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Abstract

It has become routine to collect data that are structured as multiway arrays (tensors). There is an 

enormous literature on low rank and sparse matrix factorizations, but limited consideration of 

extensions to the tensor case in statistics. The most common low rank tensor factorization relies on 

parallel factor analysis (PARAFAC), which expresses a rank k tensor as a sum of rank one tensors. 

When observations are only available for a tiny subset of the cells of a big tensor, the low rank 

assumption is not sufficient and PARAFAC has poor performance. We induce an additional layer 

of dimension reduction by allowing the effective rank to vary across dimensions of the table. For 

concreteness, we focus on a contingency table application. Taking a Bayesian approach, we place 

priors on terms in the factorization and develop an efficient Gibbs sampler for posterior 

computation. Theory is provided showing posterior concentration rates in high-dimensional 

settings, and the methods are shown to have excellent performance in simulations and several real 

data applications.

Keywords

Big data; Bayesian; Categorical data; Contingency table; Low rank; Matrix completion; 
PARAFAC; Tensor factorization

1 Introduction

Sparsely observed big tabular data sets are commonly collected in many applied domains. 

One example corresponds to recommender systems in which the dimensions of the table 

correspond to users, items and different contexts (Karatzoglou et al. (2010)), with a tiny 

proportion of the cells filled in for users providing rankings. The task is to fill in the rest of 

the huge table in order to make recommendations to users of which items they may prefer in 
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each context. This extends the widely studied matrix completion problem (Candes and Recht 

(2009)) of which the Netflix challenge was one example. Another setting corresponds to 

contingency tables in which multivariate categorical data are collected for each individual, 

and the cells of the table contain counts of the number of individuals having a particular 

combination of values. In contingency table analyses, the focus is typically on inferring 

associations among the different variables, but challenges arise when there are many 

variables, so that the number of cells in the table is vastly bigger than the sample size.

Suppose that the tensor of interest is π ∈ ∏d1 × ⋯ × dp
, with ∏d1 × ⋯ × dp

 a space of p-way 

tensors having dj rows in the jth direction. Often there are constraints on the elements of the 

tensor. For recommender systems, ratings are non-negative so that one is faced with a non-

negative tensor factorization problem (Paatero and Tapper (1994); Lee and Seung (1999); 

Friedlander and Hatz (2005); Lim and Comon (2009); Liu et al. (2012)). For contingency 

tables, the tensor corresponds to the joint probability mass function for multivariate 

categorical data, so that the elements are non-negative and add to one across all the cells 

(Dunson and Xing (2009); Bhattacharya and Dunson (2012)). Let Y denote the data 

collected on tensor π. For recommender systems, Y consists of ratings for a small subset of 

the ∏ j = 1
p d j cells in the tensor, while for contingency tables Y includes response vectors yi 

= (yi1,…, yip)T for subjects i = 1, …, n, with yij ∈ {1, …, dj} for j = 1, …, p. In both cases, 

data are extremely sparse, with no observations in the overwhelming majority of cells.

To combat this data sparsity, it is necessary to substantially reduce dimensionality in 

estimating π. The usual way to accomplish this is through a low rank assumption. Unlike for 

matrices, there is no unique definition of rank but the most common convention is to define 

the rank k of a tensor π as the smallest value of k such that π can be expressed as

π = ∑
h = 1

k
ψh

(1) ⊗ ⋯ ⊗ ψh
(p), (1)

which is sum of k rank one tensors, each an outer product of vectors1 for each dimension 

(Kolda and Bader, 2009). Expression (1) is commonly referred to as parallel factor analysis 

(PARAFAC) (Harshman (1970); Bro (1997)). For k small, the number of parameters is 

massively reduced from ∏ j = 1
p d j to k∑ j = 1

p d j; as the low rank assumption often holds 

approximately, this leads to an effective approach in many applications, and a rich variety of 

algorithms are available for estimation.

However, the decrease in degrees of freedom from exponential in p to linear in p is not 

sufficient when p is big. Large p small n problems arise routinely, and a usual solution 

outside of tensor settings is to incorporate sparsity. For example, in linear regression, many 

of the coefficients are set to zero, while in estimation of large covariance matrices, sparse 

1For p = 2, ψ(1) ⊗ ψ(2) = ψ(1)ψ(2)T. In general, ψ (1) ⊗ ⋯ ⊗ ψ (p)
c1…cp

= ψc1
(1)…ψcp

(p)
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factor models are used that assume few factors and many zeros in the factor loadings 

matrices (West (2003); Carvalho et al. (2008)). In the matrix factorization literature, there 

has been consideration of low rank plus sparse decompositions (Chartrand (2012)), but this 

approach does not solve our problem of too many parameters. Including zeros in the 

component vectors ψh
( j)  is not a viable solution, particularly as we do not want to enforce 

exact zeros in blocks of the tensor π but require an alternative notion of sparsity.

Our notion is as follows. For component h (h = 1, …, k), we partition the dimensions into 

two mutually exclusive subsets Sh ∪ Sh
c = 1, …, p . The proposed sparse PARAFAC (sp-

PARAFAC) factorization is then

π = ∑
h = 1

k
ψh

(1) ⊗ ⋯ ⊗ ψh
(p),  ψh

( j) = ψ0
( j) for  j ∈ Sh

c . (2)

Hence, instead of having to introduce a separate vector ψh
( j) for every h and j, we allow there 

to be more degrees of freedom used to characterize the tensor structure in certain directions 

than in others. Consider the recommender systems application and suppose we have three 

dimensions, including users (j = 1), items (j = 2) and context (j = 3). If we let ψh
(3) = ψ0

(3) for 

h = 1, …, k,

πc1c2c3
= ψ0c3

(3) ∑
h = 1

k
ψhc1

(1) ψhc2
(2) , (3)

so that we factorize the user-item matrix as being of rank k, and then include a multiplier 

specific to each level of the context factor. This assumes that users rank systematically 

higher or lower depending on context but there is no interaction. In the contingency table 

application, Pr  yi1 = c1, …, yip =cp = πc1⋯cp
. If j ∈ Sh

c for h = 1, …, k, then the jth variable 

is independent of the other variables with Pr  yi j = c j = ψ0c j
( j) . By including j ∈ Sh

c for some 

but not all h ∈ {1, …, k} one can use fewer degrees of freedom in characterizing the 

interaction between the jth factor and the other factors. In practice, we will learn {Sh} using 

a Bayesian approach, as the appropriate lower dimensional structure is typically not known 

in advance.

We conjecture that many tensor data sets can be concisely represented via (2), with results 

substantially improved over usual PARAFAC factorizations due to the second layer of 

dimension reduction. For concreteness and brevity, we focus on contingency tables, but the 

methods are easily modified to other settings. Contingency table analysis is routine in 

practice; refer to Agresti (2002); Fienberg and Rinaldo (2007). However, in stark contrast to 

the well developed literature on linear regression and covariance matrix estimation in big 

data settings, very few flexible methods are scalable beyond small tables. Throughout the 
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rest of the paper, we assume that the observed data yi = (yi1, …, yip)T, i = 1, …, n, is 

multivariate unordered categorical, with yij· ∈ {1, …, dj}. Our interest is in situations where 

the dimensionality p is comparable or even larger than the number of samples n.

2 Sparse Factor Models for Tables

2.1 Model and prior

We focus on a Bayesian implementation of sp-PARAFAC in (2). Let 

𝒮r − 1 = x ∈ ℜr: x j ≥ 0, ∑ j = 1
r x j = 1  denote the (r − 1)-dimensional probability simplex. In 

the contingency table case, Dunson and Xing (2009) proposed the following probabilistic 

PARAFAC factorization.

Pr  yi1 = c1, …, yip = cp = πc1⋯cp
= ∑

h = 1

k
νh ∏

j = 1

p
λhc j

( j) , (4)

where ν = νh ∈ 𝒮k − 1 and λh
( j) = λh1

( j), …, λhd j
( j) ∈ 𝒮

d j − 1
 is a vector of probabilities of yij = 

1, …, dj in component h. Introducing a latent sub-population index zi ∈ {1, …, k} for 

subject i, the elements of yi are conditionally independent given zi with 

Pr  yi j = c j | zi = h = λhc j
( j) , and marginalizing out the latent index zi leads to a mixture of 

product multinomial distribution for yi. Placing Dirichlet priors on the component vectors 

leads to a simple and efficient Gibbs sampler for posterior computation. We will refer to this 

model (4) as standard PARAFAC.

This approach has excellent performance in small to moderate p problems, but as p increases 

there is an inevitable breakdown point. The number of parameters increases linearly in p, as 

for other PARAFAC factorizations, so problems arise as p approaches the order of n or p ≫ 
n. For example, we are particularly motivated by epidemiology studies collecting many 

categorical predictors, such as occupation type, demographic variables, and single 

nucleotide polymorphisms. For continuous response vectors yi ∈ ℜp, there is a well 

developed literature on Gaussian sparse factor models that are adept at accommodating p ≫ 
n data (West (2003); Lucas et al. (2006); Carvalho et al. (2008); Bhattacharya and Dunson 

(2011)). These models include many zeros in the loadings matrices to induce additional 

dimension reduction on top of the low rank assumption. Pati et al. (2013a) provided 

theoretical support through characterizing posterior concentration.

Our sp-PARAFAC factorization provides an analog of sparse factor models in the tensor 

setting. Modifying for the categorical data case, we let

πc1…cp
= ∑

h = 1

k
νh ∏

j ∈ Sh

λhc j
( j) ∏

j ∈ Sh
c

λ0c j
( j) , (5)
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where |Sh| ≪ p(|S| denotes the cardinality of a set S) and the λ0
( j) vectors are fixed in advance; 

we consider two cases:

(i)λ0
( j) = 1

d j
, …, 1

d j

T
 and (ii)λ0

( j) = 1
n ∑

i = 1

n
yi1, …, 1

n ∑
i = 1

n
yip

T
,

corresponding to a discrete uniform and empirical estimates of the marginal category 

probabilities. By fixing the baseline dictionary vectors λ0
( j)  in advance, and allocating a 

large subset of the variables within each cluster h to the baseline component, we 

dramatically reduce the size of the model space. In particular, the probability tensor π in (5) 

can be parameterized as θπ = ν, Sh 1 ≤ h ≤ k
, λh

( j)
1 ≤ h ≤ k, j ∈ Sh

, where 

ν ∈ 𝒮k − 1, Sh ⊂ 1, …, p , λh
( j) ∈ 𝒮

d j − 1
. Thus, the effective number of model parameters is 

now reduced to (k − 1) + ∑h = 1
k Sh + ∑h = 1

k ∑ j ∈ Sh
d j − 1 , which is substantially smaller 

than the (k − 1) + ∑ j = 1
p k d j − 1  parameters in the original specification, provided |Sh| ≪ p 

for all h = 1, … k. This is ensured via a sparsity favoring prior on |Sh| below. We will 

illustrate that this can lead to huge differences in practical performance.

Completing a Bayesian specification with priors for the unknown parameter vectors and 

expressing the model in hierarchical form, we have2

yi j  Mult  1, …, d j ; λz11
( j) , …, λzid j

( j) ,

  λh
( j) 1 − τh δ

λ0
( j) + τh Diri  a j1, …, a jd j

,

  Pr zi = h = νh = Vh∏l < h 1 − V l ,

Vh  Beta (1, α),  α  Gamma  aα, bα ,  τh  Beta(1, γ) .

(6)

It is evident that the hierarchical prior in (6) is supported on the space of probability tensors 

with a sp-PARAFAC decomposition as in (5), since (6) is equivalent to letting the subset-

size |Sh| ~ Binom(p, τh) and drawing a random subset Sh uniformly from all subsets of {1, 

…, p} of size |Sh| in (5). A stick-breaking prior (Sethuraman, 1994) is chosen for the 

component weights {νh}, taking a nonparametric Bayes approach that allows k = ∞, with a 

hyperprior placed on the concentration parameter α in the stick-breaking process to allow 

the data to inform more strongly about the component weights. The probability of allocation 

τh to the active (non-baseline) category in component h is chosen as beta(1, γ), with γ > 1 

2Mult({1, …, d}; λ1, …, λd) denotes a discrete distribution on {1, …, d} with probabilities λ1, …, λd associated to each atom.
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favoring allocation of many of the λh
( j)s to the baseline category λ0

( j). In the limiting case as γ 

> ∞, the joint probability tensor π becomes an outer product of the baseline probabilities for 

the individual variables, π = λ0
(1) ⊗ ⋯ ⊗ λ0

(p). On the other hand, as γ → 0, one reduces back 

to standard PARAFAC (4).

Line 2 of expression (6) is key in inducing the second level of dimensionality reduction in 

our Bayesian sparse PARAFAC factorization. The inclusion of the baseline component that 

does not vary with h massively reduces the number of parameters, and can additionally be 

argued to have minimal impact on the flexibility of the specification. The λh
( j)s are 

incorporated within ∏ j = 1
p λhc j

( j) , which for large p is highly concentrated around its mean 

since the λh
( j)‘s are independent across j. This is a manifestation of the concentration of 

measure phenomenon (Talagrand, 1996), which roughly states that a random variable that 

depends in a smooth way on the influence of many independent variables, but not too much 

on any one of them, is essentially constant. For example, if θ j
iidU(0, 1) and Θ = ∏ j = 1

p θ j, 

then E(Θ) = (1/2)p and var(Θ) = (1/3)p, which rapidly converges to zero. This implies that 

replacing a large randomly chosen subset of the λh
( j)s by λ0

( j) should have minimal impact on 

modeling flexibility.

2.2 Induced prior in log-linear parameterization

An important challenge is accommodating higher order interactions, which play an 

important rolein many applications (e.g., genetics), but are typically assumed to equal zero 

for tractability. As p grows, it is challenging to even accommodate two-way interactions in 

traditional categorical data models (log-linear, logistic regression) due to an explosion in the 

number of terms. In contrast, the tensor factorization does not explicitly parameterize 

interactions, but indirectly induces a shrinkage prior on the terms in a saturated log-linear 

model. One can then reparameterize in terms of the log-linear model in conducting 

inferences in a post model-fitting step. We illustrate the induced priors on the main effects 

and interactions below.

For ease of exposition, we first focus on a case where p = 3 and dj = d = 2 for j = 1, …, 3. 

We generate 10, 000 random probability tensors π(t) = πc1c2c3
(t) , t = 1, …, 10, 000 distributed 

according to (6), where we fix the baseline λ0
( j) = (1/2, 1/2) for all j. Given a 2 × 2 × 2 tensor 

π, we can equivalently characterize π in terms of its log-linear parameterization

β = β1, β2, β3, β12, β13, β23, β123
T,

consisting of 3 main effect terms β1, β2, β3, three second-order interaction terms β12, β13, 

β23 and one third order interaction term β123; refer to §5.3.5 of Agresti (2002). Given each 

prior sample π(t), we equivalently obtain a sample β(t) from the induced prior on β, which 

allows us to estimate the marginal densities of the main effects and interactions and also 
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their joint distributions. In particular, since γ plays an important role in placing weights on 

the baseline component, we would like to see how our induced priors differ with different γ 
values.

In our simulation exercise, we fix three values of γ, namely, γ = 1, 5, 20. Note that γ = 1 

corresponds to a U(0,1) prior on τh. For different values of γ, we show the histograms of 

one main effect term β1, one two-way interaction β12 and the three-way interaction β123 in 

Figure 1. Table 1 additionally reports summary statistics.

In high-dimensional regression, yi = xi
Tβ + ϵi, there has been substantial interest in shrinkage 

priors, which draw βj a priori from a density concentrated at zero with heavy tails. Such 

priors strongly shrink the small coefficients to zero, while limiting shrinkage of the larger 

signals (Park and Casella, 2008; Carvalho et al., 2010; Polson and Scott, 2010; Hans, 2011; 

Armagan et al., 2013a). In Figure 1, the induced prior on any of the log-linear model 

parameters is symmetric about zero, with a large spike very close to zero, and heavy tails. 

Thus, we have indirectly induced a continuous shrinkage prior on the main effects and 

interactions through our tensor decomposition approach. In addition, the prior automatically 

shrinks more aggressively as the interaction order increases. Such greater shrinkage of 

interactions is commonly recommended (Gelman et al., 2008). Importantly, we do not zero 

out small interactions but allow many small coefficients, which is an important distinction in 

applications, such as genomics, having many small signals. The hyperparameter γ serves as 

a penalty controlling the degree of shrinkage.

Our next set of simulations involve larger values of p, where the necessity of the 

regularization implied by γ becomes strikingly evident. In the log-linear parameterization, 

we now have p main effects β1, …, βp; let βmain = (β1, …, βp)T. In the p ≫ n setting, one 

cannot even hope to consistently recover all the main effects unless a large fraction of the 

βj’s are zero or close to zero. One would thus favor a shrinkage prior on βmain, with any 

particular draw resembling a near-sparse vector. Since the induced prior on the βj’s is 

continuous, we study the l1 norm βmain 1 = ∑ j = 1
p β j  as a surrogate for the l0 norm to 

quantify the sparsity.

We consider p = 50, 100, 150, 200 and plot histograms of the induced density of ∥βmain∥1 

based on 10, 000 prior draws in Figures 2 and 3. Figure 2 corresponds to the case where γ = 

0, i.e., when the sp-PARAFAC formulation reduces back to the standard PARAFAC (4), 

while γ/p is set to a constant β ∈ (0,1) in Figure 3. Figure 2 reveals a highly undesirable 

property of the standard PARAFAC in high dimensions, where the entire distribution of 

∥βmain∥1 shifts to the right with increasing p, with 𝔼 βmain 1 ≍ p. The induced prior clearly 

lacks any automatic multiplicity adjustment property (Scott and Berger, 2010), and would 

bias inferences for moderate to large values of p. On the other hand, under the sp-PARAFAC 

model, the induced prior on ∥βmain∥1 is robust to increasing p, as evident from Figure 3. The 

choice γ = βp essentially forces a constant proportion of the variablesto be assigned to the 

null group; see Castillo and van der Vaart (2012) for a similar choice of the hyper-parameter 

in a regression setting.3.1 Preliminaries
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3 Posterior concentration

3.1 Preliminaries

In this section, we provide theoretical justification to the proposed sp-PARAFAC procedure 

in high dimensional settings by studying the concentration properties of the posterior with 

growing sample size. When the parameter space is finite dimensional, it is well known that 

the posterior contracts at the parametric rate of n−1/2 under mild regularity conditions 

(Ghosal et al., 2000). However, we are interested in the asymptotic framework of the 

dimension p = pn growing with the sample size n, potentially at a faster rate, reflecting the 

applications we are interested in. There is a small but increasing literature on asymptotic 

properties of Bayesian procedures in models with growing dimensionality, with most of the 

focus being on linear models or generalized linear models belonging to the exponential 

family; refer to Ghosal (1999, 2000); Belitser and Ghosal (2003); Jiang (2007); Armagan et 

al. (2013b); Bontemps (2011); Castillo and van der Vaart (2012); Yang and Dunson (2013) 

among others. In all these cases, the object of interest is a vector of high-dimensional 

regression coefficients or more generally, the conditional distribution f (y | x) of a univariate 

response y given high-dimensional predictors x. However, our object of interest is 

significantly different as we are concerned with estimation of the high-dimensional joint 

probability tensor π.

Let ℱn denote the class of all d1 × … × dpn
 probability tensors; we shall assume 

d1 = … = dpn
= d in the sequel for notational convenience. Let π(0n) ⊂ ℱn be a sequence of 

true tensors. We observe y1, …, yn ~ π(0n) and set y(n) = (y1, …, yn). We denote the prior 

distribution on ℱn induced by the sp-PARAFAC formulation by ℙn and the corresponding 

posterior distribution by ℙn ⋅ | y(n) .

For two probability tensors π(1) and π(2) ∈ ℱn, the L1 distance is defined as:

π(1) − π(2)
1 = ∑

c1 = 1

d
… ∑

cpn
= 1

d
πc1…cpn

(1) − πc1…cpn

(2) .

For a sequence of numbers ϵn → 0 and a constant M > 0 independent of ϵn, let

Un = π : π − π(0n)
1 ≤ Mϵn (7)

denote a ball of radius Mϵn around π(0n) in the L1 norm. We seek to find a minimum 

possible sequence ϵn such that

lim
n ∞

ℙn Un
c y(n) 0,   a.s. π(0n) . (8)
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3.2 Assumptions

In this section we state our assumptions on the true data generating model and briefly 

discuss their implications.

Assumption 3.1. The true sequence of probability tensors π(0n) are of the form

πc1…cpn

(0) = ∑
h = 1

kn
ν0h ∏

j ∈ S0h

λhc j
(0 j) ∏

j ∈ S0h
c

λ0c j
( j) ,  1 ≤ c j ≤ d, 1 ≤ j ≤ pn, (A0)

where λ0
( j) ∈ 𝒮d − 1 are assumed to be known. Unless otherwise specified, we shall assume 

λ0
( j) = (1/d, …, 1/d) is the probability vector corresponding to the uniform distribution on {1, 

…, d}.

We now provide some intuition for assumption (A0). Letting S0 = ∪h = 1
kn S0h, we can rewrite 

the expansion of π(0n) in (A0) as

πc1…cpn

(0n) = ∑
h = 1

kn
ν0h ∏

j ∈ S0
λhc j

(0 j) ∏
j ∈ S0

c
λ0c j

( j) , (9)

where

λh
(0 j) =

λh
(0 j) if  j ∈ S0h,

λ0
( j) if  j ∈ S0\S0h .

In (9), the term ∏
j ∈ S0

c λ0c j
( j)  doesn’t involve h and can be factored out completely. 

Assumption (A0) thus posits that the variables in S0
c are marginally independent and the 

entire dependence structure is driven by the variables in S0. We shall refer to S0 and S0
c as the 

non-null and null group of variables respectively.

Let qn = |S0| and define a mapping j → ej from {1, …, qn} to the ordered elements of S0, so 

that e1 ≤ …eqn
. As j varies between 1 to qn, ej ranges over the elements of S0. Denote by 

ψ(0n) the d
qn joint probability tensor for the variables {yij : j ∈ S0}, so that

ψc1…cn
(0n) =  Pr  yie1

= c1, …, yien
= cn = ∑

h = 1

kn
ν0h ∏

j = 1

qn
λhc j

0e j . (10)

Zhou et al. Page 9

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Thus, after factoring out the marginally independent variables in S0
c, (A0) implies a standard 

PARAFAC expansion (10) for ψ(0n) with kn many components. Since any non-negative 

tensor admits a standard PARAFAC distribution (Lim and Comon, 2009), we can always 

write an expansion of ψ(0n) as in (10).

The next set of assumptions are provided below.3

Assumption 3.2. In addition to (A0), π(0n) satisfies

(A1) The number of components kn = O(1).

(A2) Letting sn = max1 ≤ h ≤ kn
S0h , one has sn = o(log pn).

(A3) There exists a constant εο ∈ (0,1) such that λhc
(0 j) ≥ ε0 for all 1 ≤ h ≤ kn, 1 ≤ c ≤ d, j ∈ 

S0h.

(A1) and (A2) imply that the size of the non-null group is much smaller than pn, since 

qn = S0 ≤ ∑h = 1
kn Sh ≤ knsn ≪ pn.

Some discussion is in order for condition (A3). First, note that we can choose ε0 in a way so 

that λhc
(0 j) ≥ ε0 for all h, c and j ∈ S0. Hence, (A3) implies a lower bound on the joint 

probability ψ(0n) in (10). Such a lower bound on a compactly supported target density is a 

standard assumption in Bayesian non-parametric theory; see for example van der Vaart and 

van Zanten (2008). However, unlike univariate or multivariate density estimation in fixed 

dimensions where the density can be assumed to be bounded below by a constant, we need 

to precisely characterize the decay rate of the lower bound of the joint probability. Since 

ψ(0n) is a d
qn probability tensor, minc1, …csn

ψc1…csn

(0n) ≤ (1/d)
qn = exp −snkn log d . Assumption 

(A3) implies that

min
c1, …, csn

ψc1…csn
(0n) ≥ exp −qnlog 1/ε0 = exp −c0sn (11)

for some constant c0 > 0.

3.3 Main result

We are now in a position to state a theorem on posterior convergence rates.

Theorem 3.1. Assume the true sequence of tensors π(0n) ∈ ℱn satisfy assumptions (A0) – 

(A3) and sn log pn/n → 0. Also, assume the sp-PARAFAC model is fitted with the stick-

3For sequences an, bn, we write an = o(bn) if an/bn → 0 as n → ∞ and an = O(bn) if an ≤ Cbn for all large n.
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breaking prior truncated to kn many components and γ = βpn
2 for some constant β ∈ (0,1) in 

(6). Then, (8) is satisfied with ϵn = sn log pn/n in (7).

A proof of Theorem 3.1 can be found in the appendix. As an implication of Theorem 3.1, if 

pn = nd for some constant d, then the posterior contracts at the near parametric rate 

(log n)c/n for some constant c > 0. Moreover, consistent estimation is possible even if pn is 

exponentially large as long as pn ≤ exp( n). In particular, with pn = exp(nδ/2) for δ < 1, the 

posterior contracts at least at the rate n−(1−δ)/2.

Remark 3.2. We assume the number of components kn known in Theorem 3.1 for ease of 

exposition, with our main focus on dimensionality reduction. Adapting to an unknown 

number of components in mixture models is a well -studied problem; see, for example, Ge 

and Jiang (2006); Pati et al. (2013b); Shen et al. (2011). For the infinite stick-breaking prior 

on the mixture components, one can use the sieving technique developed in Pati et al. 

(2013b) to estimate deviation bounds for the tail sum of a stick-breaking process.

Remark 3.3. In practice, we recommend the choice γ = βpn for numerical stability, with β = 

0.2 used as a default choice in all our examples. The probability mass function of the 

induced beta-bernoulli prior on |Sh| with γ = βpn
2 behaves like exp(−cs log pn) for small s, 

while the same is exp(−cs) for γ = βpn; refer to the proof of Theorem 3.1 for further details.

4 Posterior Computation

Under model (6), we can easily proceed to draw posterior samples from a Gibbs sampler 

since all the full conditionals have recognizable forms. The algorithm iterates through the 

following steps:

1. For each jth variable and latent class h, update λh
( j) ≡ λh1

( j), …, λhd j
( j)  from a mixture 

of two distributions with different weights. Given the prior we specified for λh
( j)

in (6), the posterior maintains its conjugacy and comes from either a Dirichlet or 

the baseline category. i.e., for j = 1, …, p, h = 1, …, k*, where k* = max{z1, …, 

zn}:

λh
( j) − = w0h

( j)δ
λ0
( j) + w1h

( j) Diri a j1 + ∑
i = 1

n
1 yi j = 1, zi = h , …, a jd j

+ ∑
i = 1

n
1 yi j = d j, zi = h ,

(12)

where w0h
( j) and w1h

( j) are the mixture weights:
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w0h
( j)

=
1 − τh ∏c = 1

d j λ0c
( j)∑i = 1

n 1 zi = h, yi j = c

1 − τh ∏c = 1
d j λ0c

( j)∑i = 1
n 1 zi = h, yi j = c

+ τh

Γ ∑c = 1
d j a jc

∏c = 1
d j Γ a jc

⋅
∏c = 1

d j Γ a jc + ∑i = 1
n 1 zi = h, yi j = c

Γ ∑c = 1
d a jc + ∑i = 1

n 1 zi = h

,

w1h
( j) = 1 − w0h

( j) .

1. Let Shj be the allocation variable with Shj = 0 if λh
( j) is updated from the baseline 

component, and Shj = 1 if λh
( j) is from a Dirichlet posterior distribution. Update 

τh, h = 1, …, k* from a Beta full conditional:

τh −  Beta  1 + ∑
j = 1

p
1 Sh j = 1 , γ + ∑

j = 1

p
1 Sh j = 0 . (13)

1. The full conditional of Vh, h = 1, …, k* only requires the updated information on 

latent class allocation for all subjects:

Vh −  Beta  1 + ∑
i = 1

n
1 zi = h , α + ∑

i = 1

n
1 zi > h . (14)

1. We sample zi, i = 1, …, n from the multinomial full conditional with:

 Pr  zi = h − =
νh∏ j = 1

p λhyi j
( j)

∑l = 1
k* νl∏ j = 1

p λlyi j
( j) , (15)

where νh = Vh ∏l<h(1 − Vl).

1. Update α from the Gamma full conditional:

α −  Gamma  aα + k*, bα − ∑
h = 1

k*
log 1 − Vh . (16)
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These steps are simple to implement and we gain efficiency by updating the parameters in 

blocks. For example, instead of updating λh
( j) one at a time, we sample 

λ ≡ λh
( j), h = 1, …, k*, j = 1, …, p  jointly with corresponding parameters in matrix form. In 

all our examples, we ran the chain for 25, 000 iterations, discarding the first 10, 000 

iterations as burn-in and collecting every fifth sample post burn-in to thin the chain. Mixing 

and convergence were satisfactory based on the examination of trace plots and the run time 

scaled linearly with n and p. We also carried out sensitivity analysis by multiplying and 

dividing the hyperparamaters aα, bα and γ in (6) by a factor of 2, with the conclusions 

remained unchanged from the default setting aα = bα = 1 and γ = 0.2 p.

5 Simulation Studies

5.1 Estimating sparse interactions

We first conduct a replicated simulation study to assess the estimation of sparse interactions 

using the proposed sp-PARAFAC model. We simulated 100 dependent binary variables yij ∈ 
{0,1}, j = 1, …, p = 100 (dj = d = 2) for i = 1, …, n = 100 subjects from a log-linear model 

having up to three-way interactions:

log
πc1…cp
π0…0

= ∑
s = 1

3
∑

S ⊂ 1, …, p : S = s
βS1

cS = 1 . (17)

For example, if S = {1, 2,4}, then βS = β1,2,4 and 1
cS = 1 = 1

c1 = 1, c2 = 1, c4 = 1  with 1(·) 

denoting the indicator function. To mimic the situation where only a few interactions are 

present, we restrict to S ∈ S* = {2, 4, 12, 14} and set all interactions except

β = β2, β4, β12, β14, β2, 4, β2, 12, β4, 12, β4, 14, β12, 14, β2, 4, 12, β4, 12, 14
T

to zero. This data generating mechanism induces dependence among the variables in S*, 

while rendering the other variables to be marginally independent. Figure 4 reports the 

posterior means and 95% credible intervals for all main effects and interactions for the 

variables in S* averaged across 100 simulation replicates along with the true coefficients. As 

illustrated in Figure 4, averaging across the simulation replicates and different parameters, 

the 95% credible intervals cover the true parameter values 80% of the time.

Next, we study performance in estimating the dependence structure. Cramer’s V is a popular 

statistic measuring the strength of association or dependence between two (nominal) 

categorical variables in a contingency table, ranging from 0 (no association) to 1 (perfect 

association). Let ρjj′ denote the Cramer’s V statistics for variables j and j′, so that
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ρ j j′
2 = 1

min d j, d j′ − 1 ∑
c j = 1

d j
∑

c j′ = 1

d j′ πc jc j′
j j′ − πc j

( j)πc j′
j′ 2

πc j
( j)πc j′

j′ , (18)

where πll′
j j′ = Pr yi j = l, yi j′ = l′  and πl

( j) = Pr yi j = l . Under the log-linear model (17), ρ = 

(ρjj′) is a sparse matrix with the Cramer’s V for all pairs except those in S* × S* being zero. 

This is an immediate consequence of the fact that if (j, j′) ∉ S* × S*, then yij and yij′, are 

independent.

We compare estimation of the off-diagonal entries of ρ under the sp-PARAFAC model with 

the empirical Cramer’s V matrix ρ. We can clearly convert posterior samples for the model 

parameters to posterior samples for ρjj′ through (18). The empirical estimator is obtained by 

replacing πc jc j′
j j′  and πc j

( j) by their empirical estimators. The left panel in Figure 5 shows the 

posterior summaries (averaged across simulation replicates) of the Cramer’s V values for all 

possible dependent pairs along with the true Cramer’s V values (which can be calculated 

from (17)). In the right panel of Figure 5, we overlay kernel density estimators of posterior 

samples (in grey) and the empirical estimators (in red) of the Cramer’s V values for all null 

pairs across all simulation replicates. Note the axes are also marked in grey and red for the 

respective cases. The sp-PARAFAC method clearly outperforms the empirical estimator 

convincingly, with the posterior density for the null pairs highly concentrated near zero 

while the empirical estimator has a mean Cramer’s V value of 0.08 across the null pairs.

Furthermore, we can obtain power for any non-null variable or type I error for any null 

variable by computing the percentage of detected significance over the simulation replicates. 

We first look at the power and type I error of the main effects and interactions in S*, most of 

the power and type I error are appealing, although a few of them are far from satisfactory 

(see Table 2 and Table 3). However, given the Cramer’s V results in the right panel of Figure 

5, the type I error for any variable not in S* should be very small or zero. As an example, we 

tested the main effects and all the possible interactions for positions 20, 30, 40 and 50. The 

type I error rates are 0 for all of them. These results are based on examining whether 95% 

intervals contain zero, and it is as expected that the approach may have difficulty assessing 

the exact interaction structure among a set of associated variables based on limited data.

5.2 Comparison with standard PARAFAC

We now conduct a simulation study to compare estimation of the Cramer’s V matrix ρ under 

the proposed approach to the usual specification of the PARAFAC model without any 

sparsity as in (4), which is equivalent to setting γ = 0 in (6). We considered 100 simulation 

replicates, with data in each replicate consisting of p = 100 categorical variables for n = 100 

subjects, with each variable having 4 possible levels (dj = d = 4). Two simulation settings 

were considered to induce dependence between the variables in S* = {2, 4, 12, 14}: (i) via 

multiple subpopulations as in the simulation study in Dunson and Xing (2009), and (ii) via a 
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nominal GLM model Pr  yi j = c =
exp yi( j)βc

1 + Σc = 2
4 exp yi( j)βc

 for j ∈ S*, where yi(j)βc is a linear 

combination of all variables that are associated with the jth variable excluding the jth 

variable. The remaining variables were independently generated from a discrete uniform 

distribution.

The color plot on the left in Figure 6 shows the true pairwise Cramer’s V values under 

simulation setting (i) (only the top-left 20 × 20 sub matrix of ρ is shown for clarity). Figure 6 

(right) and Figure 7 represent one of the replicates, in which the right plot in Figure 6 shows 

the Cramer’s V under the standard non-sparse PARAFAC method, while Figure 7 shows the 

Cramer’s V using our method with two different baseline components. It is obvious that our 

approach has much better estimates for not only the true dependent pairs but also the true 

nulls. Results for simulation (ii) shown in Figure 8 again show superiority of our sparse 

improvement to PARAFAC.

6 Application

6.1 Splice-junction Gene Sequences

We applied the method to the Splice-junction Gene Sequences (abbreviated as splice data 

below). Splice junctions are points on a DNA sequence at which ‘superfluous’ DNA is 

removed during the process of protein creation in higher organisms. These data consist of A, 

C, G, T nucleotides at p = 60 positions for N = 3, 175 sequences. Since its sample size is 

much larger than the number of variables, we compared our approach with the standard 

PARAFAC in two scenarios, first a small randomly selected subset (of size n = 2p = 120) of 

the full data set, and second, the full data set itself. Using two different sample sizes in this 

manner allows for a study of the new and existing method and a comparison to a gold 

standard (a sufficiently large data set). We ran the analysis to estimate the pairwise 

positional dependence structure under the standard PARAFAC method and the proposed 

approach with discrete uniform baseline component. As is apparent in Figure 10, both 

methods have similar performance when n ≫ p, however, in the smaller sample size 

situation, Figure 9 demonstrates that our proposed method has the advantage of identifying 

the dependence structure and pushing the independent pairs to zero, which it is closer to the 

results in a large sample case (Figure 10).

7 Discussion

We have proposed a sparse modification to the widely-used PARAFAC tensor factorization, 

and have applied this in a Bayesian context to improve analyses of ultra sparse huge 

contingency tables. Given the compelling success in this application area, we hope that the 

proposed notion of sparsity will have a major impact in other areas, including tensor 

completion problems in machine learning. There is an enormous literature on low rank and 

sparse matrix factorizations, and the sp-PARAFAC should facilitate scaling of such 

approaches to many-way tables while dealing with the inevitable curse of dimensionality. 

Although we take a Bayesian approach, we suspect that frequentist penalized optimization 
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methods can also exploit our same concept of sparsity in learning a compressed 

characterization of a huge array based on limited data.

Appendix

7.1 Proof of Theorem 3.1

We verify the conditions of Theorem 4 in Yang & Dunson (2013), which is a minor 

modification of Theorem 2 appearing in Ghosal et al. (2000). Let ϵn → 0 be such that 

nϵn
2 ∞ and Σn ≥exp −nϵn

2 ≤ ∞. Suppose there exist a sequence of sets 𝒫n ⊂ ℱn and a 

constant C > 0 such that the following hold:4

1.
logN ϵn; 𝒫n, ⋅ 1 ≤ nϵn

2

ℙn ℱn ∩ 𝒫n
c ≤ exp −(2 + C)nϵn

2

ℙn π :   log π

π(0n) ∞
≤ ϵn

2 ≥ exp −Cnϵn
2

Then, the posterior contracts at the rate ϵn, i.e., (8) is satisfied. We now proceed to verify 

conditions (1) - (3). We define,

𝒫n = π ∈ ℱn:πc1…cp
= ∑

h = 1

kn
νh* ∏

j ∈ Sh*
λhc j

( * j) ∏
j ∈ Sh

* c
λ0c j

( j) ; ν ∈ 𝒮
kn − 1

, Sh* ≤ Asn, h = 1, …,

kn

(19)

where 𝒮(r − 1) denotes the (r − 1)-dimensional probability simplex and A > 0 is an absolute 

constant. We shall use C to denote an absolute constant whose meaning may change from 

one line to the next.

4Given a metric space (𝒳, d), let N(ϵ; 𝒳, d) denote its ϵ-covering number, i.e., the minimum number of d-balls of radius ϵ needed to 
cover 𝒳.
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To estimate N ϵn; 𝒫n, ⋅ 1 , we make use of the following Lemma, which follows in a 

straight-forward manner by repeated uses of the triangle inequality.

Lemma 7.1. Let π(1), π(2) ∈ ℱn with

π(i) = ∑
h = 1

kn
νihλih

(1) ⊗ … ⊗ λih
pn ,  i = 1, 2.

Then,

π(1) − π(2)

1
≤ ∑

h = 1

kn
ν1h − ν2h + ∑

h = 1

kn
ν2h ∑

j = 1

pn
∑

c = 1

d
λ1hc
( j) − λ2hc

( j) .

Lemma 7.1 implies that if π(1), π(2) ∈ 𝒫n with S1h* = S2h* = Sh*, then

π(1) − π(2)

1

≤ ∑
h = 1

kn
ν1h − ν2h + ∑

h = 1

kn
ν2h ∑

j ∈ Sh*
∑

c = 1

d
λ1hc
( j) − λ2hc

( j) .

Based on the above observation, we create an ϵ-net of 𝒫n as follows: In (19), (i) vary Sh* over 

all possible subsets of {1, …, pn} with Sh* ≤ Asn for h = 1, …, kn, (ii) for h ∈ {1, … kn} and 

j ∈ Sh*, vary λh
( * j) over an ϵn/(2Adsn)-net of 𝒮(d − 1) and (iii) vary ν* over an ϵn/(2kn)-net of 

𝒮
kn − 1

.

For a fixed h, there are Σs = 0
Asn p

s
 subsets of size smaller then or equal to Asn. Using the in-

equality 
p
s

≤ (pe/s)s for s ≤ p/2, the number of possible subsets in (i) can be bounded above 

by exp(Cknsn log pn). Hence,

N ϵn; 𝒫n, ⋅ 1 ≤ exp Cknsnlogpn N ϵn/ 2Adsn ; 𝒮d − 1, ⋅ 1

2Adsnkn
N ϵn/ 2kn ; 𝒮

kn − 1
, ⋅ 1 .

Using the fact that N δ, 𝒮r − 1, ⋅ 1 ≤ (C /δ)r (Vershynin, 2010), the right hand side in the 

above display can be bounded above by exp Csnlogpn = exp nϵn
2 , since kn = O(1).

We now bound ℙn ℱn ∩ 𝒫n
c . Recall that in the sp-PARAFAC model, the induced prior on 

the subset size |Sh| is Bin(pn, τh), with τh ~ Beta(1, γ). Now,
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ℙn( ℱn ∩ 𝒫n
c ≤  Pr ∃h ∈ 1, …, kn s.t.  Sh ≥ Asn ≤ knP S1 > Asn .

Integrating τ1, the distribution of |S1| is a beta-bernoulli distribution with probability mass 

function

Pr  S1 = s = p
s

1
B(1, γ)∫τ = 0

1
τs(1 − τ)

pn − s
(1 − τ)γ − 1dτ =

pn
s

B 1 + s, γ + pn − s

B(1, γ)

= 1
γ

pn!

pn − s !

γ + pn − s − 1 !

γ + pn !
,

for s = 0,1,…, pn. B(·, ·) denotes the Beta function in the above display. Hence, for s ≥ 1,

 Pr S1 = s

 Pr S1 = s − 1
=

pn − s + 1

pn − s + γ
.

Now, letting γ = pn
2, one has for any pn ≥ 2 and 1 ≤ s ≤ pn/2,

1
4pn

≤
pn − s + 1

pn − s + γ
≤ 1

pn
.

In general, for γ = βpn
2, we can bound this from both sides by C/pn. Noting that 

Pr S1 = 0 = C / pn
3, we have

Pr S1 = s = C

pn
3 ∏

j = 1

s  Pr S1 = j

 Pr S1 = j − 1
,

implying there exists constants c1, c2 > 0 such that

e
−c1(s + 3)logpn ≤ Pr S1 = s ≤ e

−c2(s + 3)logpn, (20)

for 0 ≤ s ≤ pn/2. In particular, the upper bound holds for all 0 ≤ s ≤ pn, since (pn − s + 1)/(pn 

− s + γ) ≤ C/pn for all s. Hence, for n large enough so that sn ≥ 3,

P S1 > Asn ≤ ∑
j = Asn + 1

pn
exp −C jlogpn ≤ exp −Csnlogpn ≤ exp −nϵn

2 .
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We finally show that (3) holds. Recall the decomposition of π(0n) from (9). A probability 

tensor π following a sp-PARAFAC model with a truncated stick-breaking prior on ν can be 

parameterized as

θπ = ν, Sh 1 ≤ h ≤ kn
,   λh

( j)
1 ≤ h ≤ kn, j ∈ Sh

,

where ν ∈ 𝒮
kn − 1

, Sh ⊂ {1, …, pn}, λh
( j) ∈ 𝒮d − 1. Consider the following subset 𝒜 of the 

parameter space,

𝒜 = Sh = S0, 1 ≤ h ≤ kn; ∑
h = 1

kn
νh − ν0h ≤

ϵn
2

2e
c0sn

; ∑
c = 1

d
λhc
( j) − λhc

(0 j) ≤
ϵn
2ε0
4qn

, 1 ≤ h ≤ kn, j ∈ S0 .

We now show that θπ ∈ 𝒜 implies log π /π(0n)
∞ ≤ ϵn

2, so that ℙn log π /π(0n)
∞ ≤ ϵn

2  can be 

bounded below by ℙn(𝒜). First, observe that since Sh = S0 for all h on 𝒜, π/π(0n) = ψ/ψ(0n), 

where ψ(0n) is as in (10) and ψ is the dqn joint probability tensor implied by the sp-

PARAFAC model for the variables {yij : j ∈ S0},

ψc1…cqn
= ∑

h = 1

kn
νh ∏

j ∈ S0
λhc j

e j .

Hence,

log π

π(0n) ∞
= log ψ

ψ(0n) ∞
≤ log 1 + ψ

ψ(0n) − 1
∞

≤ ψ

ψ(0n) − 1
∞

,

where the penultimate step follows from an application of triangle inequality and the last 

step uses log(1 + x) ≤ x for x ≥ 0. For any c1, …, csn
, by an application of triangle inequality,

ψc1…csn
− ψc1…csn

(0n) ≤ ∑
h = 1

kn
νh − ν0h + ∑

h = 1

kn
ν0h ∏

j = 1

qn
λhc j

e j − ∏
j = 1

qn
λhc j

0e j . (21)

We now state a Lemma to facilitate bounding the second term of the above display.

Lemma 7.2. Let v1,… vr ∈ (ε0, 1 − ε0) for some ε0 > 0. Let δ > 0 be such that rδ < ε0/2. 

Then, if u1, …, ur satisfy |uj − vj | ≤ δ for all j = 1, …, r, then

u1…ur − v1…vr ≤ 2rδ
ε0

v1…vr .
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Apply Lemma 7.2 with r = qn, u j = λhc j

0e j  and δ = ϵn
2ε0/ 4qn  (clearly rδ/ε0 = ϵn

2/4 < 1/2) to 

obtain that for any 1 ≤ h ≤ qn, Π j = 1
qn λhc j

e j − Π j = 1
qn λhc j

0e j ≤ ϵn
2/2 Π j = 1

qn λhc j

0e j .·Substituting this 

bound in (21), we have on 𝒜,

ψc1…csn
− ψc1…csn

(0n)

ψc1…csn

(0n) ≤
Σh = 1

kn νh − ν0h

e
−c0sn

+ ϵn
2/2

Σh = 1
kn ν0h Π j = 1

qn  λhc j

0e j

ψc1…csn

(0n) ≤ ϵn
2 .

For the two terms in the above display after the first inequality, we used the lower bound 

(11) for the first term along with Σh = 1
kn νh − ν0h ≤ ϵn

2/ 2e
c0sn  on 𝒜, and by definition of 

ψ(0n), the second term is ϵn
2/2.

It thus remains to lower bound ℙn(𝒜). By independence across h, 

Pr Sh = S0, 1 ≤ h ≤ kn = Pr S1 = S0
kn. Further, by exchangeability of the prior on S1, since all 

subsets of a particular size receive the same prior probability, 

Pr  S1 = S0 =  Pr  S1 = qn /
pn
qn

. From (20), Pr(|S1| = qn ≥ exp(−Csn log pn). Using 

pn
qn

≤ pne/qn
qn, we conclude that Pr(S1 = S0) ≥ exp(−Csn log pn).

Recall that νh = νh*Πl < h 1 − νl* , where νl* Beta(1, α) independently. Find numbers {ν0h* } such 

that ν0h = ν0h* Πl < h 1 − ν0l* . It is easy to see that there exists a constant C > 0 such that 

νh* − ν0h* ≤ ϵn/ Ckn  for all h = 1, …, kn implies Σh = 1
kn νh − ν0h ≤ ϵn. Hence, using a general 

result on small ball probability estimate of Dirichlet random vectors (Lemma 6.1 of Ghosal 

et al. (2000)), one has

Pr ∑
h = 1

kn
νh − ν0h ≤

ϵn
2

2e
c0sn

≥ exp −Csnlog 1/ϵn .

Again, applying Lemma 6.1 of Ghosal et al. (2000),

Pr  ∑
c = 1

d
λhc
( j) − λhc

(0 j) ≤
ϵn
2ε0
4qn

≥ exp −Clog sn/ϵn .
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Combining, we get Pr (𝒜) ≥ exp −Csnlogpn ≥ exp −nϵn
2 . Hence, we have established (1) - 

(3) completing the proof.

7.2 Proof of Lemma 7.2

Observe that

u1…ur − v1…vr = v1…vr
u1…ur
v1…vr

− 1 = v1…vrmax
u1…ur
v1…vr

− 1, 1 −
u1…ur
v1…vr

.

Now, since uh ≤ vh + δ for all h,

u1…ur
v1…vr

≤ ∏
h = 1

r
1 + δ/vh ≤ 1 + δ/ε0

r .

Using the binomial theorem, 1 + δ/ε0
r − 1 = rδ/ε0 + Σh = 2

r r
h

δ/ε0
h. Next, bound 

r
h

≤ rh

and use the fact that rδ/ε0 < 1/2 to conclude that Σh = 2
r r

h
δ/ε0

h ≤ Σh = 1
∞ rδ/ε0

h ≤ 2rδ/ε0.

On the other hand, using uh ≥ vh − δ for all h,

u1…ur
v1…vr

≥ ∏
h = 1

r
1 − δ/vh ≥ 1 − δ/ε0

r ≥ 1 − rδ/ε0 .

The proof is concluded by observing that

max
u1…ur
v1…vr

− 1, 1 −
u1…ur
v1…vr

≤ 2rδ/ε0 .
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Figure 1: 
Histograms of induced priors for one main effect β1, one two-way interaction β12, and the 

three-way interaction β123 - Top Row: γ = 1; Middle Row: γ = 5; Bottom Row: γ = 20.
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Figure 2: 
Histograms of ∥βmain∥1 for different values of p under the standard PARAFAC model.
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Figure 3: 
Histograms of ∥βmain∥1 for different values of p under the sp-PARAFAC model with γ = 

0.1p.
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Figure 4: 
Posterior means and 95% credible intervals for all main effects and interactions in S* 

compared with the true coefficients.
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Figure 5: 
Left: Posterior summaries of the Cramer’s V values for all dependent pairs vs. the true 

Cramer’s V values; Right: Estimated density of Cramer’s V combining all null pairs under 

sp-PARAFAC vs. empirical estimation.
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Figure 6: 
Simulation setting (i) - Left: True Cramer’s V matrix; Right: Posterior means of Cramer’s V 

using standard PARAFAC.
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Figure 7: 
Posterior means of Cramer’s V under simulation setting (i) using proposed method - Left: 

with λ0
( j) being discrete uniform; Right: with λ0

( j) being empirical estimates of the marginal 

category probabilities.

Zhou et al. Page 30

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: 
Posterior means of Cramer’s V under simulation setting (ii) – Left: using standard 

PARAFAC; Middle: under proposed method using empirical marginal with Diri(1, …,1) 

prior for λ0; Right: using proposed method with discrete uniform λ0.
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Figure 9: 
Posterior quantiles of Cramer’s V with 120 sequences of splice data – Upper panel: under 

standard PARAFAC; Bottom panel: under proposed method.
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Figure 10: 
Posterior quantiles of Cramer’s V with 3,175 sequences of splice data – Upper panel: under 

standard PARAFAC; Bottom panel: under proposed method.
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Table 1:

Summary statistics of induced priors on coefficients in log-linear model parameterization.

γ Coefficient Mean Std.dev Min Max Skewness Kurtosis

1 β1 0.014 0.831 −6.765 6.389 0.210 9.109

1 β12 −0.002 0.340 −2.895 3.105 −0.025 16.583

1 β123 0.002 0.196 −2.223 2.632 0.525 24.686

5 β1 −0.002 0.485 −5.648 5.433 0.031 27.980

5 β12 0.000 0.124 −2.085 2.244 0.495 93.438

5 β123 0.000 0.051 −1.214 0.745 −3.701 159.360

20 β1 0.002 0.246 −3.109 5.669 2.474 99.554

20 β12 0.000 0.042 −1.126 1.819 9.488 632.790

20 β123 0.000 0.009 −0.664 0.214 −44.051 3014.000
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Table 2:

Power for Non-null Variables Based on 100 Simulations

β2 β4 β12 β14 β2,4 β2,12 β4,12 β4,14 β12,14 β2,4,12 β4,12,14

Power 0.97 0.9 1 1 0.95 0.99 0.98 0.97 0.99 0 0

True coefficient 1 −1.5 2 1.5 −0.5 0.5 −0.5 −0.5 0.5 0.25 0.5
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Table 3:

Type I Error for Null Variables Based on 100 Simulations

β2,4 β2,4,14 β2,12,14 β2,4,12,14

Type I error 0.97 0 0.68 0

True coefficient 0 0 0 0
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