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Under oxidative stress conditions, hydroxyl radicals can oxi-
dize the phenyl ring of phenylalanine, producing the abnormal
tyrosine isomer meta-tyrosine (m-tyrosine). m-Tyrosine levels
are commonly used as a biomarker of oxidative stress, and its
accumulation has recently been reported to adversely affect
cells, suggesting a direct role for m-tyrosine in oxidative stress
effects. We found that the Caenorhabditis elegans ortholog
of tyrosine aminotransferase (TATN-1)—the first enzyme
involved in the metabolic degradation of tyrosine—is up-regu-
lated in response to oxidative stress and directly activated by the
oxidative stress–responsive transcription factor SKN-1. Worms
deficient in tyrosine aminotransferase activity displayed in-
creased sensitivity to multiple sources of oxidative stress. Bio-
chemical assays revealed that m-tyrosine is a substrate for
TATN-1–mediated deamination, suggesting that TATN-1 also
metabolizes m-tyrosine. Consistent with a toxic effect of m-ty-
rosine and a protective function of TATN-1, tatn-1 mutant
worms exhibited delayed development, marked reduction in
fertility, and shortened lifespan when exposed to m-tyrosine. A
forward genetic screen identified a mutation in the previously
uncharacterized gene F01D4.5— homologous with human tran-
scription factor 20 (TCF20) and retinoic acid–induced 1
(RAI1)—that suppresses the adverse phenotypes observed in

m-tyrosine–treated tatn-1 mutant worms. RNA-Seq analysis of
F01D4.5 mutant worms disclosed a significant reduction in the
expression of specific isoforms of genes encoding ribosomal pro-
teins, suggesting that alterations in protein synthesis or ribosome
structure could diminish the adverse effects of m-tyrosine. Our
findings uncover a critical role for tyrosine aminotransferase in the
oxidative stress response via m-tyrosine metabolism.

The damage to cellular components by reactive oxygen and
nitrogen species, termed oxidative stress, has long been impli-
cated in aging and age-related diseases (1–9). Whereas much is
now known regarding the biochemical mechanisms by which
oxidative stress produces damage to molecules including lipids
(10), nucleic acids (11), and proteins (12), as well as the cellular
responses to counteract these effects (13), recent work has sug-
gested that our understanding of the mechanisms by which
cells defend against the adverse effects of oxidative stress and
the connections between oxidative stress and aging is incom-
plete. Specifically, work in mice and other model animals has
shown that even animals lacking critical components of the
oxidative stress defenses can age normally and resist the devel-
opment of age-related disease (14 –16). These findings could
either suggest that oxidative stress is less biologically important
than previously believed or that new types of antioxidant
defenses still remain to be discovered.

At the cellular level, the response to oxidative stress is
diverse, with the activation of multiple pathways (17, 18). One
of the major defense responses is the induction of genes encod-
ing phase II enzymes by nuclear factor E2–related factor 2
(Nrf2) (19). Nrf2 is part of the cap ’n’ collar family of basic
region-leucine zipper (bZip) motif transcription factors and
binds to the antioxidant response element (ARE)4 within the
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promoter regions of various genes, thus inducing their expres-
sion (20 –22). Under normal conditions, Nrf2 is bound by
Kelch-like ECH-associated protein 1 (Keap1) and sequestered
in the cytoplasm, where it is ubiquinated and targeted for rapid
degradation; however, under conditions of oxidative stress, cys-
teine residues both within Nrf2 and Keap1 sense electrophilic
inducers, and the interaction with Nrf2 is terminated (23–25).
This allows Nrf2 to enter the nucleus and, together with Maf2,
bind to the ARE to induce key detoxification genes (21).

This mechanism is conserved across species, including
Caenorhabditis elegans, where the SKN-1 transcription factor
is the ortholog of Nrf2 (26, 27). Whereas worms lack a direct
homolog of Keap1, WDR-23—a WD40 repeat protein—serves
a similar function in regulating SKN-1 nuclear accumulation
and activity (28). After exposure to oxidative stress or xenobi-
otics, SKN-1 rapidly translocates to the nucleus, particularly
within intestinal cells, where it induces the expression of GSH
synthetase, NADH quinone oxidoreductase, superoxide dis-
mutase, and catalase, among others (27).

Our interest in a possible function of tyrosine aminotrans-
ferase within the oxidative stress response stemmed from pre-
vious work that showed the garlic constituent diallyl trisulfide is
able to extend the lifespan of C. elegans in a skn-1– dependent
manner (29). Interestingly, when comparing microarray data
from worms treated with diallyl trisulfide and worms that were
subjected to oxidative stress produced by hyperbaric oxygen,
the C. elegans tyrosine aminotransferase homolog tatn-1 was
observed to be overexpressed in both data sets (29).

Tyrosine aminotransferase catalyzes the conversion of tyro-
sine to 4-hydroxyphenylpyruvate and is the rate-limiting step in
the tyrosine degradation pathway—the pathway by which tyro-
sine is metabolized to fumarate and acetoacetate (Fig. 1A) (30,
31). In relation to oxidative stress, multiple studies have
reported a potential enhancement of oxidative stress with
either a reduction in tyrosine aminotransferase or administra-
tion of tyrosine (32–37). Furthermore, rats treated with mer-
cury had greater tyrosine aminotransferase activity subsequent
to higher transcriptional expression (38), and heat stress
resulted in increased tyrosine aminotransferase activity in
chickens (39). Together, these data suggest a role for tyrosine
aminotransferase in response to stress. However, the mecha-
nisms involved are unclear.

Here, we explore a novel role for tyrosine aminotransferase
within the cellular oxidative stress response by metabolizing
meta-tyrosine, thus preventing its accumulation and the subse-
quent consequences that are detrimental to cells and organ-
isms. Work over the past few decades has revealed that under
conditions of oxidative stress, the production of the abnormal
tyrosine isomer m-tyrosine may occur when hydroxyl radicals
oxidize the phenyl ring of phenylalanine (40 –42). Whereas ele-
vations in m-tyrosine concentrations were previously perceived
to simply be a biological marker of oxidative stress (43), there is
emerging evidence from bacterial (44, 45), yeast (46), plant (47,
48), and mammalian studies (49 –55) suggesting that m-tyro-
sine directly produces adverse effects in cells and may contrib-
ute to oxidative stress-related pathologies (56). How m-tyrosine
is harmful to cells is not entirely clear, but studies have shown
that it can be erroneously charged to phenylalanyl-tRNA,

which then leads to the substitution of m-tyrosine for phenyla-
lanine during protein synthesis (46, 57–59). This could result in
adverse changes to protein structure and activity, but the down-
stream events triggered by these substitutions remain unex-
plored. Nevertheless, the elimination of m-tyrosine by meta-
bolic pathways could serve a purpose in the oxidative stress
response (56).

In this work, we find that TATN-1 protein expression is con-
trolled by the skn-1 transcription factor and increases after
exposure to oxidative stress. This induction of TATN-1 plays
an active role in the response to oxidative stress, as a tatn-1
mutant is sensitive to both external and internal sources of oxi-
dative stress. The activation of TATN-1 may serve to protect
animals against the accumulation of m-tyrosine, as we show
that both p-tyrosine and m-tyrosine can serve as substrates for
deamination by TATN-1. Consistently, only the tatn-1 mutant
accumulates m-tyrosine after being fed an m-tyrosine contain-
ing diet, and this feeding of m-tyrosine to the tatn-1 mutant
leads to a selective developmental delay, reduction in fertility,
and lifespan shortening compared with WT animals. Together,
our work suggests a novel role for tyrosine aminotransferase in
the oxidative stress response through the metabolism of m-ty-
rosine produced by phenylalanine oxidation.

Results

tatn-1 expression is controlled by SKN-1

By re-analyzing the ChIP-Seq data of Niu et al. (60), we dis-
covered that the SKN-1 transcription factor binds to the prox-
imal promoter of the tatn-1 gene with peak binding that is up to
4 S.D. values greater than the local mean level (Fig. 1B). Con-
sistent with the possible regulation of tatn-1 expression by
SKN-1, the recently published RNA-Seq data of Peddibhotla
et al. (61) demonstrate that tatn-1 expression is increased in
worms carrying a gain-of-function skn-1 mutation, which pro-
motes the expression of SKN-1 target genes (Fig. 1C). These
results suggest that the activation of SKN-1 should lead to an
increase in tyrosine aminotransferase levels in worms. To test
this hypothesis, we measured tyrosine aminotransferase activ-
ity from the lysates of WT N2 worms treated with either wdr-23
or control RNAi. The WDR-23 protein binds to SKN-1 and acts
to inhibit its translocation to the nucleus. Treatment with
wdr-23 RNAi relieves this inhibition and has previously been
shown to lead to robust expression of SKN-1 target genes (28).
Treatment with wdr-23 RNAi results in a significant increase in
TATN-1 enzymatic activity, which is more than double that
seen in worms fed control RNAi (Fig. 1D).

To determine whether the increase in tyrosine aminotrans-
ferase activity reflected an increase in the level of TATN-1 pro-
tein, we utilized transgenic worms with a tatn-1p::tatn-1::GFP
transgene that had previously been integrated into the
C. elegans genome (62). We found that treatment of these
worms with wdr-23 RNAi led to a nearly 5-fold increase in the
expression of TATN-1::GFP compared with the level seen in
worms treated with control RNAi (Fig. 1, E and F). To deter-
mine whether this increase in TATN-1::GFP with wdr-23 RNAi
depends on SKN-1, we crossed the transgene into worms car-
rying the skn-1(zu135) loss-of-function mutation. In contrast to
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WT worms, we found that skn-1 homozygous mutants failed to
induce the expression of TATN-1::GFP after treatment with
wdr-23 RNAi (Fig. 1, E and F). Together, these results suggest
tatn-1 expression is directly controlled by SKN-1.

We then tested whether exposure to oxidative stress, which
is an environmental activator of SKN-1, would also lead to
increases in TATN-1::GFP expression. We treated worms for
1 h with 50 �M juglone, which is a protocol known to induce the
expression of the SKN-1 target gene gst-4 (28). We found that

this treatment led to an increase in TATN-1::GFP expression in
two separate trials, although the level of increase did differ
between the experiments (Fig. 1G). Hence, the activation of
SKN-1 via either genetic or environmental conditions results in
the induction of TATN-1 expression.

tatn-1 mutants are sensitive to the effects of oxidative stress

Given the critical role played by SKN-1 in the oxidative stress
response (63, 64), we next sought to test whether TATN-1
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Figure 1. SKN-1 up-regulates TATN-1 expression and enzymatic activity. A, schematic of the tyrosine degradation pathway showing tyrosine metabolism
to hydroxyphenylpyruvate by tyrosine aminotransferase as the first step. B, ChIP-Seq data reveal a significant peak of SKN-1 binding to the genomic DNA within
the tatn-1 promoter during multiple stages of development. The y axis represents the level of SKN-1 binding in terms of the number of S.D. values above the
mean genome-wide level of SKN-1 binding. Colors indicate genomic regions within each S.D. range. C, RNA-Seq data show a significant increase in the number
of tatn-1 transcripts in a gain-of-function skn-1 mutant compared with WT C. elegans. Shown are the mean reads per kilobase million and S.D. values from each
of three biological replicates. ***, p � 0.001 by t test. D, activation of SKN-1 with wdr-23 RNAi treatment increases tyrosine aminotransferase enzymatic activity.
Relative TATN-1 activity was measured in protein lysates from adult N2 worms treated with control or wdr-23 RNAi. Shown are the mean enzymatic activity and
S.D. of wdr-23 RNAi-treated worms relative to control RNAi-treated worms for each of three biologic replicates. ***, p � 0.001 by t test. E, activation of SKN-1 with
wdr-23 RNAi treatment increases TATN-1 expression. Shown are representative photomicrographs of adult WT or skn-1 loss-of-function mutant transgenic
worms expressing a TATN-1::GFP fusion protein, produced by a tatn-1p::tatn-1::GFP transgene, that were treated with control or wdr-23 RNAi. Note the increase
in GFP fluorescence in the worm intestine following wdr-23 RNAi treatment. All images are captured at similar magnification. Scale bar, 100 �m (larger
fluorescent images) and 200 �m (inset Nomarski images). F, quantification of relative TATN-1::GFP fluorescence in WT or skn-1 mutant worms treated with
control or wdr-23 RNAi. Mean fluorescence intensity relative to control RNAi–treated worms and S.D. for each group are shown (n � 11–21). ***, p � 0.001; NS,
nonsignificant by a one-way ANOVA. G, quantification of relative TATN-1::GFP fluorescence in WT worms treated with 50 �M juglone dissolved in M9 or M9
alone as a control. Mean fluorescence intensity relative to control-treated worms and S.D. for each group are shown (n � 13–19). ***, p � 0.001; **, p � 0.0031
by t test.
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played a biologically significant role in the oxidative stress
response by assessing the sensitivity of tatn-1 mutants to
endogenous and exogenous sources of oxidative stress. Because
a tatn-1 null mutation is not viable, we utilized tatn-1(qd182)
mutant worms that have a hypomorphic (G171E) missense
mutation, which reduces the tyrosine aminotransferase activity
level in mutant worm extracts relative to WT animals by �90%
(Fig. S1A) and leads to an increase in worm tyrosine levels as
shown by MS (62). To assay the sensitivity of the tatn-1 mutant
worms to exogenous stress, we used an established develop-
mental assay, in which WT N2 and tatn-1(qd182) embryos
were placed on nematode growth agar (NGA) plates supple-
mented with paraquat—an organic compound that produces
superoxide anions in vivo—and we measured the time for each
strain to develop to reproductive adults (65, 66). Whereas
tatn-1 mutants are slightly delayed compared with N2 worms
on control plates without paraquat (Fig. S2), they are signifi-
cantly more delayed compared with N2 worms when treated
with 0.4 mM paraquat, with only 4.9% developing into fertile
adults by day 7 compared with 93.3% of N2 worms doing so (Fig.
2A). Similar results are seen when N2 worms are treated with
paraquat and tatn-1 RNAi (Fig. 2A), which reduces TATN-1
activity by �75% (Fig. S1B).

To address sensitivity to endogenous oxidative stress, tatn-1
mutants and N2 worms were treated with asb-1 RNAi. The
asb-1 gene encodes a germline-specific isoform of the mito-
chondrial ATP synthase b subunit, and asb-1 RNAi has been

shown to increase the levels of H2O2 within the cytosol of the
germline and cause sterility (67, 68). Treating either N2 or
tatn-1 mutant worms with undiluted asb-1 RNAi indeed
resulted in sterility in both strains (Fig. 2B). However, dilution
of the asb-1 RNAi with control RNAi reduced the adverse
effects on the germline and revealed an increased sensitivity of
tatn-1 mutants to the effects of asb-1 RNAi (Fig. 2B). Whereas
asb-1 RNAi treatment has been shown to increase intracellular
H2O2 levels comparable with those seen in paraquat-treated
worms (68), it is unclear whether its effect on germline devel-
opment and sterility is a result of increased ROS or reduced
ATP production by the germline mitochondria. Thus, reduc-
tions in ATP levels could potentially contribute to the germline
phenotypes observed with asb-1 RNAi treatment, and we did
not conduct experiments to exclude this possibility.

Both p- and m-tyrosine are substrates for TATN-1

Given our findings that TATN-1 is induced by SKN-1 and
contributes to oxidative stress defenses of the worm, we
hypothesized that TATN-1 could act to metabolize m-tyrosine
formed under conditions of oxidative stress (Fig. 3A). However,
there have been no reports assessing whether m-tyrosine, in
addition to p-tyrosine, is a substrate of TATN-1. To assess the
ability of TATN-1 to convert m-tyrosine into the less toxic
metabolite 3-hydroxyphenylpyruvic acid (47), we semi-purified
C. elegans TATN-1 that had been expressed in bacteria for an in
vitro assay (Fig. S3). In this assay, the tyrosine aminotransferase
reaction was coupled with glutamate dehydrogenase, which
allowed us to measure the formation of NADH via spectropho-
tometry when varying concentrations of the tyrosine isomers
and phenylalanine were added to the reaction (Fig. 3, B–D). The
Km for p-tyrosine (1.23 � 0.08 mM) is similar to that reported
for tyrosine aminotransferase from other species, including
Mus musculus, Rattus norvegicus, Felis catus, and Trypano-
soma cruzi (69 –71). Despite the Km for m-tyrosine (7.57 � 0.94
mM) being higher than p-tyrosine, TATN-1 maintains substan-
tial activity for m-tyrosine as a substrate, particularly when con-
sidering that no detectable reaction was observed with pheny-
lalanine at the concentrations tested.

It should be noted that the turnover number (kcat) for
TATN-1 with p-tyrosine as a substrate is considerably higher
than what has been previously published for tyrosine amino-
transferase in various species (69 –71). However, this difference
may be due to the presence of catalytically active degradation
products of TATN-1 following affinity purification as a GST
fusion protein (Fig. S3). Thus, the true concentration of
TATN-1 catalytic sites may be underestimated for this calcula-
tion. However, as the same preparation of TATN-1 from Esch-
erichia coli was used for all experiments, the enzyme concen-
tration remained constant for each experiment, and the relative
TATN-1 reaction rate with p-tyrosine, m-tyrosine, and pheny-
lalanine could still be adequately assessed.

tatn-1 mutants are sensitive to the adverse effects of
m-tyrosine

To determine whether metabolism via TATN-1 is an impor-
tant mechanism that protects C. elegans from the effects of
m-tyrosine, N2 WT and tatn-1 mutant worms were treated

A

B Normal gravid Atypical gravid Sterile

0%
20%
40%
60%
80%

100%

N2 tatn-1
(qd182)

N2 tatn-1
(qd182)

N2 tatn-1
(qd182)

N2 tatn-1
(qd182)

asb-1 RNAi control RNAi1:2 dilution 1:4 dilution
*** ***NS NS

0%
20%
40%
60%
80%

100%

N2
control RNAi

N2
tatn-1 RNAi

tatn-1(qd182) 
control RNAi

Days
3 4 5 6 7

Gravid Young adult < L3L40.4 mM paraquat

*** *** *** *** *** *** *** ***

3 4 5 6 7 3 4 5 6 7Pe
rc

en
ta

ge
 p

er
de

ve
lo

pm
en

t s
ta

ge
Pe

rc
en

ta
ge

 p
er

ph
en

ot
yp

e
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with varying concentrations of m-tyrosine that had been sup-
plemented in the agar plates used for worm culture. Compared
with WT worms, tatn-1 mutants treated with m-tyrosine show
a concentration-dependent phenotype characterized by a
reduction in the number of embryos present in day 1 adult
hermaphrodites compared with age-matched controls (Fig. 4, A
and B). This phenotype was not simply due to increased tyro-
sine levels in general, but is specific to m-tyrosine, as tatn-1
mutants treated with equal concentrations of p-tyrosine failed
to produce this phenotype (Fig. 4, A and B).

To test whether these phenotypes could be the result of
greater m-tyrosine accumulation in the tatn-1 mutants com-
pared with the WT animals, we prepared extracts for analysis
by LC/MS. This analysis demonstrated that the levels of free
m-tyrosine were nearly 2-fold higher in tatn-1 mutants com-
pared with N2 worms when treated with 4 mM m-tyrosine (Fig.
4C). Because m-tyrosine could compete with phenylalanine for
charging to phenylalanyl-tRNA (46, 49, 52, 58, 59), we asked
whether there may be an increase in free phenylalanine levels
due to a reduction in tRNA charging after m-tyrosine supple-
mentation. However, we observed no significant change in free
phenylalanine concentrations in either strain with m-tyrosine
treatment (Fig. S4). Thus, the m-tyrosine/phenylalanine ratio is
elevated in tatn-1 mutants administered m-tyrosine; however,
due to our low sample size and imprecise measurements, this
clear trend failed to reach significance (Fig. 4C).

Besides administering m-tyrosine to the worms via supple-
mentation in the worm medium, which is costly due to the price
of the chemical isomer, we also performed experiments in
which worms fed on E. coli expressing a plasmid that codes for
the pacidamycin X (PacX) enzyme. Unlike the phenylalanine
hydroxylase present in most other species—including humans

and C. elegans—that selectively hydroxylates phenylalanine at
the 4- or para position to produce p-tyrosine (76, 77), PacX is a
phenylalanine 3-hydroxylase from Streptomyces coeruleoribu-
dus that instead produces m-tyrosine (Fig. 4D) (78). Feeding
tatn-1 mutant worms bacteria expressing PacX produces a phe-
notype similar to that resulting from m-tyrosine supplementa-
tion to NGA medium (Fig. 4E and Fig. S5). It should be noted
that we were unable to detect free m-tyrosine in either N2 or
tatn-1(qd182) worms via LC/MS, but this may reflect a differ-
ence in m-tyrosine uptake from the intestine and delivery to
cells between m-tyrosine supplementation in the NGA medium
and the consumption of PacX-expressing bacteria.

To determine whether the phenotypes produced by m-tyro-
sine treatment are a result of a developmental delay, a loss of
fertility, or other effects on the worms, we conducted additional
experiments to measure development time, percentage of
embryonic lethality, and fecundity. PacX treatment signifi-
cantly increased both the developmental time and percentage
of embryonic lethality of tatn-1 mutant worms compared with
controls (Fig. 4, F and G). In contrast, PacX treatment had no
statistically significant effect on N2 development rate or the
percentage of embryonic lethality. Perhaps as result of the
increase in embryonic lethality, treatment with PacX also sig-
nificantly reduced the total number of progeny produced by
tatn-1 mutants (Fig. 4H). No difference in the number of prog-
eny was observed in N2 worms with PacX treatment (Fig. 4H).

To determine the nature of the germline defects in tatn-1
mutant worms treated with m-tyrosine, we utilized the trans-
genic OD95 worm strain, which carries transgenes expressing
fluorescent proteins to mark the nuclei and cell membranes of
germ cells (79 –82). This strain has been utilized extensively to
characterize alterations in gonadal morphology that occur with
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RNAi treatment targeting genes linked to sterility (83).
Whereas there were no obvious differences between WT
worms treated with PacX or control, there were differences in
the tatn-1 background. Both control and PacX-treated tatn-1
mutant worms exhibited a delay in oocyte expansion. Because

delayed expansion represents a transitional state between L4
and young adults, this finding is consistent with the observed
overall delay in organismal development (Fig. 4F). Further, this
observation may account for the slight reduction in progeny
number for the control-treated tatn-1 mutants, when com-
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Figure 4. tatn-1 mutants are sensitive to the adverse effects of m-tyrosine. A, treatment of N2 and tatn-1(qd182) mutant worms with varying concentra-
tions of either p- or m-tyrosine revealed a decrease in fertility of the tatn-1 mutants supplemented with m-tyrosine. Approximately 150 worms were scored per
treatment, and the percentage of worms showing each reproductive phenotype— based on the number of eggs in the uterus of day 1 adult animals with
normal gravid showing �6 embryos within the uterus, abnormal gravid showing �6 embryos, and absent showing zero embryos—are graphed. ***, p � 0.001
for �2 test of the effects of equal concentrations of m- and p-tyrosine within the same strain. ††, p � 0.01; †††, p � 0.001 for �2 test of the effects of m-tyrosine
treatment of equal concentrations between strains. B, representative images of worms quantified in A. C, results of LC/MS-MRM quantification of the concen-
tration of free m-tyrosine and the m-tyrosine/phenylalanine ratio for N2 and tatn-1(qd182) mutant worms grown on NGA plates supplemented with 4 mM

m-tyrosine. Approximately 1500 worms were collected per biological replicate, and the amino acid concentrations were normalized to the concentration of
soluble worm protein measured per sample. *, p � 0.05 by t test. D, diagram of the enzymatic formation of m-tyrosine from phenylalanine by the pacidamycin
X enzyme produced by Streptomyces coeruleoribudus. E, treatment of N2 and tatn-1(qd182) mutant worms fed bacteria expressing PacX or an empty vector
control revealed a decrease in fertility in the tatn-1 mutants treated with PacX-expressing bacteria. Scoring and statistical analysis were performed as in A. F,
results of a developmental time assay in which the time required for L1 arrested N2 and tatn-1(qd182) animals treated with control or PacX-expressing bacteria
to become gravid adults is measured. 4 –5 worms were assayed per condition. Mean developmental time and S.D. (error bars) are shown. ***, p � 0.001; NS,
nonsignificant p value by t test. G, measurement of the percentage of embryonic lethality in the worms from F treated with either control or PacX-expressing
bacteria demonstrates an increase only in the tatn-1 mutants treated with the PacX-expressing bacteria. Shown are the mean percentage of embryonic
lethality from each animal and the S.D. ***, p � 0.001; NS, nonsignificant p value by t test. H, measurement of the fertility of N2 and tatn-1(qd182) worms treated
with control or PacX-expressing bacteria. n � 9 –10 worms assayed per genotype and treatment. Shown are the mean number of progeny and S.D. for each
genotype-condition pair. ***, p � 0.001; NS, nonsignificant p value by t test. I, representative images of WT and tatn-1(qd182) transgenic worms expressing
fluorescent proteins that label the cell membrane (green) and nucleus (red) of the developing oocytes. The germline is outlined with a solid line, the worm body
is outlined with a dashed line, mature oocytes are numbered, and a star marks the beginning of oocyte expansion. The WT worms exhibit normal gonadal
architecture regardless of treatment. The control-treated tatn-1 mutant worm shows a delay in oocyte expansion. The PacX-treated tatn-1 mutant also shows
a delay in oocyte expansion along with a reduction in mature oocytes and a defect where the germline fails to cross the midline.
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pared with control-treated N2 worms (Fig. 4H). However, the
PacX-treated tatn-1 mutant worms exhibited a range of addi-
tional stochastic defects in two independent experiments (Fig.
4I and Data set S1). The most prominent phenotypic defects
observed were a marked reduction in the number of oocytes
formed and distal tip extension and/or a germline pathfinding
defect, where the germline failed to cross the midline. In an
attempt to identify potential genes or proteins that may be
affected by m-tyrosine treatment, we utilized the phenotypic
profiling data from Green et al. (83) and sought to match the
phenotypes observed in tatn-1 mutants treated with PacX with
the phenotypic profiles of genes associated with sterility. The
range of phenotypes observed in the tatn-1 mutants were not
diagnostic enough to reveal particular genes or pathways that
could be specifically linked to our observed phenotype with
m-tyrosine treatment. However, oocyte expansion defects tend
to be broadly observed among RNAi conditions targeting reg-
ulators of translation (see J-class (76)). However, additional
work is needed to better define the nature and cause(s) of the
irregular gonadal architecture.

We then examined whether the germline defects produced in
this strain by PacX treatment would also be seen when m-tyro-
sine is delivered by direct feeding of the chemical. We treated
strains carrying the reporters in both a WT and tatn-1 back-
ground, and we found that 4 mM m-tyrosine treatment pro-
duced similar phenotypes to PacX treatment but only in the
tatn-1 mutant background (Data set S1). Interestingly, when 4
mM p-tyrosine treatment was used as a comparison, we did see
similar germline phenotypes as with m-tyrosine treatment but
of lesser severity and with lower penetrance (Data set S1). This
could reflect direct actions of tyrosine, either p or m, on germ-
line growth and development, or it could reflect an indirect
increase in m-tyrosine levels as a result of the higher p-tyrosine
levels outcompeting endogenously formed m-tyrosine for the
available TATN-1 enzyme.

F01D4.5 mutation suppresses the adverse effects of oxidative
stress and m-tyrosine treatment in tatn-1 mutant worms

Because the mechanism(s) by which m-tyrosine is harmful to
cells and tissues is incompletely understood, we used a forward
genetic screen using the chemical mutagen ethyl methanesul-
fonate (EMS) to identify genes involved in the effects of m-ty-
rosine on the tatn-1 mutants (72, 84, 85). We mutagenized tatn-
1(qd182) mutant worms and then screened for worms showing
resistance to PacX treatment as indicated by a normal number
of embryos formed within the worms on day 1 of adulthood.
From this screen, we identified a strain that appeared to be
highly resistant to PacX treatment and, via genomic DNA
sequencing, mapped the causative mutation to the uncharac-
terized gene F01D4.5, which had a C to T substitution that
creates a nonsense mutation early in the protein sequence—
altering the 97th codon of the F01D4.5a isoform and the 56th
codon of the F01D4.5b isoform (Fig. 5A and Fig. S6). The
F01D4.5 protein shares homology with two human proteins—
transcription factor 20 (TCF20) and retinoic acid-induced pro-
tein 1 (RAI1). This homology is principally due to a predicted
plant homeodomain (PHD) finger motif within F01D4.5 that is

present in both RAI1 and TCF20 and enables these proteins to
bind nucleosomes (86, 87).

RAI1 is highly expressed in neurons, where it is present both
in the cytoplasm and in the nucleus and has been shown to bind
to gene promoter regions and induce transcription (88 –91).
Haploinsufficiency of the RAI1 gene causes the rare genetic
disorder Smith–Magenis syndrome, which is characterized by
mild to moderate intellectual impairment, distinctive facial fea-
tures, and behavioral abnormalities (92–94). Duplication of the
RAI1 gene region is associated with another genetic disorder,
Potocki–Lupski syndrome, which consists of intellectual dis-
ability, autistic features, and low body weight (95). In addition
to these syndromes, RAI1 mutations have been associated with
schizophrenia and autism (88, 96, 97).

TCF20, also known as stromelysin-1 platelet-derived growth
factor–responsive element– binding protein (SPBP), is a ubiq-
uitously expressed nuclear protein and functions as a transcrip-
tional coactivator that enhances the activity of multiple tran-
scription factors, including Nrf2, c-Jun, Ets1, Sp1, paired box
protein Pax-6, and the androgen receptor (73–75). TCF20 also
binds the phosphorylated estrogen receptor �, represses its
transcriptional activity, and inhibits proliferation of the ER�-
dependent breast cancer cell line MCF7 (98). Interestingly, like
RAI1, mutations in TCF20 have also been linked to intellectual
disability, autism spectrum disorders, and schizophrenia
(99 –101).

The F01D4.5 gene has two putative isoforms with the two
isoforms sharing 3 exons, one of which encodes the PHD finger.
F01D4.5a has an additional exon at the N terminus, and the two
isoforms have distinct exons at the C terminus (Fig. 5A). The
F01D4.5(baf20) mutation will affect all of the gene isoforms,
and, given the location of the nonsense mutation near the N
terminus of the protein, it is likely a null allele for F01D4.5.

To explore the function(s) of F01D4.5, we compared the
effects of F01D4.5(baf20) on the responses to m-tyrosine treat-
ment and oxidative stress exposure. The developmental time
and percentage of embryonic lethality of PacX-treated tatn-
1(qd182); F01D4.5(baf20) worms were significantly reduced
compared with PacX-treated tatn-1 mutants (Fig. 5, B and C),
with these measurements nearing or equaling control levels.
Whereas the tatn-1(qd182); F01D4.5(baf20) mutants treated
with PacX still produced fewer progeny than controls, they
produced significantly more progeny than tatn-1 mutants
treated with PacX (Fig. 5D). Additionally, tatn-1(qd182);
F01D4.5(baf20) worms were more resistant to the developmen-
tal delay effects of paraquat and the sterility effects of asb-1
RNAi compared with tatn-1 mutants alone (Fig. 5, E and F).

Given the potential roles of oxidative stress responses in
aging, we also examined the effects of m-tyrosine treatment on
worm lifespan. We treated N2, tatn-1(qd182), and tatn-
1(qd182); F01D4.5(baf20) worms with m-tyrosine and mea-
sured the lifespan of these animals. Whereas the mean lifespan
of m-tyrosine–treated tatn-1(qd182) worms was significantly
reduced compared with controls, there was not a statistically
significant effect observed in tatn-1(qd82); F01D4.5(baf20)
worms treated in parallel (Fig. 5G and Fig. S6). The addition of
the F01D4.5 mutation did not extend the lifespan of control-
treated tatn-1(qd182) animals. N2 mean lifespan was also

The role of TATN-1 in the oxidative stress response

9542 J. Biol. Chem. (2019) 294(24) 9536 –9554

http://www.jbc.org/cgi/content/full/RA118.004426/DC1
http://www.jbc.org/cgi/content/full/RA118.004426/DC1
http://www.jbc.org/cgi/content/full/RA118.004426/DC1
http://www.jbc.org/cgi/content/full/RA118.004426/DC1
http://www.jbc.org/cgi/content/full/RA118.004426/DC1


shortened but to a lesser extent than in tatn-1(qd182) animals
and only when treated with m-tyrosine supplemented in the
worm media (Fig. 5G and Fig. S7).

These effects were selective to the tatn-1 background, as
comparison of WT N2 and the F01D4.5(baf20) mutant showed
at most minor changes in developmental time, fertility, or
embryonic lethality either with or without PacX treatment (Fig.
S8). Similarly, the F01D4.5(baf20) mutation alone only showed
modest changes in lifespan compared with WT animals follow-
ing either treatment with m-tyrosine or p-tyrosine (Fig. S8).

Previous studies have shown that chronic exposure to low
levels of oxidative stress produced by paraquat treatment
extends C. elegans lifespan (102), so we sought to test whether
this oxidative stress treatment could interact with either the
tatn-1 or F01D4.5 mutations, which might suggest a role for
m-tyrosine in the effects of paraquat on lifespan. We treated
tatn-1(qd182) and tatn-1(qd182); F01D4.5(baf20) worms with
0.2 mM paraquat in two independent lifespan experiments with
mixed results. In the first trial, paraquat treatment extended the
lifespan of WT as well as tatn-1(qd182); F01D4.5(baf20)
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Figure 5. F01D4.5 mutation suppresses the adverse effects of oxidative stress and m-tyrosine treatment in tatn-1 mutant worms. A, diagram depicting
the various isoforms F01D4.5, the location of its predicted PHD finger domain, and the nature of the mutation isolated from the EMS mutagenesis screen. B, the
F01D4.5 mutation reduces the development time for tatn-1(qd182) mutant worms treated with PacX-expressing bacteria to become gravid adults. Shown are
the mean developmental time and S.D. (error bars) for 4 –5 worms per genotype-treatment pair to develop from an arrested L1 larvae into a reproductive adult.
**, p � 0.01; ***, p � 0.001; NS, nonsignificant by a one-way ANOVA. C, the F01D4.5 mutation suppresses the increased embryonic lethality of tatn-1(qd182)
mutants treated with PacX-expressing bacteria. Shown are the mean percentage of embryonic lethality and S.D. from 6 –10 worms assayed per genotype-
treatment pair. ***, p � 0.001; NS, nonsignificant by a one-way ANOVA. D, results from a fertility assay showing an increase in the number of progeny produced
by tatn-1(qd182); F01D4.5(baf20) worms treated with PacX-expressing bacteria. Shown are the mean progeny produced by 9 –10 worms assayed per genotype-
treatment pair along with the S.D. *, p � 0.05; **, p � 0.01; ***, p � 0.001 by one-way ANOVA. E, either the F01D4.5 mutation or F01D4.5 RNAi reduces the
developmental delay produced by treatment with 0.4 mM paraquat, as shown by a developmental assay. Shown are the percentage of worms in the indicated
developmental stage on each day with �150 worms being scored per genotype and treatment. **, p � 0.01; ***, p � 0.001 for comparison of worms deficient
in F01D4.5 as a result of F01D4.5 RNAi treatment or the F01D4.5(baf20) genetic mutation to tatn-1 mutant worms treated with control RNAi of the same age by
�2 test. F, the F01D4.5(baf20) mutation attenuates the sterility resulting from the treatment of tatn-1 mutants with asb-1 RNAi. Approximately 150 worms were
scored per genotype and RNAi treatment based on the number of eggs within the uterus of each animal. Shown are the percentage of worms showing each
reproductive phenotype with the worms being scored as sterile (zero eggs observed), abnormal gravid (�6 eggs), or normal gravid (�6 eggs). **, p � 0.01; ***,
p � 0.001 for comparison of tatn-1(qd182); F01D4.5(baf20) mutant worms with tatn-1(qd182) worms for each dilution by �2 test. G, treatment of WT and tatn-1
mutant animals with m-tyrosine reduces worm lifespan, and the F01D4.5 mutation reduces the adverse effect on longevity. Kaplan–Meier survival curves for
N2, tatn-1(qd182), and tatn-1(qd182); F01D4.5(baf20) worms on NGA plates supplemented with either 4 mM p- or m-tyrosine. n � 108 –122 worms per genotype
and treatment. p � 0.0001 for N2 and tatn-1 mutants treated with m-tyrosine versus p-tyrosine, whereas p � 0.06 for tatn-1(qd182); F01D4.5(baf20) treated with
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p-tyrosine–treated tatn-1(qd182), 19.7 days; m-tyrosine–treated tatn-1(qd182), 15.5 days; p-tyrosine–treated tatn-1(qd182); F01D4.5(baf20), 19.9 days;
m-tyrosine–treated tatn-1(qd812); F01D4.5(baf20), 18.9 days.
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mutants, but not tatn-1(qd182) mutants. In the second trial,
paraquat treatment extended the lifespan of both WT and tatn-
1(qd182) mutant worms but produced a greater lifespan exten-
sion for the tatn-1(qd182); F01D4.5(baf20) worms (Fig. S9).
Although further work is required to fully understand these
results, there is at least some evidence to suggest that m-tyro-
sine produced even by low-dose paraquat treatment could limit
C. elegans lifespan, and both tatn-1 and F01D4.5 can influence
these effects.

F01D4.5 is broadly expressed and may control the expression
of specific isoforms of genes encoding ribosomal proteins

Because the F01D4.5 gene has not been well-studied in
worms, we sought to determine which tissues expressed the
gene as well as the subcellular localization of the translated
protein. Through CRISPR, we created a translational reporter
by editing the F01D4.5 gene locus to include a C-terminal tag
with the red fluorescent protein mKate2. Fluorescent micros-
copy of the worms harboring this edited genome revealed
expression within the germline with nuclear localization of the
F01D4.5 protein (Fig. 6A). The fluorescence was produced by
the F01D4.5::mKate2 fusion protein because treatment with
F01D4.5 RNAi reduced the fluorescence by about 50% (Fig. 6A).
Because the translational reporter was only weakly expressed,
perhaps due to being only present at two copies per cell, we also
constructed a F01D4.5p::GFP transcriptional reporter trans-
gene to determine whether the gene is expressed in other tis-
sues. Stable lines obtained through bombardment of the trans-
gene showed expression of this reporter within the intestine
and early germline (Fig. 6B), and additional expression was
observed in the vulva, hypodermis, nervous system, and male
gonad in at least two but not all lines (Fig. S10). As the C. elegans
germline is known to repress the expression of many trans-
genes, the absence of F01D4.5p::GFP signal within the adult
germline is not unexpected despite this being the only tissue in
which the translational reporter F01D4.5::mKate2 was
observed (103, 104). Due to the differing transcriptional start
sites for the two isoforms of F01D4.5, the transcriptional

reporter included the first full exon of F01D4.5a, so the nuclear
localization of the GFP likely indicates a nuclear localization
signal within this exon.

Because TCF20 has been shown to enhance Nrf2 transcrip-
tional activity (75), we asked whether F01D4.5 could also func-
tion as a coactivator for the SKN-1 transcription factor. How-
ever, knockdown of F01D4.5 via RNAi had no effect on SKN-1
transcriptional activity as measured by the expression of a
gst-4p::GFP reporter (Fig. S11A) (105). Given that retinoic acid
can inhibit tyrosine aminotransferase gene expression and the
homology of F01D4.5 with RAI1 (106), we sought to test the
possibility that F01D4.5 may somehow regulate tatn-1 expres-
sion and produce the protective effects of F01D4.5 knockdown
though increased TATN-1 protein levels. We treated worms
expressing the tatn-1p::tatn-1::GFP reporter with F01D4.5
RNAi, but we failed to observe any differences in tatn-1 expres-
sion in these worms compared with controls (Fig. S11B).

To gain insights into the function of F01D4.5, we outcrossed
the F01D4.5(baf20) allele into N2 to explore the function of
F01D4.5 independently of tatn-1. RNA was isolated from N2
and F01D4.5(baf20) mutants and used for whole-transcriptome
profiling by RNA-Seq, which identified 65 genes that were dif-
ferentially expressed between the strains, including F01D4.5
(Table S1). Via the use of NanoString, we independently con-
firmed that the T27E7.1 gene was repressed in the F01D4.5
mutant relative to WT N2 worms (Fig. S12).

Functional annotation clustering utilizing the Database for
Annotation, Visualization, and Integrated Discovery (DAVID)
website revealed a statistically significant enrichment of genes
related to the ribosome with both Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway and gene ontology (GO) term
analysis (Hochberg–Benjamini adjusted p values 0.0012 and
0.037, respectively). No other annotation group was significant
when considering the false-discovery rate. Among the genes
that were differentially expressed, five genes encoded isoforms
of the large subunit of the ribosome: rpl-29, rpl-31, rpl-33, rpl-
35, and Y37E3.8. All of these genes were down-regulated in the
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Figure 6. Expression and subcellular localization of F01D4.5. A, diagram of edit made by CRISPR to tag the C terminus of F01D4.5 with mKate and a
representative image of these worms showing expression in the germline and localization to the germline nuclei. Fluorescence was produced by an
F01D4.5::mKate2 fusion protein because the average fluorescence intensity was diminished with treatment of these animals with F01D4.5 RNAi compared with
control RNAi. Shown are the mean fluorescence intensity and S.D. (error bars) for 10 –13 worms/RNAi treatment normalized to control-treated worms. ***, p �
0.001 by a t test. B, diagram of the F01D4.5 transcriptional reporter construct used to assess gene expression and localization. Shown is a representative image
of an L3 animal that exhibits expression of this fluorescent reporter in the intestine and early germline with localization in the nucleus as indicated by the
arrows.
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F01D4.5 mutant compared with the WT animals (Table S1).
Reductions in ribosome protein levels have been shown to be a
cellular response to the misfolding of proteins and proteotoxic
stress (107, 108), and because m-tyrosine is erroneously substi-
tuted for phenylalanine during translation (46, 58, 59), the
down-regulation of these genes suggests a possible mechanism
that may explain the resistance of tatn-1 mutants to m-tyrosine
and oxidative stress treatment when F01D4.5 is mutated or tar-
geted via RNAi.

Other differentially expressed genes of interest that we iden-
tified via RNA-Seq include eif-2a, which encodes a translation
initiation factor (109); elc-1, which encodes an E3 ligase and
transcription elongation factor; aco-2, which encodes an aconi-
tase; F37C12.3, which encodes an ortholog of NADH:ubiqui-
none oxidoreductase; fmo-4, which encodes a flavin-containing
monooxygenase; and tbb-6, which encodes a class of tubulin
proteins that for unclear reasons is highly induced with disrup-
tion to the electron transport chain (110).

Last, due to the proposed role for phenylalanyl-tRNA synthe-
tase in mischarging phenylalanyl-tRNA with m-tyrosine (46,
58, 59), we were interested to see whether the F01D4.5 muta-
tion altered the expression of this gene or others encoding
tRNA synthetases. We probed the RNA-Seq data for 25 known
C. elegans tRNA synthetases, and utilizing the unadjusted p
value, only two genes were down-regulated: fars-1, encoding a
phenylalanyl-tRNA-synthetase, and yars-2, encoding a tyrosyl-
tRNA-synthetase (unadjusted p values 0.0084 and 0.027,
respectively) (Table S2). Further studies are warranted to vali-
date the significance of these results.

Discussion

Our work supports a novel role of tyrosine aminotransferase
as part of the oxidative stress response, specifically through the
metabolism of the abnormal tyrosine isomer m-tyrosine that
can be formed after exposure to oxidative stress. In our working
model, following exposure to oxidative stress, tatn-1 expression
is induced by SKN-1, and TATN-1 is then able to metabolize
m-tyrosine (Fig. 7A). When TATN-1 function is reduced,
m-tyrosine accumulates and causes adverse effects within
C. elegans, including developmental delay, reduced fertility,
and shortened lifespan (Fig. 7B).

Not only does this work expand our view of pathways func-
tioning within the oxidative stress response to include the tyro-
sine degradation pathway, but it may also help to explain the
discrepancies related to the effects of oxidative stress on aging
and disease. The adverse effects of m-tyrosine were only seen
when tyrosine aminotransferase enzymatic activity was re-
duced due to a genetic mutation. A reduction in tyrosine ami-
notransferase activity also rendered the worms sensitive to the
effects of oxidative stress. Considering that the transcript and
activity levels of rat tyrosine aminotransferase have been
reported to decrease with age (111, 112), it will be compelling to
see whether tyrosine aminotransferase function correlates with
any of the age-related diseases in which oxidative stress is
thought to play a pathological role, including frailty, neurode-
generative diseases, and diabetes (2, 3, 5–9). In addition,
because other amino acids may also be oxidized with oxidative
stress, it would be of interest to investigate their potential roles
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Figure 7. Proposed model of the role of TATN-1 in the oxidative stress
response. A, in WT C. elegans, tyrosine aminotransferase prevents the accu-
mulation of m-tyrosine following oxidative stress. In these diagrams, blue
arrows represent chemical reactions, whereas black arrows represent biologic
processes (1). Following exposure to oxidative stress, m-tyrosine is formed
when hydroxyl radicals oxidize the phenyl ring of phenylalanine (blue arrow)
(2). SKN-1 is activated as part of the cellular response to oxidative stress via
post-translational modifications such as phosphorylation (3), and SKN-1
translocates to the nucleus, where it induces the expression of tatn-1, along
with other key detoxification genes (4). This results in an increase in the levels
of TATN-1 protein and enzymatic activity, and TATN-1 metabolizes m-tyro-
sine into the less toxic 3-hydroxyphenylpyruvate (blue arrow) (5). B, a decrease
in tyrosine aminotransferase activity renders C. elegans susceptible to the
adverse effects of m-tyrosine, but a mutation in the F01D4.5 gene can prevent
this sensitivity (1). If tyrosine aminotransferase activity is inadequate, this can
lead to the accumulation of m-tyrosine (2). This results in adverse effects,
including developmental delay, reduced fertility, and a shortened lifespan,
which could be due to the misincorporation of m-tyrosine into newly formed
proteins (3). F01D4.5 is a putative transcription factor or coregulator for tran-
scription factors, and RNA-Seq data suggest that an important consequence
of the F01D4.5 mutation could be the down-regulation of specific ribosomal
protein isoforms (4). This may result in a reduction in protein synthesis,
altered mRNA translation, and/or altered ribosome structure, and perhaps a
decreased rate of m-tyrosine substitution for phenylalanine, which could lead
to a reduction in the production of unstable or misfolded proteins when
m-tyrosine is present (5). It is possible that F01D4.5 could be regulated at the
post-translational level in the setting of oxidative stress, although there are
currently no data supporting this. Solid lines, processes with direct supporting
evidence; dashed lines and/or question marks, hypothetical processes. Num-
bered red circles, detrimental pathways; numbered blue circles, protective
pathways.
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in mediating oxidative stress and elimination by other meta-
bolic pathways (12, 113, 114).

Beyond highlighting the important role of tyrosine amino-
transferase within the oxidative stress response, we have iden-
tified a mutation in the previously uncharacterized gene
F01D4.5 that renders tatn-1 mutants resistant to the effects of
m-tyrosine. Localization studies utilizing a CRISPR-generated
knock-in of the fluorescent protein mKate2 revealed expression
of F01D4.5 within the germline, which is precisely where the
adverse effects of m-tyrosine are most clearly observed. Fur-
thermore, its nuclear localization supports a presumptive role
as a transcription factor or coregulator for transcription factors
based on homology with the human proteins TCF20 and RAI1.
It is not clear why a mutation affecting F01D4.5 is beneficial in
worms under stressed conditions, whereas mutations in the
human homologs result in rare genetic syndromes, but further
studies assessing the differences in their protein sequences may
provide some answers. Additionally, the particular gene func-
tions of TCF20 and RAI1 that account for their related disease
syndrome manifestations are unknown.

The RNA-Seq data comparing N2 and F01D4.5 mutant
worms may provide insights into how a reduction in F01D4.5
activity may potentially promote resistance to oxidative stress
and m-tyrosine treatment in the tatn-1 mutant background.
Most notably, DAVID functional annotation highlighted the
ribosome as being affected by the F01D4.5 mutation, and spe-
cific isoforms of multiple genes encoding ribosomal large sub-
unit proteins were down-regulated. This is surprising, consid-
ering the previous usage of some of them as reference genes in
certain species (63, 115, 116); however, the down-regulation of
the expression of these isoforms of ribosomal proteins may sug-
gest a potential diminution of ribosome production, mRNA
translation, and ultimately protein synthesis. Indeed, there is
evidence from previously published work reporting that the
reduced expression of ribosomal subunits results in a reduction
of protein synthesis. A deletion in the gene encoding RPL29 in
yeast reduced proper assembly of the 60S subunit, joining with
the 40S subunit, and protein synthesis (117). Similarly, embry-
onic fibroblasts from RPL29 null mice demonstrated decreased
rates of proliferation and protein synthesis (118). Knockdown
of RPL35a expression also inhibited 60S subunit biogenesis and
proliferation, and a deletion of this gene has been linked to the
development of Diamond–Blackfan anemia (119). Further-
more, Steffen et al. (108) have shown that deletions in genes
encoding ribosomal proteins correlate with resistance to ER
stress in yeast, and reducing translation with cycloheximide
treatment also provides resistance to tunicamycin treatment
via a mechanism independent of the canonical ER stress
response pathway. Likewise, work in yeast has shown that a
reduction in the level of ribosomal proteins is a cellular
response to proteotoxic stress induced by trivalent arsenic and
that mutations in the genes encoding ribosomal proteins can
protect against arsenic toxicity (107). Taken together with the
proposed mechanism for m-tyrosine toxicity via its misincor-
poration into cellular proteins, it is reasonable to hypothesize
that F01D4.5 may function to regulate the transcription of ribo-
somal proteins, and the inhibition of its function results in a
reduction in the expression of these ribosomal proteins that

then limits protein synthesis and potentially lowers the number
of misfolded proteins produced by m-tyrosine misincorpora-
tion (Fig. 7B). This reduction in mRNA translation rate may
also provide more time for phenylalanyl-tRNA synthetase to
appropriately recognize and correct mischarged m-tyrosine-
tRNAPhe molecules (46). Interestingly, the transcripts of
tRNA synthetases for tyrosine and phenylalanine both were
decreased in the F01D4.5 mutant, but these reductions failed
to reach a genome-wide threshold after adjusting the p value
to account for the desired false discovery rate. However, the
selective reduction of tRNAPhe charging, due to lower phe-
nylalanyl-tRNA synthetase expression, could be an alternate
means of preventing the charging of m-tyrosine to tRNAPhe

and thereby protect the cellular proteome from m-tyrosine
misincorporation events. Further studies, such as measuring
the rate of protein synthesis utilizing the radioisotope
[35S]methionine, are necessary to examine this hypothesis in
more detail.

Alternatively, the changes in the expression of ribosomal
protein isoforms might have other effects on ribosome struc-
ture or function. These changes could result in selective
changes in mRNA translation or the recruitment of a distinct
set of ribosome-associated proteins. Further work will be
needed to fully understand how the F01D4.5 mutations might
alter the ribosomes.

Additionally, the affected ribosomal proteins may have func-
tions beyond simply their involvement in the ribosome (120).
For example, repression of either RPL27A or RPL29 has been
reported to induce p53 expression (121–123), which has mul-
tiple functions in mediating the response to stress conditions
(124, 125).

The RNA-Seq data also highlighted other genes of potential
interest, including eif-2A, an initiation factor that also functions
in regulating translation (109); elc-1, which encodes an E3 ligase
and transcription elongation factor that prolongs lifespan and
delays paralysis caused by Q35 aggregation in C. elegans when
knocked down (126); and aco-2, a mitochondrial aconitase that
significantly extends C. elegans lifespan when targeted by RNAi
and has been implicated in aging (127–129). The F01D4.5
mutation may also stabilize mitochondria, as the expression of
tbb-6 was also significantly decreased in the mutant worms.
This gene, which is under control of the mitogen-activated pro-
tein kinase pmk-3, shows robust expression with electron trans-
port chain disruption and mitochondria dysfunction (110).
Studies are ongoing to confirm the role of F01D4.5 in inducing
the expression of these genes and to assess how the F01D4.5
mutation might disrupt downstream pathways.

In conclusion, this work has defined novel functions for two
genes, tatn-1 and F01D4.5, in response to oxidative stress. This
adds to the growing body of literature supporting the potential
role of m-tyrosine in mediating the adverse effects of oxidative
stress but is among the first to show a direct biochemical
defense mechanism to prevent its accumulation. It also identi-
fies F01D4.5 as a potential regulator of the oxidative stress
response in C. elegans and provides a hypothesis as to its
function.
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Experimental procedures

C. elegans strains and maintenance

All C. elegans strains were propagated on NGA plates spot-
ted with OP50-1 E. coli.

The WT N2 C. elegans strain was obtained from the
Caenorhabditis Genetics Center, which is funded by the
National Institutes of Health National Center for Research
Resources, as were the following strains: OD95 (unc-
119(ed3); ltIs37[pie-1p::mCherry::his-58 � unc-119(�)];
ltIs38[pie-1p::GFP::PH(PLC1�) � unc-119(�)]); CL2166
((pAF15)gst-4p::GFP::NLS); and HT1593 (unc-119(ed3)).
LG335 (skn-1(zu135)/nT1[qIs51]) was a gift from Nicholas
Bishop and Leonard Guarente. tatn-1(qd182) was described
previously and is a gift from Daniel Pagano and Dennis Kim
(62). The ALF131 (bafIs131[tatn-1p::tatn-1 cDNA::GFP])
strain, which expresses a TATN-1::GFP fusion protein, has
been described previously (62). Standard genetic crosses
were performed to introduce transgenes into mutant back-
grounds with PCR being used to confirm the presence of the
desired mutations.

Bioinformatic analysis

To determine the level of SKN-1 genomic DNA binding
within the tatn-1 promoter, the ChIP-sequencing data of Niu et
al. (60) was analyzed using GBrowse within WormBase. Tracks
specific to SKN-1 were selected, and the scale was adjusted to
display peaks with the y axis representing the S.D. value of the
measured binding to each region from the mean SKN-1 binding
measured across the genome. In these graphs, greater peak
height represents more SKN-1 binding to this region compared
with the levels seen in other parts of the genome.

To determine whether tyrosine aminotransferase is overex-
pressed when SKN-1 is active, we utilized the data of Peddib-
hotla et al. (61) in which they performed RNA-Seq to compare
the gain-of-function mutant skn-1(k1023) with WT worms. We
reported the normalized reads per kilobase per million mapped
reads for tatn-1 for each of the three replicates of each strain.
Statistical significance was measured using an unpaired t test
via the software GraphPad Prism.

RNAi experiments

NGA plates were spotted with E. coli strains HT115 or
OP50(xu363) expressing the desired RNAi clone (130). Bacteria
were grown in Luria broth (LB) for 12–18 h, and then 300 �l
was spotted onto NGA plates containing 50 �g/ml carbenicillin
and 1 mM IPTG to promote RNAi expression. Due to a slower
growth rate, OP50(xu363) was concentrated 2� prior to spot-
ting on agar plates.

Quantification of fluorescent reporters

Approximately 20 –30 worms from each treatment were
mounted and imaged using fluorescent microscopy as de-
scribed previously (131). Average fluorescence intensity was
measured by outlining the tissue in which the fluorescent pro-
tein is expressed (e.g. intestinal tract for TATN-1::GFP, germ-
line for F01D4.5::mKATE2, etc.) in the computer software
ImageJ. Statistical significance was determined via GraphPad

Prism using either a one-way analysis of variance (ANOVA)
with Tukey post hoc test to correct for multiple comparisons
when three or more conditions were tested per experiment or
an unpaired t test when only two conditions were compared.

TATN-1 protein lysate assay

Synchronous populations of worms (�1000 worms/treat-
ment), treated with the indicated RNAi or empty vector con-
trol, were grown at 20 °C until day 1 of adulthood. Worms were
then washed from the plates and rinsed twice with S-basal, and
the pelleted worms were placed on ice. The worms were then
resuspended in 250 �l of lysate buffer (50 mM Tris-HCl, pH 7.6,
1 mM EDTA, 1 mM DTT, 10% glycerol, and Roche cOmplete
Mini EDTA-free Protease Inhibitor Mixture (1 tablet/10 ml)).
The worms were transferred to a 2-ml Qiagen sample tube RB,
and a single 7-mm steel bead was added to each tube. The sam-
ples were then subjected to two freeze-thaw cycles prior to
homogenization. Homogenization was performed using a bead
mill (Qiagen TissueLyser LT) run at 50 Hz for 5 min. Lysates
were then transferred to a microcentrifuge tube and centri-
fuged at 4 °C at 10,000 � g for 10 min. The protein concentra-
tion of the soluble lysate fraction was measured using the Brad-
ford assay. 20 �g of total protein lysate was used for the tyrosine
aminotransferase assay.

TATN-1 activity was determined by following the protocol
used by Ru et al. with minor modifications (132). 100 �l of
reaction mixture (125 mM KH2PO4/K2HPO4, 5 mM L-tyrosine
disodium salt hydrate, 0.75 mM EDTA, 0.1 mM pyridoxal phos-
phate, 10 mM �-ketoglutarate, pH 7.5) was put into each well of
a 96-well plate and preincubated at 30 °C for 30 min. The reac-
tion was initiated by adding 50 �l of lysate buffer containing 20
�g of total protein to each well and incubating at 30 °C for 30
min, at which time the reaction was stopped by adding 50 �l of
1 M potassium hydroxide. After an additional 30 min, the absor-
bance at 331 nm was measured using an UV-visible plate reader
(SpectraMax M5) to quantify the presence of the product
hydroxybenzaldehyde (133). Each condition was performed in
either duplicate or triplicate as indicated. Statistical analysis
was performed in GraphPad Prism using an unpaired t test.

Paraquat oxidative stress developmental assay

Approximately 150 eggs were spotted on NGA plates con-
taining paraquat (0, 0.1, 0.2, 0.3, and 0.4 mM). Each plate was
scored daily for the number of worms in each of the develop-
mental stages. Statistical significance was determined in
GraphPad Prism using a �2 test comparing the counts of worms
within each developmental stage per strain on the indicated
day.

asb-1 RNAi oxidative stress assay

RNAi NGA plates were spotted with bacteria expressing con-
trol RNAi or asb-1 RNAi or a mixture of the two bacterial cul-
tures at the indicated volume ratios. Eggs were isolated by
hypochlorite treatment and placed on these plates. When
worms on the control RNAi plates reached day 1 of adulthood,
each plate was scored for sterility and normal germline mor-
phology. Worms were scored as abnormal if it was clear on the
basis of visual observation that there were fewer than 6 embryos
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present within the uterus. A �2 test was used to measure statis-
tical significance compared with worms treated with control
RNAi.

Partial purification of TATN-1

Competent Rosetta DE3 bacteria were transformed with a
pDEST 15 plasmid coding the full-length C. elegans tatn-1
cDNA fused to a GSH S-transferase (GST) tag. In parallel, addi-
tional bacteria were transformed with the pGEX-5X-2 plasmid
encoding only GST to be used as a negative control for our
enzymatic assay. Cells were grown at 37 °C in LB medium to an
optical density of 0.5–1.0 at 600 nm. Cultures were cooled to
room temperature, and protein expression was then induced by
adding IPTG to a final concentration of 1 mM followed by over-
night incubation at 20 °C with shaking. Cells were then har-
vested via centrifugation, and the pellet was washed with ice-
cold PBS (pH 7.4). The pellet was subjected to a single freeze/
thaw, and then the following reagents were added to lyse the
cells: Novagen BugBuster Protein Extraction Reagent (5 ml/g of
wet cell paste), Roche cOmplete Mini EDTA-free Protease
Inhibitor Mixture tablets (1 tablet/10 ml), Benzonase (1 unit/1
ml), and lysozyme (1000 units/1 ml). Cell suspensions were
incubated for 20 min at room temperature. Insoluble material
was removed by centrifugation at 16,000 � g for 20 min at 4 °C,
and the TATN-1 protein was semi-purified from the superna-
tant via GST-tagged affinity chromatography using the Milli-
pore GST-Bind Purification Kit and the manufacturer’s proto-
col. The eluted protein was then dialyzed at 4 °C in dialysis
buffer (10 mM HEPES, pH 7.35, 100 mM NaCl, 1 mM EDTA, and
10% glycerol) for 15 h. Protein concentration measured by
Bradford assay, and the expression of TATN-1 protein was ver-
ified via SDS-PAGE on a NuPage 10% BisTris gel followed by
Coomassie Blue staining. As multiple bands were present,
which likely represent degradation products and co-purified
contaminants, the gel was analyzed using the software program
ImageJ, and the concentration of full-length, GST-tagged
TATN-1 protein was determined based on the density of the
band present at the expected molecular mass (81.6 kDa).

TATN-1 biochemical assay and determination of Michaelis–
Menten kinetics

The tyrosine aminotransferase reaction was coupled with
glutamate dehydrogenase, and absorbance at 340 nm was
recorded continuously in a SpectraMax M5 plate reader at
room temperature to measure the formation of NADH prod-
uct, using a modification of a previously published protocol
(134 –136). Reactions were performed at 27 °C in HEPES (200
mM), pH 7.4, KCl (100 mM) containing 28 units/ml lyophilized
glutamate dehydrogenase (Sigma), 20 �M pyridoxal phosphate,
500 �M NAD�, 6 mM �-ketoglutarate, and varying concentra-
tions (0.25–10 mM) of p-tyrosine, m-tyrosine, or phenylalanine.
Background rates were measured in the absence of the TATN-1
enzyme. A negative control using purified GST alone was also
conducted in parallel. Each reaction was initiated with the addi-
tion of semi-purified TATN-1 to a final concentration of 14 nM.
The reactions were run in triplicate for each concentration of
substrate. The measured absorbance data were converted to
the concentration of NADH formed using Beer’s law (absor-

bance � �Lc, where � is the molar extinction coefficient, L is the
path length, and c is the concentration) with the coefficient of
extinction for NADH at 340 nm being 6220 M	1 cm	1. The
initial velocities of the reaction were determined for the various
concentrations of the substrates, and the statistical software
GraphPad Prism was used to calculate the kinetic parameters
for each substrate using nonlinear regression with the built-in
kcat equation with least squares (ordinary) fit: Y � Et � kcat �
X/(Km � X), where X is the substrate concentration, Y is the
enzyme velocity, kcat is the turnover number, Km is the Km in the
same units as X, and Et is the concentration of the enzyme
catalytic sites.

meta-Tyrosine treatment

A filter-sterilized solution of either L-m-tyrosine (Toronto
Research Chemicals, Inc., catalog no. T910010, lot 1-
TTK-126-1) or L-p-tyrosine (Sigma, catalog no. T3754, lot
BCBT5226), which was used as a control, was added to NGA
medium containing streptomycin (0.2 mg/ml) prior to pour-
ing the plates. The plates were spotted with OP50(xu363)
control RNAi bacteria that lacks resistance to streptomycin
and that had been 2� concentrated. Immediately after the
bacteria had dried on the plates, the bacteria were killed by
UV irradiation as described by Burton et al. (137). Worms
were grown on these plates at 20 °C from the egg stage. Sta-
tistical measurements between strains and treatments was
performed using a �2 test in GraphPad Prism.

LC/MS

Biological replicates of �1500 N2 WT and tatn-1(qd182)
worms were grown on NGA plates supplemented with either p-
or m-tyrosine as described above until day 1 of adulthood.
Worms were then washed from plates, allowed to incubate in
S-basal medium for 30 min to remove bacteria from the gut, and
then washed three times. Worm pellets were then stored fro-
zen. Samples were homogenized in 300 �l of hydrochloric acid
(HCl) (0.1 N) using the FastPrep-24 homogenizer at a speed
setting of 6.5 m/s for four 30-s cycles with a 1-min rest on ice
between cycles. Samples were then centrifuged at 18,000 � g for
15 min, and the supernatant was dried in a vacuum centrifuge.
The dried samples were redissolved in 50 �l of HCl (0.01 N), and
the concentrations of meta-tyrosine, para-tyrosine, and pheny-
lalanine were determined by LC/MS using multiple-reaction
monitoring (MRM) as performed by Bullwinkle et al. (46), with
minor differences— only 1 �l of solution was injected onto the
reverse-phase HPLC column, and the typical retention times
for p-tyrosine, m-tyrosine, and phenylalanine were 15.1, 17.5,
and 20.9 min, respectively. Peak areas were measured using
instrument manufacturer–supplied software (Agilent Mass-
Hunter). The amount of each amino acid in the samples was
determined by interpolation from the curves constructed from
standard samples and normalized by dividing by the amount of
soluble protein in each sample as measured by the Bradford
assay. Statistical significance was measured using an unpaired t
test using GraphPad Prism.
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Pacidamycin X treatment

The PacX gene was previously cloned into E. coli utilizing a
pET30 expression vector and was received as a gift from Dr.
Wenjun Zhang (78). The plasmid was transformed into
OP50(xu363) E. coli. To supplement C. elegans with m-tyrosine
via PacX expression, bacteria were grown overnight in LB
medium, double-concentrated, and spotted to NGA plates con-
taining kanamycin (50 �g/ml) to select for the pET30 vector
and 2 mM IPTG to induce PacX expression. Bacteria harboring
empty vector pET24 were used as a negative control. Worms
were grown on these plates at 20 °C from the egg hatching. A �2

test was used to measure statistical significance between worm
strains and treatments.

Fertility assays

Worm embryos were collected via hypochlorite treatment,
placed on specified plates, and allowed to develop until the L4
larval stage. At this time, individual worms (6 –12 per condi-
tion) were moved to individual plates and transferred daily to
fresh plates until each individual worm had ceased reproduc-
tion. Progeny were allowed to develop for 2 days prior to count-
ing the number of worms per plate. The total number of prog-
eny per worm was determined by summing the number of
worms from each day of egg laying. A one-way ANOVA with
Tukey post hoc test to correct for multiple comparisons was
performed using GraphPad Prism to compare the number of
progeny between strains and treatments.

Developmental time assay

Embryos were collected by hypochlorite treatment and
allowed to hatch in S-basal at room temperature. Individual L1
larvae were moved onto individual NGA plates spotted with
bacteria expressing either the control pET24 or PacX and incu-
bated at 20 °C. Beginning 44 h later, worms were scored hourly
for developmental stage, and the time for each worm to become
a gravid adult was recorded. The developmental time of 5–10
worms was measured per strain per condition. Two indepen-
dent experiments were performed to ensure reproducibility of
the data. Statistical significance was calculated using a one-way
ANOVA with the Tukey post hoc test to correct for multiple
comparisons.

Embryonic lethality assay

Worms from the developmental time assay were allowed to
lay eggs for 24 h, at which time they were removed from the
plates, and the number of embryos and L1 worms were
counted. Two days later, the number of viable worms were
counted. This number was subtracted from and then divided by
the number of embryos/L1s to calculate the percentage of lethal
embryos. A one-way ANOVA with the Tukey post hoc test to
correct for multiple comparisons was performed using to com-
pare the number of progeny between strains and treatments.

Lifespan assays

Lifespan assays were conducted at 25 °C with tyrosine treat-
ments as specified. Worm embryos were collected via hypo-
chlorite treatment, placed on the specified plates, and allowed

to develop at 20 °C until the young adult stage. At this time,
worms were moved to treatment plates that contained 50 �M

5-fluoro-2
-deoxyuridine to inhibit growth of progeny and
were moved to 25 °C. For each lifespan, 3– 4 plates of 40 worms
each per condition were followed for survival. Worms were
scored every 1–2 days by examining for touch-provoked move-
ment, and worms that did not respond to repeated touch stim-
uli were scored as dead. Worms that crawled off the plate or
experienced herniation of the intestine through the vulva were
censored. At the end of the assay when all worms had died, the
data from the multiple plates for each condition were combined
and analyzed with the Mantel–Cox log-rank test via GraphPad
Prism, which also produced Kaplan–Meier survival curves. Life
tables and mean survival were calculated using Stata 14. Each
lifespan was replicated at least twice to verify the results.

Assessment of germline phenotypes with fluorescent reporters

The ltIs37[pie-1p::mCherry::his-58] and ltIs38[pie-1p::GFP::
PH(PLC1�)] transgenes from the OD95 transgenic strain were
crossed into the tatn-1 mutant background and treated with
PacX-expressing bacteria or control bacteria or with 4 mM p-ty-
rosine or m-tyrosine. On day 1 of adulthood, worms were
mounted and imaged. Phenotypes were determined by com-
paring with representative images from the publication of
Green et al. (83).

Chemical mutagenesis screen

tatn-1(qd182) mutant worms were used for a forward genetic
screen using the mutagen EMS as described previously (138).
Briefly, the tatn-1 mutants were synchronized by hypochlorite
treatment, grown until the L4 developmental stage, and then
treated with 50 mM EMS for 4 h. After a short period of recov-
ery, 100 worms were divided among 10 NGA plates. Once the
F1 progeny were gravid, eggs representing the F2 generation
were collected by hypochlorite treatment and put on plates
spotted with bacteria expressing PacX. These F2 progeny were
screened for normal fertility indicating resistance to m-tyro-
sine. Multiple worm lines that suppressed the reduced fertility
phenotype were carried forward, and these lines were again
tested for resistance to treatment with PacX. The most robust
line was backcrossed twice to the tatn-1(qd182) strain, and then
its genomic DNA was extracted utilizing Qiagen’s DNeasy
Blood and Tissue Kit according to the manufacturer’s protocol.
Whole-genome sequencing was performed for both the EMS
mutant strain and the unmutagenized tatn-1(qd182) strain
with an Illumina HiSeq2000 system. The sequencing data were
then analyzed with the Variant Discovery Mapping workflow in
the online CloudMap suite hosted on the Galaxy server as
described previously by Minevich et al. (139).

CRISPR-edited F01D4.5 fluorescent tag

The C terminus of F01D4.5 was tagged with mKate using
CRISPR (140). As a result of the differing translational start and
stop sites of the different F01D4.5 isoforms, there was no obvi-
ous insertion site for a fluorescent tag, and we opted to insert it
at the C-terminal end of the penultimate exon, which is identi-
cal for both isoforms. Single-guide RNA (sgRNA) targeting the
C terminus of F01D4.5 was selected by utilizing an online
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design tool and published selection criteria (140, 141). This
sequence was cloned into the pJW1285 plasmid vector, creating
the Cas9-sgRNA construct, using the New England Biolabs Q5
Site-directed Mutagenesis kit. Homology arms �500 bp in
length were generated by PCR and inserted into pDD287 con-
taining the mKate2/self-excision cassette using AvrII and
NgoMIV digestion and the NEB HiFi DNA Assembly Cloning
kit. Correct assembly was verified via sequencing. N2 adults
were then injected with a mixture of the following: 50 ng/�l
Cas9-sgRNA plasmid, 10 ng/�l pDD287 with homology arms,
10 ng/�l pGH8 plasmid, 5 ng/�l pCFJ104 plasmid, and 2.5
ng/�l PCFJ90. pGH8, pCFJ104, and pCFJ90 were included as
co-injection markers. F2 generation was screened for candidate
knock-in worms by adding 500 �l of 5 mg/ml hygromycin to
each plate. Resistant worms were then screened for knock-in by
examining for 100% transmission of the roller marker followed
by PCR for confirmation. The self-excision cassette was
removed by subjecting L1 worms to heat shock at 34 °C for 4 h
and picking nonrollers in the F1 generation. Primers utilized for
this are shown in Table S3.

F01D4.5 transcriptional reporter

A 2-kb fragment containing the F01D4.5 promoter was gen-
erated via PCR using N2 genomic DNA using the primers dis-
played in Table S3. This PCR fragment included the promoter
region through the first five codons of the first exon of
F01D4.5b so as to contain the promoter regions for both iso-
forms of the gene. This fragment was cloned into the pPD95.75
vector. The resulting F01D4.5p::GFP reporter was modified by
homologous recombination to express the unc-119 marker
gene as described previously (142). This plasmid was used to
bombard HT1593 (unc-119(ed3)) worms using a previously
published protocol (143). Transgenic strains were identified by
rescue of the unc-119 mutant phenotype, and stable lines that
produced no uncoordinated progeny were imaged.

RNA-Seq analysis

Five biological replicates of N2 and F01D4.5(baf20) mutants
were collected for each condition for a total of 1000 –2000
worms/sample. Eggs were hatched in S-basal to arrest the ani-
mals in the L1 stage. The arrested worms were transferred to
plates and incubated at 20 °C for 48 h, at which point late L4
worms were collected for subsequent RNA extraction. RNA
extraction was performed by adding 1 ml of QIAzol Lysis Rea-
gent to the worm pellet and freezing at 	80 °C. After two
freeze/thaw cycles, total RNA was then extracted and purified
utilizing the Qiagen miRNeasy Mini Kit according to the man-
ufacturer’s protocol. The quality of total RNA was checked with
an Advanced Analytical Fragment Analyzer. RNA quality num-
bers greater than 7 were accepted for library preparation and
sequencing. Approximately 500 ng of total RNA was used for
library preparation by following the Illumina TruSeq Stranded
mRNA Sample Preparation Guide. The libraries were then sub-
jected to quantification and pooled for cBot amplification and a
subsequent 50-bp single-read sequencing run with the Illumina
HiSeq 3000 platform. After the sequencing run, demultiplexing
with CASAVA was employed to generate the fastq file for each

sample. The fastq files were then uploaded to the Galaxy server
for analysis.

Data analysis of the RNA-Seq reads was performed on the
Galaxy server as follows: 1) sequencing reads were aligned to
the C. elegans reference genome (ce11) using HISAT2; 2) the
aligned reads were then counted via htseq-count in intersection
(nonempty) mode without strandedness and default parame-
ters; 3) differential expression of gene/transcript counts was
then determined using DESeq2 with the local fit option and the
outlier filtering and replacement options enabled. Genes show-
ing an adjusted p value �0.05 were manually annotated using
Wormbase, and these differentially expressed genes were input
into the DAVID database for functional annotation and identify
biological themes or pathways. Grouping terms and pathway
analysis were considering meaningful if the false-discovery rate
was 0.05 or less. The RNA-Seq data have been deposited at
Gene Expression Omnibus under accession number GSE
115165.

Expression of the T27E7.1 gene was also measured via the use
of NanoString technology using the RNA prepared above for
RNA-Seq with the cdc-42, pmp-3, and Y45F10D.4 genes being
used as reference genes for normalization as described previ-
ously (131).
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