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Abstract Macrophages play critical roles in immunity, development, tissue repair, and cancer,

but studies of their function have been hampered by poorly-differentiated tumor cell lines and

genetically-intractable primary cells. Here we report a facile system for genome editing in non-

transformed macrophages by differentiating ER-Hoxb8 myeloid progenitors from Cas9-expressing

transgenic mice. These conditionally immortalized macrophages (CIMs) retain characteristics of

primary macrophages derived from the bone marrow yet allow for easy genetic manipulation and a

virtually unlimited supply of cells. We demonstrate the utility of this system for dissection of host

genetics during intracellular bacterial infection using two important human pathogens: Listeria

monocytogenes and Mycobacterium tuberculosis.

DOI: https://doi.org/10.7554/eLife.45957.001

Although CRISPR/Cas9 technology has revolutionized our ability to manipulate genomes, cell-type

specific barriers hinder genetic approaches to study many important mammalian cells and tissues.

Macrophages are critical innate immune cells involved in tissue development, repair, and homeosta-

sis as well as many microbial infections, but they are difficult to genetically manipulate via transfec-

tion or transduction, most likely due to sensitive circuits that sense foreign nucleic acid. Although it

is possible to manipulate primary bone marrow derived macrophages (BMMs) using CRISPR/Cas9

technology (Chu et al., 2016), the low transduction and transfection efficiencies observed in these

cells results in low editing efficiency or, if transductants can be selected, low cell numbers. These lim-

ited cell numbers preclude many biochemical and screening approaches that require many millions

of cells. In addition, the short life-span of these cells does not allow for selection of individual mutant

clones or subsequent genetic manipulations such as knockout of a second gene or protein overex-

pression. Because of these limitations many studies rely on either immortalized macrophage-like cell

lines, which do not recapitulate important metabolic and inflammatory pathways of primary cells

(Andreu et al., 2017), or the time-consuming process of generating transgenic or knockout mice

from which to obtain BMMs.

To create an efficient and scalable system for effective genome editing in murine macrophages,

we sought to build upon previous studies demonstrating that ectopic expression of an estrogen-reg-

ulated version of the homeobox transcription factor Hoxb8 (ER-Hoxb8) can immortalize macrophage

progenitors that are self-renewing in the presence of b-estradiol (Knoepfler et al., 2001). Subse-

quent removal of the hormone activates normal differentiation of these cells into macrophages

(Wang et al., 2006) (Figure 1—figure supplement 1a). We envisioned that deriving conditionally

immortalized macrophage progenitors from Cas9-expressing mice (Platt et al., 2014) would allow

us to perform gene editing in conditionally immortalized cells prior to differentiation, providing the

opportunity to cryopreserve either bulk populations or individually-cloned mutant cells. Subsequent

differentiation of edited progenitors into macrophages would then generate a theoretically
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Figure 1. Cas9+ CIMs as a tractable system for genome-editing in macrophages. (a) Graphic overview of gene editing in Cas9+ CIMs. (b) BMMs (left

panel), CIMs (middle), or RAW 264.7 cells (right) were visualized with Diff-Quick stain. (c) mRNA levels in BMMs and CIMs was quantified using a

Nanostring nCounter. Data are representative of two independent experiments and are presented as log transformed normalized transcript counts of

the average of technical duplicates from one experiment. (d) BMMs or CIMs transduced with a scramble guide (CIM scram) were analyzed by flow

Figure 1 continued on next page
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unlimited supply of mutant macrophages for functional studies (Figure 1a). While others have

recently taken a similar but limited approach using other lineages of Hoxb8 conditionally immortal-

ized immune cells, we sought to fully establish the efficacy of Cas9+ CIMs for robust gene editing

and infection of macrophages (Di Ceglie et al., 2017; Lee et al., 2017; MacDuff et al., 2018).

To this end, we harvested hematopoietic stem cells from mice that constitutively express Cas9,

infected them with lentivirus expressing the ER-Hoxb8 fusion protein and selected for cells that sur-

vived 3–4 weeks of culture in the presence of b-estradiol, as described by Wang, et. al. (Wang et al.,

2006). These Cas9+ macrophage progenitors grew robustly in suspension and, upon removal of b-

estradiol and addition of MCSF, differentiated into adherent cells that expressed F4/80, a marker of

macrophages (Figure 1—figure supplement 1b and c) (Rosas et al., 2011). However, in our initial

studies we noted an unusual morphology of this initial population when compared to primary BMMs

derived from wild-type C57BL/6 mice (Figure 1—figure supplement 1b); in addition, the cells

expressed high levels of CD11c, a cell surface marker more closely associated with dendritic cells

(Figure 1—figure supplement 1c). By re-selecting progenitors with high concentrations of the anti-

biotic G418, the resulting cell population more closely resembled BMMs morphologically (Figure 1—

figure supplement 1a and b) and expressed lower levels of CD11c (Figure 1—figure supplement

1c). We speculate that high concentrations of G418 selected for progenitors with greater expression

of the Hoxb8 fusion protein, skewing these cells towards a more uniform macrophage-committed

progenitor population. Comparison of gross cellular morphology indicates that these Cas9+ CIMs

are much more similar to BMMs than transformed macrophage-like lines such as the frequently used

RAW 264.7 (Figure 1b). To more globally compare BMMs and CIMs, we used Nanostring technol-

ogy to measure mRNA levels of over 700 genes associated with myeloid innate immunity and com-

pared the gene expression pattern between the two cell types. While the level of some of these

mRNAs were different between BMMs and CIMs, the majority of transcripts were present at remark-

ably similar levels in both cell populations, consistent with the initial studies of similarly differentiated

ER-HoxB8 cells, which demonstrated that these cells express many macrophage-specific genes but

did not compare them directly to BMMs (Figure 1c) (Wang et al., 2006).

To determine if Cas9+, gRNA-expressing CIMs possess functional macrophage phenotypes, we

infected progenitors with one of three lentiviruses expressing non-targeting scramble gRNAs,

selected transductants using puromycin, differentiated the resulting cells, and probed three macro-

phage characteristics to compare them with BMMs. First, flow cytometric analysis using key myeloid/

lymphoid lineage markers revealed that CIMs were indistinguishable from BMMs, with high expres-

sion of the myeloid marker CD11b and macrophage marker F4/80, and low expression of CD11c,

the monocyte marker Ly6C, and the neutrophil marker Ly6G (Figure 1d). Second, treatment with

either lipopolysaccharide (LPS) (which engages TLR4) or CpG DNA (TLR9 agonist) induced the pro-

inflammatory cytokines IL-6 and IL-12p40 from both CIMs and BMMs (Figure 1e). Although the lev-

els were slightly different between the two cell types at these time points, it is clear that CIMs

responded vigorously to innate immune stimulation upon engagement of pattern recognition recep-

tors. Finally, CIMs and BMMs upregulated iNOS and generated similar levels of nitric oxide in

Figure 1 continued

cytometry for expression of the indicated myeloid cell markers. Data are representative of three independent experiments. (e) IL-6 and IL-12p40

production by BMMs or CIM scram stimulated with the TLR4 ligand LPS or the TLR9 ligand CpG was measured by ELISA. N.D. – none detected. Data

are representative of three independent experiments each performed in triplicate, mean ± SD are shown. (f) Genomic DNA from CIMs transduced with

40 guides targeting 17 genes was analyzed for genomic editing by TIDE analysis. (g) CIMs transduced with a scramble guide or guides targeting

CD11b or Ifngr1 were stained with the indicated antibodies. Fluorescence minus one (FMO) stained samples were used as controls. (h and I) BMMs or

CIMs transduced with a scramble guide or guides targeting Nos2 were stimulated overnight with LPS + IFNg or left unstimulated and then analyzed by

flow cytometry for expression of iNOS (h); nitric oxide production in cell-free supernatants was analyzed by Griess assay (i). Data are representative of

two independent experiments each performed in triplicate, mean ± SD are shown. (j) CIM progenitors previously transduced with a lentivirus containing

puromycin resistance and a guide targeting Ifngr1 were subsequently transduced with lentivirus containing hygromycin resistance and scramble guide

or guides targeting CD11b.

DOI: https://doi.org/10.7554/eLife.45957.002

The following figure supplement is available for figure 1:

Figure supplement 1. Re-selection of CIM progenitors that more closely resembled BMMs.

DOI: https://doi.org/10.7554/eLife.45957.003
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response to stimulation with LPS plus interferon-g (IFNg ) (Figure 1h and i). Based on these results,

we conclude that transduced Cas9+ CIMs share many of the characteristics of BMMs.

To broadly assess genome editing efficacy in Cas9+ CIMs, we introduced 40 individual gRNAs tar-

geting a total of 17 genes into these cells, selected for puromycin resistant cells, and assessed

genome editing in the resulting populations by PCR amplification of the target sites and sequence

analysis using Tracking Indels by Decomposition (TIDE) analysis (Brinkman et al., 2014). We found

that over 80% of these gRNA transductions resulted in at least 70% editing of the target gene after

differentiation, with the majority achieving 80–100% editing efficiency (Figure 1f). For all 11 genes

independently targeted with three distinct gRNAs, we obtained >80% editing from at least one

guide RNA. To test whether genome editing in these polyclonal populations resulted in significant

differences in protein levels, we examined surface expression of CD11b and IFNg receptor after

transduction with gRNAs targeting CD11b or Ifngr1 and found that over 90% of CIMs had substan-

tially reduced expression of the targeted protein as assessed by flow cytometry (Figure 1g). Like-

wise, transduction with lentiviruses encoding one of three separate guides targeting Nos2, the gene

encoding the inducible nitric oxide synthase (iNOS), effectively blocked iNOS expression (Figure 1h)

and production of NO (Figure 1i) in response to LPS + IFNg in all three CIM populations. Although

gene-to-gene variability in CRISPR/Cas9-mediated targeting efficiency will certainly exist, taken

together our data indicate that independent transduction with three distinct gRNAs per gene in

Cas9+ CIMs will disrupt the majority of genes efficiently enough to produce phenotypically relevant

changes in gene expression using bulk populations of transduced cells.

Another major advantage of the Cas9+ CIM system is its potential for studying genetic interac-

tions by generating double gene knockouts in the immortalized progenitor state prior to differentia-

tion. To this end, we transduced Cas9+ macrophage progenitors with a lentivirus containing

puromycin resistance and targeting Ifngr1 and subsequently transduced the resulting population

with lentiviruses containing hygromycin resistance and expressing one of three CD11b or scramble

guides. After differentiation of these doubly-resistant populations, over 90% of CIMs lacked both

IFNgR1 and CD11b protein expression as assessed by flow cytometry (Figure 1j). This iterative

approach provides a robust way to generate double knockouts, enabling a simple methodology to

elucidate synthetic interactions. Overall, our results establish Cas9+ CIMs as an efficient and robust

model for genome editing in macrophages with distinct advantages to standard transformed macro-

phage-like cell lines.

To more specifically test whether CIMs are effective for studying the antimicrobial functions of

macrophages, we assessed the host and microbe requirements of two well-established bacterial

pathogens that naturally infect macrophages, Listeria monocytogenes and Mycobacterium tubercu-

losis. First, L. monocytogenes incubated with either BMMs or CIMs were effectively phagocytosed,

replicated robustly, and spread to neighboring macrophages (Figure 2a and c). After phagocytosis,

L. monocytogenes ruptures phagosomal membranes using its secreted pore-forming toxin listerioly-

sin O (LLO, encoded by the hly gene) in order to grow in the cytosol, and expresses ActA to

hijack the host actin polymerization machinery in order to propel itself through the cytosol and medi-

ate spread to neighboring cells (Portnoy et al., 2002). Importantly, L. monocytogenes lacking LLO

(Dhly) were unable to grow in BMMs or CIMs, and bacteria lacking ActA (DactA) failed to recruit actin

and spread (Figure 2b). Thus, the major bacterial virulence determinants required for L. monocyto-

genes infection are the same for BMMs and CIMs.

Targeting microbes for destruction via the host autophagy pathway, a process termed xenoph-

agy, is a major mechanism employed by primary macrophages for controlling intracellular patho-

gens, including L. monocytogenes (Gomes and Dikic, 2014). To determine whether CIMs are

capable of restricting L. monocytogenes through autophagy targeting, we used a previously charac-

terized bacterial mutant strain lacking three key virulence factors (ActA, PlcA, PlcB) required for

microbial evasion of autophagy in BMMs (Mitchell et al., 2018). Kinetic growth assays revealed that

this autophagy-sensitive L. monocytogenes strain, and the LLO-defective L. monocytogenes mutant,

are both significantly attenuated in both BMMs and CIMs (Figure 2c). Bacterial burden associated

with all three strains of L. monocytogenes was somewhat reduced in CIMs compared to BMMs,

which we speculate is due to enhanced early killing by the phagolysosomal pathway. Similar results

have been observed in peritoneal macrophages, which more effectively engage LC3-associated

phagocytosis and are more microbicidal than BMMs against L. monocytogenes early in infection

(Gluschko et al., 2018; Herskovits et al., 2007). To examine host genetics of microbial autophagy
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targeting, we generated CIMs deficient in one of several key components of the autophagy pathway

and subsequently infected them with WT L. monocytogenes and the autophagy-sensitive strain.

Abrogation of the autophagy pathway through knockout of Atg5, Atg7, or Atg16l1 restored replica-

tion of the autophagy-sensitive L. monocytogenes strain relative to scramble CIM controls

(Figure 2d), demonstrating that xenophagic targeting is intact and functional in CIMs.

Mycobacterium tuberculosis is a major human pathogen and its ability to replicate and persist

within macrophages, as well as to interact with the adaptive immune system, is central to its long-

term pathogenic strategy (Upadhyay et al., 2018). Its most important virulence determinant is the

type VII protein secretion system termed ESX-1, which is critical for growth in macrophages and

influences the innate immune responses of these cells (Stanley et al., 2003). To assess CIMs as a

model for studying M. tuberculosis invasion of macrophages, we infected BMMs and CIMs with

auto-luminescent M. tuberculosis strains and quantified bacterial replication over a five-day time

course. We found that wild-type M. tuberculosis grew robustly in CIMs, with kinetics comparable to

that observed in BMMs (Figure 3a). CIM monolayers began to lose integrity six days after infection
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Figure 3 continued on next page
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as the macrophages initiated cell death, a hallmark of M. tuberculosis infection (Chen et al., 2008),

which occurred slightly earlier than in BMM monolayers (data not shown). To determine whether

ESX-1 is required for M. tuberculosis replication in CIMs, we also infected both macrophage types

with an auto-luminescent M. tuberculosis strain lacking the core ATPase for the secretion system,

eccC, which results in complete loss of ESX-1 secretion (Rosenberg et al., 2015). As expected, these

mutant bacteria were unable to replicate in BMMs or CIMs, indicating that the requirements for M.

tuberculosis replication are the same for both types of macrophages (Figure 3a).

IFNg-mediated activation of macrophage antimicrobial defenses during in vivo infection is critical

for host resistance to M. tuberculosis infection, and ex vivo treatment of cultured macrophages with

this cytokine induces BMMs to inhibit bacterial replication (Flynn et al., 1993). Importantly, addition

of IFNg to CIMs transduced with lentivirus encoding scramble gRNA restricted M. tuberculosis

growth to a similar extent as IFNg treated BMMs (Figure 3b). Abrogating IFNg signaling through

knockout of Ifngr1 (Figure 1g) restored replication of M. tuberculosis in IFNg treated CIMs

(Figure 3b). These data indicate that CIMs can provide the environmental conditions required for M.

tuberculosis growth, but also have the inducible capacity to restrict bacterial replication.

Macrophage-like cell lines and BMMs have been demonstrated to induce markedly different

responses after M. tuberculosis infection (Andreu et al., 2017). To determine how closely CIMs

resemble BMMs during infection with M. tuberculosis, we globally compared gene expression of

BMMs and CIMs during infection with either a virulent WT M. tuberculosis Erdman strain or M.

tuberculosis DeccC lacking a functional ESX-1 secretion system using the same 700 myeloid gene

panel as described above. There was strong correlation between the genes induced by BMMs and

CIMs in response to both WT and DeccC M. tuberculosis (Figure 3c and d). Lentiviral transduction

with a non-targeting gRNA did not significantly alter the response of CIMs to M. tuberculosis (Fig-

ure 3—figure supplement 1a). In contrast to the comparison between BMMs and CIMs, there was

weak correlation between the genes induced by RAW 264.7 cells and BMMs or CIMs in response to

M. tuberculosis (Figure 3—figure supplement 1b and c). Both BMMs and CIMs activated genes

known to be involved in M. tuberculosis infection, including Cd40, Il1b, Nos2, Ptgs2, Tlr2, and Tnf

(Andreu et al., 2017) (Figure 3e). As previously demonstrated in BMMs, we observed that many

interferon-stimulated genes were more highly induced upon infection with WT M. tuberculosis than

M. tuberculosis lacking ESX-1 in both BMMs and CIMs (Manzanillo et al., 2012; Stanley et al.,

2007) (Figure 3f). Overall, these results establish CIMs as a suitable model for M. tuberculosis infec-

tion of macrophages.

Our results establish Cas9+ CIMs as a powerful ex vivo model of macrophage biology and repre-

sent a major technological advance in our ability to capitalize on powerful genome editing capabili-

ties in this notoriously refractory cell type. We expect that the methods we have developed will lay

the foundation for investigations exploring new pathways that mediate the many roles of this impor-

tant cell type in mammalian biology (Wynn et al., 2013). Indeed, while we show that Cas9+ CIMs

are a flexible tool for studying some important aspects of innate immunity and inflammation, they

are also likely to be useful for unbiased screening of CRISPR libraries to identify pathways important

for other macrophage functions including tissue homeostasis and metabolic reprogramming.

Because Cas9+ CIMs can give rise to an unlimited number of mutant macrophages, this scalable sys-

tem can generate genetically defined mutant macrophages for use in a wide range of applications,

Figure 3 continued

Nanostring nCounter. Data are representative of two independent experiments. Source data is available as Figure 3—source data 1. c and (d) Data

are presented as fold changes of infected/uninfected values of the average of technical duplicates from one experiment. (e) Log-transformed,

normalized transcript counts for the indicated genes obtained from BMMs (black) vs. CIMs (green) before (patterned bars) or after infection with WT M.

tuberculosis (solid bars). (f) Transcript counts for the indicated genes obtained from BMMs (black) vs. CIMs (green) infected with WT M. tuberculosis

(solid bars) or M. tuberculosis DeccC (patterned bars). Transcripts were normalized to counts in WT M. tuberculosis infected macrophages.

DOI: https://doi.org/10.7554/eLife.45957.005

The following source data and figure supplement are available for figure 3:

Source data 1. mRNA levels in BMMs and CIMs, uninfected or infected with M.

DOI: https://doi.org/10.7554/eLife.45957.007

Figure supplement 1. Weak correlation between gene induction by RAW 264.7 cells and BMMs or CIMs in response to M. tuberculosis.

DOI: https://doi.org/10.7554/eLife.45957.006
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from in vitro biochemical approaches to in vivo adoptive transfer studies of mice (Redecke et al.,

2013; Wiesmeier et al., 2016). Furthermore, using an iterative genome-editing approach, Cas9+-

CIMs allow for facile exploration of large-scale genetic interactions. Thus, this system represents a

significant technological advance that will likely promote the study of macrophages and their myriad

functions.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(M. musculus)

WT C57BL/6J Jackson
Laboratory

Stock No: 000664

Genetic reagent
(M. musculus)

Rosa26-Cas9
knockin mouse

Jackson
Laboratory

Stock No: 026179 Platt et al., 2014

Recombinant
DNA reagent

ER-Hoxb8-MSCV-Neo Wang et al., 2006

Recombinant
DNA reagent

pLentiGuide-Puro Addgene 52963

Recombinant
DNA reagent

lenti-sgRNA hygro Addgene 104991

Strain, strain
background
(M. tuberculosis)

Erdman strain BEI Cat # NR-15404

Genetic reagent
(M. tuberculosis)

DeccC (Erdman,
DeccCa1-DeccCb1)

Rosenberg et al., 2015

Genetic reagent
(M. tuberculosis)

Lux (Erdman expressing
the luxCDABEoperon)

Braverman et al., 2016

Genetic reagent
(M. tuberculosis)

DeccC Lux Penn et al., 2018

Strain, strain
background
(L. monocytogenes)

10403S strain PMID: 24667708

Genetic reagent
(L. monocytogenes)

DactA PMID: 10931865 DP-L3078

Genetic reagent
(L. monocytogenes)

Dhly PMID: 7960143 DP-L2161

Genetic reagent
(L. monocytogenes)

DactA PlcAH86A

PlcBH69G
Mitchell et al., 2018 DP-L6586

Commercial
assay or kit

nCounter Mouse
Myeloid Innate
Immunity Panel

NanoString

Cell culture
Bone marrow derived macrophages (BMMs) were generated from the femurs and tibias from wild-

type C57BL/6 (The Jackson Laboratory) mice that were 8–12 weeks old. Conditionally-immortalized

macrophages (CIMs) were derived from bone marrow cells from a 5-FU treated male Cas9+ mouse

(Platt et al., 2014). Hoxb8 immortalized cells were generated as previously described (Wang et al.,

2006) with the modification that progenitors in bone marrow were enriched by negative depletion;

cells expressing CD11b, Ter119, B220, CD5, CD19, and Gr-1 were depleted using biotinylated anti-

bodies and streptavidin coated dynabeads. For re-selection of CIM progenitors, cells were cultured

in 10 mg/ml G418 for 7 days. All mice were housed in specific-pathogen free conditions and treated

using procedures described in animal care protocols approved by the Institutional Animal Care and

Use Committee of UC Berkeley.
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Progenitor CIMs prior to differentiation were maintained in RPMI (Gibco) supplemented with 10%

FBS, 2% GM-CSF supernatant produced by a B16 murine melanoma cell line, 2 mM L-glutamine, 1

mM sodium pyruvate, 10 mM HEPES, 43 uM b-mercaptoethanol, and 2 uM b-estradiol (Sigma

#E2758). Progenitor CIMs were maintained in suspension in non-treated tissue culture treated flasks

at densities below 500,000 cells/ml before removal of b-estradiol and differentiation. BMMs and dif-

ferentiated CIM macrophages were cultured in macrophage media: DMEM (Gibco) supplemented

with 10% FBS, 10% M-CSF supernatant produced by 3T3-MCSF cells as previously described, 2 mM

L-glutamine (Gibco), and 1 mM sodium pyruvate (Gibco). RAW 264.7 cells were cultured in DMEM

(Gibco) supplemented with 10% FBS, 2 mM L-glutamine (Gibco), and 20 mM HEPES. To differentiate

progenitor CIMs into macrophages, cells were washed twice in PBS + 1% FBS to fully remove b-

estradiol, resuspended in complete macrophage media, and seeded onto non-treated 15 cm tissue

culture plates at 5.0 � 106 cells/plate in 20 ml of media. Differentiating CIM macrophages were

given an additional 10 ml of macrophage media on days 3 and 6 post-differentiation, and terminal

assays were performed at day 9 or 10 post-differentiation.

Transfection, transduction, genotyping, and sequence analysis
CRISPR guide sequences targeting genes of interest were selected from the murine Brie guide

library. Oligonucleotides encoding the chosen gRNAs (see Supplementary file 1) were cloned into

pLentiGuide-Puro (Addgene #52963) or lenti-gRNA hygro (Addgene #104991), and verified by

sequencing using the human U6 sequencing primer. 293 T cells were co-transfected with pLenti-

Guide-Puro, psPAX2, and pMD2.G using Lipofectamine and Optimem according to manufacturer’s

guidelines to generate lentiviral particles for trandsuction into Cas9-expressing CIM progenitors. For

optimal transduction of Cas9-expressing CIM progenitors, 5.0 � 105 cells/well in a 6-well plate were

spinfected at 1000xg for 2 hr at 32˚C in the presence of 10 mg/ml protamine sulfate. Two days post-

transduction, 12 mg/ml puromycin was added to cells, and cells were selected in puromycin for 4

days. Puromycin-resistant cells were maintained as polyclonal populations and total gDNA was

extracted using DNeasy Blood and Tissue kit (Qiagen). To generate double knockout progenitors,

puromycin-resistant progenitors that had previously been transduced with pLentiGuide-Puro were

transduced with lenti-sgRNA hygro and selected using 250 mg/ml hygromycin for 8 days. The geno-

mic sites encompassing targeted guide regions were amplified by PCR using iProof polymerase (Bio-

Rad) and sequenced, and population level genome editing was estimated using the TIDE webtool

(https://tide.deskgen.com/) as originally described (Brinkman et al., 2014). Guide genome editing

efficiencies displayed were a combination of data from CIMs before and after G418 selection, with

no notable difference in editing efficiency caused by G418 selection.

Mycobacterium tuberculosis infection
CIMs or BMMs were seeded at 60,000 cells per well onto white, clear-bottom CellBind 96-well plates

(Corning) or 12-well TC-treated plates (Corning) in macrophage media one or two days prior to

infection. For pre-treatment of macrophages with IFN-g , post-seeding cell culture media was

switched to media with 1.5 ng/ml of recombinant murine IFN-g (Peprotech) 12–18 hr prior to infec-

tion, and activated cells were subsequently cultured in IFN-g containing media throughout infection.

Macrophages were infected with M. tuberculosis as previously described (Penn et al., 2018). The

M. tuberculosis strain Erdman the DeccC strain made in the Erdman background, or the WT or

DeccC strain made in the Erdman background expressing the luxCDABE operon (Braverman et al.,

2016; Penn et al., 2018; Rosenberg et al., 2015) were used for all infections. All Mtb strains were

cultured in 7H9 liquid media (BD) supplemented with 10% Middlebrook OADC (Sigma), 0.5% glyc-

erol, 0.05% Tween-80 in roller bottles at 37˚C. Briefly, mid-log M. tuberculosis cultures were washed

twice with PBS, gently sonicated to disperse clumps, and resuspended in phagocytosis infection

media (DMEM supplemented with 5% horse serum and 5% FBS). For luminescence assays macro-

phages were infected in at least triplicate wells by removing media from cells, and monolayers were

overlaid with the bacterial suspensions in phagocytosis media then incubated at 37˚C for 4 hr, after

which infection media was removed and fresh macrophage media was added. Bacterial lumines-

cence signal was measured at 32˚C at the time of infection and every day starting 48 hr post-infec-

tion after daily media changes. All growth measurements are normalized to day 0 luminescence

readings for each infected well and are presented as fold change in luminescence compared to day
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0. Cells were infected at a multiplicity of infection (MOI) of 5 for RNA analysis and 0.5 for assays

monitoring bacterial growth.

Listeria monocytogenes infection
The WT 10403S, DactA (DP-L3078), Dhly (DP-L2161) and the autophagy-sensitive DactA PlcAH86A

PlcBH69G (DP-L6586) strains (Mitchell et al., 2018) (Cheng et al., 2018) were grown overnight in

brain heart infusion (BHI) medium at 30˚C before each experiment. Infections of macrophages were

performed as previously described (Cheng et al., 2018; Mitchell et al., 2018) with few modifica-

tions. BMMs and CIMs were seeded on round 12 mm coverslips (Fisher Scientific, Hampton, NH,

USA) and incubated overnight at 37˚C and 5% CO2. Coverslips were incubated with a solution 0.1%

gelatin for 1 hr at 37˚C and washed twice with PBS prior seeding CIMs. Macrophages were infected

at various MOIs, washed at 0.5 hr post-infection and further incubated in fresh medium. At 1 hr

post-infection, 50 mg/ml of gentamicin was added to the medium in order to kill extracellular bacte-

ria. MOIs and incubation times are indicated in figure legends.

Flow cytometry
Cells were fixed with Fix/Perm buffer (BD) for 20 min at 4˚C. All stains were carried out in PBS con-

taining 2% FBS (v/v) including anti-CD16/32 Fc blocking antibody (clone 93, BioLegend). Cells were

stained for 20 min at 4˚C with antibodies against F4/80 (clone BM8, Tonbo Biosciences), CD11b

(clone M1/70, Tonbo Biosciences), CD11c (clone N418, Tonbo Biosciences), Ly6C (clone HK 1.4,

BioLegend), Ly6G (clone 1A8, Tonbo Biosciences), IFNgR1 (clone 200, eBioscience) or iNos (clone

CXNFT, eBioscience). All cells were analyzed on an LSR Fortessa (BD Biosciences), and data was ana-

lyzed with FlowJo.

TLR ligand and IFNg stimulations
Cells were seeded at 60,000 cells per well in 96-well CellBind plates (Corning) in macrophage media

the day prior to stimulation. For cytokine analysis cells were stimulated with 1 mg/ml LPS (InvivoGen)

or 1 uM CpG-1668 (InvivoGen, Tlrl-1668) for 16–20 hr. Cell-free supernatants were harvested and

frozen at �20˚C prior to analysis. For Griess assay analysis, cells were stimulated with 100 ng/ml LPS

and 5 ng/ml IFNg . After 24 hr cell-free supernatant was harvested and immediately analyzed.

ELISA
Cell-free supernatants from stimulated cells were analyzed by ELISA to enumerate cytokine produc-

tion. Supernatants were absorbed onto a 96-well Nunc MaxiSorp flat-bottom plate (44-2404-21, Invi-

trogen) coated with the following capture antibodies diluted in 0.1M sodium phosphate buffer pH

8.0 and incubated overnight at 4˚C: IL-6 (clone MP5-20F3, 554400, BD Biosciences, 1 mg/ml) and IL-

12 p40 (clone C15.6, 14-7125-81, eBioscience, 1 mg/ml). The following day, plates were washed 3x

with PBS + 0.05% Tween-20 and blocked with PBS + 1% BSA for 4 hr at RT. Recombinant cytokines

for standard measurements were serially diluted in PBS/BSA. IL-6 (406 ML-025, R and D) IL-12 p40

(34-8321-63, eBioscience) and experimental supernatants were incubated overnight at 4˚C. After 3X

washes in PBS/BSA, biotin-conjugated sandwich antibodies were incubated on supernatants and

standards (IL-6, MP5-32C11, 554402, BD Biosciences and p40 C17.8, 13-7123-85, eBiosciences) and

detected by Streptavidin-HRP (BD Biosciences, 1:3000). For the development step, ELISA was incu-

bated with OPD (Sigma) and 30% hydrogen peroxide, followed by incubation with 3M HCl. Absor-

bance at 490 nm was read on an Infinite M200 Tecan plate reader.

Griess assay
Cell-free supernatants from stimulated cells were analyzed by Griess reaction to detect nitrite as a

proxy for NO production. A solution of 0.2% napthylethylenediamine dihydrochloride was mixed 1:1

with a 2% sulfanilamide/4% phosphoric acid solution. 100 ml of this solution was mixed with 100 ml of

sample supernatant and absorbance at 546 nm was immediately measured. Nitrite concentrations

were determined using a standard curve of sodium nitrite.
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Immunofluorescence microscopy and Diff-Quick staining
Coverslips seeded with macrophages were left uninfected or infected with L. monocytogenes,

stained with a Diff-Quick stain set (Dade Behring, Deerfield, IL, USA), air-dried and mounted on glass

slides using a drop of Permount (Fisher Scientific). Immunofluorescence staining of macrophages

infected with L. monocytogenes was performed using a polyclonal rabbit antisera that recognizes L.

monocytogenes (BD Biosciences, San Jose, CA, USA), a rhodamine red-X goat anti-rabbit IgG (Invi-

trogen, Carlsbad, CA, USA), phalloidin AlexaFluor-647 (Invitrogen) and ProLong Gold antifade

reagent containing 406,-diamidino-2-phenylindole (Invitrogen), as previously described (Cheng et al.,

2018). All images were acquired with a KEYENCE BZ-X710 fluorescent microscope using a

100 � objective and post-treated using the haze reduction function of the BZ-X analyser software.

Images showed in Figure 2B were obtained by staking 10 layers covering 5 mm of thickness and

pseudo-colored.

mRNA analysis using nanostring Ncounter
Total RNA was isolated using TRIzol (Fisher) and the PureLink RNA Mini Kit (12183018A, Ambion),

NEB DNase treated, and purified using RNA clean and concentrator columns (Zymo). RNA was ana-

lyzed using the mouse myeloid innate immunity panel of the NanoString nCounter Analysis System

(NanoString Technologies). Raw counts of samples were normalized according to the manufacturer’s

recommendations using reference genes as internal controls (Sdha, Oaz1, Rpl19, Edc3, Sap130,

Hdac3, Polr2a, Ppia, Gusb, Tbp, Sf3a3, and Abcf1). Background threshold was set to the geometric

mean of the negative controls. Normalization was performed using nSolver Analysis Software v4.

Normalized transcript counts are shown in Figure 3—source data 1.

Statistics
Statistical analysis of data was performed using GraphPad Prism software (Graphpad, San Diego,

CA). Results are reported as the mean ± SD. Pearson correlation coefficients and R2 values for scat-

ter plots of mRNA expression were determined using log transformed data.
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