et al. (1994). Our
electrodes almost certainly sampled larger cells, since very few
lagged cells were encountered. It would be interesting to investi-
gate whether the cells that were not well sampled in our current
study also serve to temporally whiten natural inputs.
We have shown that the whitening of natural signals is largely

attributable to the linear-filtering properties of LGN neurons. The
temporal-tuning functions of LGN cells generally show a band-
pass behavior: within the range of 3–15 Hz, the response is
roughly proportional to the frequency. This tuning property can

explain the power spectra of the LGN responses to both natural
scenes and white noise. For a linear neuron:

u O~v! u 2 } u K(v) u 2 z u S~v! u 2.

This is an approximate description ignoring the spatial dimension.
u O(v) u 2 is the temporal power spectrum of the output, K(v) is
the Fourier transform of the receptive field (first-order Wiener
kernel), which is equivalent to the temporal-tuning function of the
neuron, and u S(v) u 2 is the power spectrum of the stimulus. As
mentioned above, u K(v) u 2 } v2 is a good approximation of the
temporal tuning functions of LGN neurons within the range of
3–15 Hz. In natural scenes (particularly at low spatial frequen-
cies), u S(v) u 2 } 1/v2; therefore, the output is white. For
white-noise inputs, however, u S(v) u 2 } 1; hence, u O(v) u 2

} u K(v) u 2 } v2.
Finally, lateral interactions and feedback could have resulted in

responses to natural scenes that are not quantitatively predictable
from the individual receptive fields. The agreement between the
predicted and the actual responses to short movies argues that this
is not the case. This agreement also establishes the possibility of a
firm connection between the statistical and the deterministic ap-
proaches to studying sensory neurons.
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