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Abstract

The accurate assessment of sleep is critical to better understand and evaluate its role in health and 

disease. The boom in wearable technology is part of the digital health revolution and is producing 

many novel, highly sophisticated and relatively inexpensive consumer devices collecting data from 

multiple sensors and claiming to extract information about users’ behaviors, including sleep. 

These devices are now able to capture different bio-signals for determining, for example, heart rate 

and its variability, skin conductance, and temperature, in addition to activity. They perform 24/7, 

generating overwhelmingly large datasets (Big Data), with the potential of offering an 

unprecedented window on users’ health. Unfortunately, little guidance exists within and outside 

the scientific sleep community for their use, leading to confusion and controversy about their 

validity and application. The current state-of-the-art review aims to highlight use, validation and 

utility of consumer wearable sleep-trackers in clinical practice and research. Guidelines for a 

standardized assessment of device performance is deemed necessary, and several critical factors 

(proprietary algorithms, device malfunction, firmware updates) need to be considered before using 

these devices in clinical and sleep research protocols. Ultimately, wearable sleep technology holds 

promise for advancing understanding of sleep health, however, a careful path forward needs to be 

navigated, understanding the benefits and pitfalls of this technology as applied in sleep research 

and clinical sleep medicine.
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2. The landscape for wearable sleep-tracking technologies

Wearable sleep-trackers (e.g., wristbands, armbands, smartwatches, headbands, rings, sensor 

clips) are part of a larger consumer sleep technology (CST) family. CST includes 

smartphones, in-bed sensors, and contactless sensors, as well as other devices designed to 

enhance sleep and/or improve sleep behaviors such as neurostimulators, bio-feedback 

devices, and brainwave entrainment systems.

We consider ‘wearable sleep-trackers’ as those over-the-counter, relatively low-cost devices 

available without prescription or clinical recommendations. With many originally designed 

as fitness-trackers, these devices now claim to measure several bio-signals (e.g., heart rate 

and its variability, skin conductance, temperature), in addition to motion, from which 

information about behaviors, including sleep, can be extracted. Their accessibility (cloud-

based platforms used for data storage and integration), usability (mobile user interfaces), 

novelty, and affordability has led to their widespread use and contributed to an increased 

awareness about the importance of sleep in the general population.

Within the research and clinical sleep communities, there is growing recognition of the 

potential benefits of using wearable sleep trackers. Benefits include the easy accessibility of 

an incredible and unprecedented amount of information about sleep and other behaviors, 

collected in peoples’ natural environments for extensive periods. Data can be collected at 

any time without active engagement from the users (who simply wear a device) and without 

the need of specialized technicians processing the data (which are usually provided in a 

summary form, such as total minutes spent asleep). However, despite these potential 

advantages, a fundamental issue is still unsolved. For many of the devices and associated 

systems, there are inadequate data available about their validity, accuracy and reliability in 

measuring the various sleep parameters and other indices, such as those reflecting cardiac 

function, that they report.

Although new regulatory models such as the Digital Health Software Precertification (Pre-

Cert) Program (1) may ultimately affect the consumer wearable space, currently the US 

Food and Drug Administration does not regulate consumer-level wearables that provide 

“general wellness” information. There also is no consensus among sleep clinicians and 

research scientists on how to deal with the wearable boom, and no widely accepted 

standards as to how to implement the use of these devices in research and clinical sleep 

settings.

Alarmingly, with little knowledge and understanding of the performance of consumer 

wearables, the use of these devices is growing exponentially within the scientific field. For 

example, the Fitabase website (https://www.fitabase.com/research-library/), which keeps 

track of publications using Fitbit devices in research, lists >650 abstracts and journal papers 

for the Fitbit devices alone.

The focus of the current state-of-the-art review is on the use and validation of consumer 

wearable sleep-trackers and an evaluation of their utility in clinical practice and research. 

For the use and validation of other sleep technologies including mobile platforms for 

screening and monitoring sleep, the use of wearables in healthcare, please see (2–7).
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Comprehensive literature searches were performed across the main electronic databases of 

PubMed, Google Scholar, Web of Science and PsycINFO for studies published in the 

English language about use and validation of wearables sleep tracking technology. One or 

more of the following terms were used: “wearable”, “sleep”, “validation”, “accuracy”, 

“sensitivity”, “specificity”, “reliability”, “polysomnography”, “comparison”, “fitness-

tracker”, “sleep-tracker”, “actigraphy”, “commercial device”, “Fitbit”, “Jawbone”, “Misfit”, 

“Basis”, “Withings”, “ŌURA”. Full-text manuscripts were reviewed for relevance. Studies 

evaluating device performance were included only if they used 1) standard 

polysomnography (PSG) as the main reference for comparison, and 2) showed “acceptable 

standards” for methodological rigor, including adequate statistics and methods for PSG – 

device comparison (e.g., Bland-Altman method and/or epoch-by-epoch comparison).

3. Objective measurement of sleep: Polysomnography and actigraphy

PSG is the gold standard method to assess sleep and is the main reference for device 

validation. PSG is a comprehensive measure of sleep, based on the simultaneous recording 

of cortical (electroencephalogram [EEG]), submental muscle (electromyogram), and 

electroocular activity via the standardized positioning (international 10/20 EEG system) of 

scalp surface electrodes (8). As part of the PSG assessment, a number of additional 

physiological signals (e.g., electrocardiogram [ECG], respiration, leg movements, nasal 

pressure, oxygen desaturation and body position) are routinely assessed and help to 

characterize the complex nature of sleep and potential presence of sleep disorders. Following 

standardized visual rules based on the American Academy of Sleep Medicine (AASM) 

recommendations (8), sleep is manually scored in 30-s intervals by visual identification of 

specific phasic (e.g., arousals, K-complexes, spindles) and tonic (e.g., percentage of slow 

wave sleep within an epoch) features from the multiple EEG and physiological channels to 

assign each epoch as either: wake, N1, N2, N3 or REM sleep. PSG is usually confined to 

sleep laboratory research and clinical settings as it requires specialized equipment (a 

dedicated PSG acquisition system) and expertise (professionally trained personnel) for 

recording, scoring and interpreting PSG data. Although portable ambulatory PSG systems 

exist, the use of PSG is too expensive and impractical to be feasible for measuring sleep for 

prolonged periods outside of research studies.

The accepted alternative to PSG for non-laboratory settings is actigraphy. Actigraphy 

devices (mainly wrist-worn devices) rely on an accelerometer to measure patterns of activity 

(motion) and estimate sleep/wake states accepting the simple assumption that motion 

implies wake, and no-motion implies sleep. Due to their small size, comfort and waterproof 

properties, actigraphy devices are designed to be worn 24/7 and thus are suitable for 

prolonged recordings in non-laboratory settings. The device’s accelerometer detects the 

occurrence and degree of motion in multiple directions (e.g., 3-axis), which is converted into 

a digital signal to derive an activity count. Then, depending on the sleep-wake threshold of 

the algorithm, an epoch is determined as wake if its activity count exceeds the threshold, or 

sleep if it is below the threshold. Data can be stored at different rates, which contributes to 

how long a device can store continuous data. Owing to limitations in data storage, the 

majority of the literature using actigraphy is based on 1 min resolution for data collection. 

Algorithms used by actigraphy are either provided by the manufacturer (e.g., Philips 
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Respironics, Inc. Bend, OR) or publicly available (e.g., Cole–Kripke and Sadeh algorithms), 

and have been validated against PSG in healthy and clinical populations, on infants through 

the elderly (see 9, 10).

Although the majority of studies report high sensitivity (ability to detect true sleep) and 

accuracy (overall ability to detect true wake and sleep), actigraphy is inherently impaired in 

detecting true wake (specificity) as it is unable to identify motionless wake. For studies that 

have included healthy participants, specificity ranged from 26.9% to 77%, (11–20), while 

others that have included a variety of patient groups report specificity values ranging 

between 32.5% and 80% (21–23). Although many studies report specificity less than 50%, 

this finding is often minimized or overlooked, and actigraphy is accepted as providing an 

accurate estimate of PSG. Studies that have assessed the accuracy of actigraphy (in the 

classification of PSG sleep and wake epochs) using the different sensitivity thresholds of the 

Philips Respironics algorithms (11, 15, 17, 21, 23–25), as well as publicly available 

algorithms (15, 19, 26), have consistently shown that there is a trade-off between sensitivity 

and specificity. For example, for Philips Respironics algorithms, the “low” threshold 

requires smaller activity counts to deem an epoch as wake, therefore increasing specificity 

but at the cost of sensitivity. Conversely, the “medium” threshold increases sensitivity at the 

cost of specificity, due to the greater activity count threshold required for wake. Whether 

researchers should aim for high overall accuracy and sensitivity and acknowledge that sleep 

is overestimated, or whether they should instead aim to more accurately detect wake at the 

cost of sleep is still an open question, and is probably best decided based on the object of the 

investigation. For example, if the aim of a study is to determine changes in the amount of 

sleep disruption following a sleep treatment, it would be better to prioritize high accuracy in 

wake detection. Differently, if the purpose of a study is to evaluate changes in time spent 

asleep across adolescence, an algorithm prioritizing accuracy in sleep detection would be 

preferred. Furthermore, although studies have validated particular devices and algorithms 

against PSG and have reported that some algorithms are more accurate than others (15, 19, 

26), the differences between devices, algorithms, participant groups and study designs 

makes it very difficult to draw firm conclusions across studies as to which device and 

algorithm is best. In addition, studies have reported specific device × algorithm interactions 

(19) and threshold × group interactions (23), further complicating the conclusions that can 

be drawn between studies and populations.

Although actigraphy has a number of advantages, there are limitations to consider. It is less 

costly than a PSG system, however, clinical devices are often upwards of $1000 each, which 

remains a limiting factor, particularly when sleep needs to be recorded on large datasets in 

populations like adolescents who may be reluctant to wear a research-grade device. 

Furthermore, although actigraphy does not require an “expert” to manually score sleep 

records or monitor recordings overnight, an experienced staff member with expertise in 

sleep analysis is still required to identify any issues with the actigram, such as artefacts or 

missing data. Additionally, although there are alternative algorithms which are publicly 

available, they are not integrated into existing software, and require expertise to conduct 

further post-hoc analysis. Even when algorithms have been shown to be less affected by 

wake (e.g., regression algorithms (17)) they have not been widely evaluated or adopted and 

researchers often apply settings recommended by the manufacturer (e.g., “medium” 

de Zambotti et al. Page 4

Med Sci Sports Exerc. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sensitivity threshold), despite them not necessarily being appropriate for their sample. Thus, 

there is still no consensus on specific recommendations for different patient groups, devices 

and algorithm thresholds for actigraphy.

Among the several limitations and the immobility of the actigraphy field (27), probably the 

cost of actigraphy and the requirement of technical staff and time for processing the data are 

among the main factors leading researchers and clinicians to consider consumer wearables 

as an alternative solution to easily collect sleep data in non-laboratory settings.

4. Consumer wearable sleep trackers

The availability and easy use of wearable sleep trackers contrasts with their hidden 

complexity, frequently leading to an erroneous adoption of these devices, and misleading 

interpretation of their outcomes.

In the following sections, we aim to summarize the advances made in the sleep wearable 

consumer market, the published validation studies, and the main factors and challenges to 

consider before using a consumer wearable sleep tracker in clinical and research settings.

These aspects should be taken as a starting point for researchers and clinicians to initiate a 

discussion about clarification and standardization for evaluating the accuracy and reliability 

of wearable sleep trackers. The conditions for which these new tools should be accepted and 

used in clinical and research settings need to be determined. Here, we propose initial 

guidelines to evaluate consumer wearable sleep technology.

It is important to recognize that consumer wearables are commercial devices designed for 

general consumers and are not specifically developed for clinical or research purposes. The 

algorithms used by these devices are proprietary and no raw data (direct sensor reading 

before any algorithms’ implementation) are currently available. Also, wearable companies 

can change their algorithms without notice, an important aspect to consider when using a 

device over a certain period of time, and particularly for longitudinal studies. Although the 

number of validation studies is growing, validation clearly moves at a slower pace than the 

wearable industry, which keeps introducing new devices every year. Thus, evidence for the 

validation of a specific device model may be available when that model is no longer 

produced.

Lastly, it is important to understand that the second generation of multisensory consumer 

sleep trackers is fundamentally different from the first motion-based generation of consumer 

wearables (and actigraphy). The use of multiple sensors should theoretically overcome some 

of the challenges in detecting sleep and wake patterns, as discussed next. However, there are 

no direct comparisons – at least in the public domain - between motion-based and 

multisensory consumer sleep trackers, and their theoretical advantages over the previous 

generation remain to be empirically proven.
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4.1. Advances made in sleep wearable technology: Toward a multisensory approach for 
sleep detection

The first generation of consumer sleep wearables (e.g., Jawbone UP, Fitbit Tracker 

“original”, Fitbit Ultra, Fitbit Flex, Misfit Shine), similarly to standard actigraphy, extracted 

motion-based features from a built-in accelerometer-type sensor to measure wake and sleep. 

As for standard actigraphy, the limitation is that people can lie in bed awake for prolonged 

periods without moving, and in that case, the algorithm would misclassify wake epochs as 

sleep. For this reason, the first generation of consumer sleep wearables were limited in 

detecting wake. Also, despite attempts to differentiate sleep stages using motion-based 

pattern classification algorithms (see 28), these devices are limited to the binary detection of 

sleep and wake. Based on this intrinsic limitation, it is unlikely that further improvements in 

the levels of accuracy in sleep measurement (wake/sleep and sleep stage classification) will 

be achieved with motion-only based devices.

More intriguing is the new generation of wearables. The technological advances in sensor 

technology including miniaturization, low power consumption, low cost, connectivity and 

functionality of bio-sensors, allow new-generation wearables to continuously record a broad 

range of bio-signals (see (5, 29), for a review about methods and measurements of relevant 

wearable digital parameters) using, for example, skin temperature and optical 

photoplethysmography (PPG) sensors in addition to motion sensors that may advance sleep 

stage classification (30, 31).

Analysis of beat-to-beat cardiac information extracted from peripheral sensors such as PPG, 

can offer a valid approximation of ECG-derived heart rate variability [HRV; beat-to-beat 

variations in heart rate], a reliable indicator of cardiac autonomic nervous system (ANS) 

function, at least under conditions of minimal movement such as during sleep (see 32). For 

example, our group tested the accuracy of a multisensory sleep wearable (Fitbit Charge HR) 

against gold standard ECG in measuring heart rate during sleep in healthy sleepers, and we 

found an average ECG-PPG discrepancy for heart rate of <1 bpm (33). The comparison was 

based on min-by-min averages of HR across the night since beat-to-beat PPG data is 

currently inaccessible from consumer wearables, and thus, beat-to-beat accuracy levels are 

still unknown. Also, it is unknown whether the level of accuracy we found in healthy 

sleepers can be maintained in patients with sleep disorders (34), as well as during wake-time 

activities when the accuracy of wearable-based HR data is more questionable (35).

The main rationale underlying attempts to stage sleep (e.g., “light [PSG N1+N2]”, “deep 

[PSG N3]” and REM) in addition to the dichotomous distinction between sleep and wake 

states, relying in part on derived HRV data, is based on the concept of central nervous 

system (CNS) and ANS coupling (see 36). Sleep is not merely reflected by changes in 

cortical EEG activity but is characterized by changes in several other bio-systems including 

the functioning of the ANS, which regulates the majority of the organism’s internal 

functions (e.g., myocardial function, circulation, digestion) and mediates an individual’s 

responses to environmental challenges. ANS measures fluctuate across the night under 

homeostatic and circadian influences, and these fluctuations, particularly those reflecting 

vagal function (e.g., high frequency HRV), are tightly coupled with fluctuations in CNS 

EEG indices (e.g., activity in the slow delta EEG frequency band) (36).
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A growing body of evidence indicates that wake and sleep stage classification could benefit 

by combining motion data and autonomic features (e.g., heart rate, HRV indices) (see 31, 37, 

38–40). It remains unclear whether other recorded bio-signals (e.g., skin temperature, skin 

conductance (41)) will advance sleep staging in the future. However, at this juncture, the 

correspondence of these bio-signals with sleep-related EEG features and PSG stages is less 

evident, and future research is warranted to determine whether their addition could improve 

wake-sleep classification.

Our group provided promising results for the first validation studies of the new generation of 

multisensory wearables for PSG stage classification in healthy individuals, with reasonable 

differentiation of “light sleep” (PSG N1+N2) and REM sleep, although classification of slow 

wave sleep and wake were less consistent (42, 43) ( see Table 1). Also, these multisensory 

wearables still had relatively low specificity in detecting wake.

There could be several reasons for this failure, among which, the most likely seems to be 

that attempts to classify sleep stages using multisensors is still in the early stages. As 

reviewed in (36), sleep is characterized by a sophisticated range of phasic, coordinated 

cortico-cardiac oscillations, reflecting the complexity of the dynamic communication 

between central and periphery. To leverage this complexity to achieve new improvements in 

sleep staging and sleep-wake classification, the wearable industry may benefit from input 

from domain experts within the sleep science and other fields (e.g., Network Physiology 

(44)) investigating the characterization and dynamic interactions of multiple aspects of 

central and peripheral systems which underlie the generation of different physiological states 

(sleep/wake, ‘light’, ‘deep’ and REM sleep).

We should also acknowledge that these devices are facing the challenge of performing 4 

choices (wake, “light”, “deep”, and REM sleep) compared to the simplest dichotomous 

choice between sleep and wake, impacting their ability to discriminate between sleep and 

wake. Further, for validation studies relative to PSG, any automatic sleep scoring algorithm 

is referenced to manually-scored epochs of sleep. The AASM manual scoring system for 

PSG has high inter- and intra-scorer variability (45, 46), challenging the notion of stability 

of the gold-standard reference method, although a 10% of disagreement between scorers in 

the 5-choices (wake, N1, N2, N3, REM sleep) for PSG sleep staging is tolerated.

Finally, the influence of factors like demographics (e.g., age, sex) and environmental 

conditions (e.g., stress exposure, evening medication or alcohol use, environmental 

temperature) on the multiple signals recorded by these devices (e.g., HR and its variability) 

(see Section 5.1), and thus their capability in accurately staging sleep, should not be 

underestimated.

5. Validation of sleep wearables

5.1. Results of validation studies

New wearable devices and algorithms are introduced on the market every year. Due to the 

dynamic field, and the slow pace of scientific validations, it is challenging to provide an 

overall picture for the accuracy of wearable sleep trackers. Table 1 summarizes studies in 
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chronological order that have examined the performance of wearables against gold standard 

PSG. Fitbit (33, 42, 47–54) and Jawbone (28, 52, 55–58) sleep trackers are among the 

wearables more frequently tested against PSG. In some studies, both consumer-based 

wearable devices and standard actigraphy were simultaneously used, together with PSG. In 

this review, we did not consider any direct comparison between wearable devices and 

standard actigraphy or sleep logs (see Section 5.2), which are summarized elsewhere (2).

It is important to realize that what we call “validation studies” are actually “second-step 

validations” whereby post-processed signals (e.g., heart rate) (see 33) and derived behaviors 

(e.g., sleep) are compared against gold standard methods; any comparison based on raw data 

is not available due to the black box nature of these devices. These limitations cannot be 

easily overcome. For details about algorithm validation and sensor validation see (6).

Despite several differences existing among studies, participants usually wore the wearable 

sleep trackers (and standard actigraphy) on the wrist of the non-dominant hand, for a fixed 

time, from lights-off to lights-on. The majority of studies were conducted in the laboratory 

and only a few studies have been conducted in free-living conditions (49, 51, 53, 57, 59). 

The latter point needs to be carefully considered since performance may differ at home 

relative to controlled in-lab conditions. Data from the first-generation motion-based 

wearables were usually manually extracted in a 1-min resolution and then matched with the 

resolution of PSG, or vice versa. In contrast, recent studies have been able to directly 

compare PSG and device epochs with a 30-s resolution, the same resolution used for PSG 

sleep stage classification.

To date, there are no accepted standard rules or regulations on how to evaluate and interpret 

the performance of commercial wearable sleep trackers and there is a wide range of 

validation measures used between studies. Overall, wearables show high sensitivity (above 

90%) in detecting sleep but lower specificity in detecting wake, which is reflected in a 

general overestimation of PSG total sleep time (TST) and underestimation of wake after 

sleep onset (WASO), a performance that is in line with the majority of actigraphy literature 

(10). In studies that used both a consumer-wearable and clinical actigraph, compared to 

PSG, in the same participants, this pattern was still evident (47, 50–52, 55, 58, 59). Studies 

assessing the performance (accuracy in wake and sleep stage classification) of the second 

generation multisensory wearable devices in healthy participants, indicated a relatively 

higher performance in classifying PSG N1+N2 (“light sleep”) (42, 43, 54, 58) and PSG 

REM sleep (60–75% agreements) (42, 43, 54, 58), compared to a relative lower performance 

for PSG wake and N3 sleep classification (42, 43, 54, 58). A relatively poorer performance 

for REM detection was found in one study testing a multisensory device in patients with 

hypersomnolence and mix sleep disturbances (58) (see Table 1).

Impact of nocturnal wake periods and age on device performance—Several 

studies have shown that greater sleep disruption (i.e., increased wake intrusions during a 

sleep period) exacerbates PSG-device biases, for actigraphy (see 17, for an example) as well 

as consumer wearables. In an adult sample of midlife women wearing Jawbone UP over two 

PSG nights, the PSG-device discrepancies in detecting WASO as well as TST were greater 

on the night with the higher amount of PSG WASO (56). Similarly, in a sample of 
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adolescents wearing ŌURA rings, we found that the PSG-device discrepancy in assessing 

WASO depended on the amount of PSG wakefulness (43). In several other studies, the 

relations between PSG-device discrepancies and alterations in PSG sleep were not directly 

tested but observed as a qualitative interpretation of the Bland-Altman plots (see section 

below for details about Bland-Altman plots). Similarly, the presence of sleep disorders, 

possibly driven by increases in the amount of PSG sleep disruption, may also affect devices 

performance. However, few studies directly tested device performance in patients with sleep 

disorders (see Section 7 and Table 1 for details), reporting mixed results, probably due to the 

use of different wearables and sample characteristics.

Factors other than sleep disruption also affect device performance. For example, some 

evidence suggests that performance may vary as a function of age, particularly in children 

and adolescents. When testing a sample of sixty-five healthy adolescents, our group showed 

that with increasing age, the performance of Jawbone UP significantly shifted from 

underestimating to overestimating TST and SE, and from overestimating to underestimating 

SOL and WASO (28). Similar results were provided by Toon et al. (55), who tested Jawbone 

UP against PSG in groups of preschool children, primary school children, and adolescents. 

In contrast, age, body mass index and sex did not affect device performance when testing a 

novel multisensory wearable (the first version of the ŌURA ring) in forty-one healthy 

adolescents (43). Therefore, it remains unclear if age, particularly across different 

developmental groups, affects the performance of motion-based wearables only. More 

research aimed to understand the factors accounting for variations in device performance 

across age is needed.

Detecting naps with wearable devices—Since consumer wearables may be worn 

around the clock, they have the potential of being used to track sleep outside of the nocturnal 

period. To our knowledge, few studies have assessed the performance of consumer sleep 

trackers in measuring daytime naps. Cook et al. (58) investigated the capability of the 

Jawbone UP3 to correctly identify the number of sleep-onset REM periods (SOREMPs) 

during a multiple sleep latency test in patients with hypersomnolence/mixed sleep 

disturbances, while Sargent et al. (60) tested the capability of Fitbit Charge HR in detecting 

daytime naps in athletes. Both studies showed strong limitations of these devices in 

automatic daytime sleep assessment. These limitations could be due to specific algorithm 

requirements for a minimum duration of sleep to allow sleep classification which are, so far, 

unknown to the users. For example, currently https://help.fitbit.com/ reports that “Naps at 
least an hour in length will be automatically detected by your device and stored in your sleep 
history”, and in another help section states that “Your device needs at least 3 hours of sleep 
data to estimate your sleep stages, so you won’t see sleep stages for shorter naps”. Also, the 

poor performance in detecting naps may be due to the low specificity of wearables 

(including actigraphy) in distinguishing sleep from quiet wakefulness. Daytime sleep is 

common in pediatric and older adult populations as well in some sleep disorders (e.g., 

narcolepsy) or shift-workers, and frequently overlooked compared to night-time sleep (see 

61). The ability to automatically track day-time sleep (even < 1h) is extremely important. 

Wearable companies should provide clear guidelines about the daytime sleep tracking 

capability of their devices, including whether and how the daytime sleep periods are merged 

de Zambotti et al. Page 9

Med Sci Sports Exerc. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://help.fitbit.com/


with nighttime sleep (e.g., a 30 minutes nap plus a 6 h nocturnal sleep is displayed as a total 

of 6 h and 30 minutes of sleep) or showed as two separate sleeping periods. Future studies 

need to investigate the ability of wearables not only to assess nighttime sleep, but all 

sleeping periods during 24h.

Detecting sleep onset and offset with wearable devices—Another frequently 

overlooked aspect of wearables, is the ability of a device to accurately assess the onset and 

offset (morning awakening) of sleep. This is particularly important given that the timing of 

sleep onset and offset directly affect the determination of the sleep duration and its derived 

measures. Sleep onset is PSG-defined as the first epoch of any sleep stage, according to 

AASM criteria (8). In contrast, standard actigraphy determines sleep onset based on 

immobility time thresholds (see 62) within “rest intervals” determined by sleep diaries 

checked off-line by expert scorers. Event markers, used by individuals pressing a button on 

the device, and information about light exposure from embedded light sensors may also be 

available on some actigraphy models and used to determine lights-off and lights-on times.

The new generation consumer sleep-trackers use proprietary algorithms to automatically 

determine bedtime. Thus, lights-off and lights-on are determined without asking any active 

engagement from users (the off-line adjustment of these intervals is still available for some 

devices). However, commercial devices, like actigraphy, are limited in reliable determination 

of lights-off times, making it challenging to determine sleep onset latency without 

supplementary information from users about their self-reported lights-out times. Pesonen 

and Kuula (59) investigated the accuracy of a consumer device in determining onset and 

offset of sleep in children and adolescents, compared to PSG in an at-home setting. In that 

study, there were no significant differences in the onset and offset of sleep as derived by the 

Polar A370 sleep tracker compared to those determined by PSG. However, in the group of 

adolescents, although the mean differences were not significant, the standard deviation of the 

differences for the sleep onset estimation was quite wide (38 min) suggesting high 

variability in device performance for sleep onset time between individuals. Similarly, in 

healthy young adults, Liang and Martell (53) found that most of the time (68%) there was a 

positive delay (between 0 and 20 min) in sleep onset estimation from Fitbit Charge 2 

compared to a single channel PSG at home, whereas in 24% of the cases, the delay was >20 

min. Further research is needed to address the accuracy of consumer devices in determining 

timing for onset and offset of sleep (as well as the timing of REM onset, and the onset and 

offset of NREM-REM sleep cycles), particularly in populations in which sleep timings are 

altered (e.g., delayed sleep phase syndrome).

5.2. Testing and understanding the performance of a consumer wearable sleep tracker

To aid comparison across studies, it would be beneficial to use standard means of testing 

validity. Figure 1 outlines our recommended steps for evaluating the performance (validity) 

of a wearable against PSG, and these steps are further discussed here.

When validating a sleep device, controlled in-laboratory PSG should be the reference. 

However, given the barriers and limitations of in-laboratory PSG (e.g., cost, time, artificial 

setting) and the need for evaluation of wearable devices in more naturalistic settings (where 
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wearables are used), the utilization of validated unattended ambulatory PSG (Type II, 

comprehensive portable PSG) is also appropriate. This is particularly true in evaluating the 

performance of wearable devices in convenient populations in which ambulatory PSG is 

routinely used, like in the evaluation and management of sleep-related breathing disorders 

(63). One of the main challenges in the PSG-device comparison in at-home environments is 

the accurate selection of the time windows for comparison, particularly the bed-time (lights-

off) which is usually determined by participants’ self-reported data. Careful instructions for 

logging lights-off and lights-on times for both night-time and day-time sleep may partially 

overcome the limitation. Any direct comparison between wearables and standard actigraphy 

for device validation should be avoided. In fact, this may result in inconclusive and 

misleading outcomes. When both wearables and standard actigraphy are used in conjunction 

with PSG, both devices should be compared directly with PSG and data outcomes 

interpreted accordingly. It is also important to consider that the current PSG scoring system 

(64) is similar to the one introduced almost 50 years ago (see 65), which relies on the 

discrete arbitrary and visual determination of sleep composition. Given that, we believe that 

PSG records used in study validation should always be double scored (two independent 

scorers) to avoid potential rater-specific biases in the outcomes. A high (usually >90%) 

inter-scorer agreement (or inter-rater reliability) should be set.

5.2.1. Synchronization—In validation studies, the first step is to guarantee an accurate 

PSG-device synchronization. Although most wearable devices do not disclose specific 

timing about how sleep parameters or epoch-by-epoch staging is calculated (e.g., server 

clock, device clock), synchronization is critical, particularly when performing epoch-by-

epoch (EBE) analysis. We recently showed the impact of PSG-device synchronization 

misalignments on PSG-device discrepancies (42).

At a minimum, synchronization of the computer times where PSG and the wearable devices 

are running should be performed; however, this procedure does not guarantee an accurate 

PSG-device synchronization given that the precise onset/offset of the automatic device sleep 

staging algorithm is unknown. In our lab, it is common practice to start the PSG recording 

(time 0) at a rounded time (e.g., 22:32:00).

5.2.2. Direct comparison between PSG and wearable outcomes—Comparing 

PSG outcomes and PSG-equivalent sleep outcomes provided by the device via statistical 

tools is the first step in assessing the reliability of any sleep tracker. Within-subject tests 

(e.g., t-tests, repeated measure ANOVAs) compare the mean and standard deviation (SD) of 

several outcomes of the devices versus PSG. This step is fundamental to interpret potential 

significance in overestimating/underestimating PSG outcomes by the device, forming the 

basis to interpret Bland-Altman biases (see below). However, these analyses do not account 

for the heterogeneity of the participants’ behavior, i.e., high variability in their behaviors, 

such as some subjects having very high and other subjects very low amounts of WASO. The 

latter issues can be overcome using mixed-effects models which can account for both the 

average population behavior and the natural heterogeneity of participant outcomes (66).

5.2.3. Concordance and agreement between PSG and wearables—The Bland-

Altman plot is the most important tool to assess concordance between instruments and 
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should be used to evaluate the overall performance of a device, by plotting the PSG-device 

discrepancies (y-axis) against the PSG values (x-axis), for each parameter of interest (the 

most common are TST, WASO, time spent in N1, N2, N3, REM sleep). In the original 

Bland-Altman plots, mean differences between devices are plotted on the x-axis (67), but 

since PSG is the accepted gold standard method for sleep assessment, a more conservative 

approach using PSG as a reference is recommended. While the Bland-Altman plots allow a 

visual (qualitative) assessment of both agreement and heteroscedasticity (i.e., whether there 

is an increase error as a function of the magnitude of the measured value), quantitative 

indices such as mean differences (or biases), SD and ±95%CI of the biases, lower and upper 

limits of agreement (mean difference ±1.96*SD) and ±95%CI of the agreement limits 

should be reported. A significant direct comparison test and a positive bias indicates that the 

device underestimated the observed PSG sleep outcome, whereas a significant direct 

comparison test and a negative bias indicates that the device overestimated the PSG sleep 

measure.

There is a general tendency to overemphasize the magnitude of the biases and underestimate 

the width of the agreement limits. However, it should be kept in mind that even if the biases 

are not significant, the performance of a device cannot be considered good when the 

discrepancies are “quite wide”. A common practice is to report the number or percentage of 

participants falling outside the Bland-Altman agreement limits, which emphasizes potential 

large discrepancies between the PSG and the device. Still, this metric is dependent and needs 

to be interpreted by considering the distribution of the PSG-device discrepancies, which vary 

greatly across studies. Unfortunately, we are still relying on a case-by-case interpretation of 

the results based on our expertise and best judgement, more than on standardize performance 

quality metrics.

As shown in Table 1, a common metric used to investigate performance of a device is “a-
priori set clinically satisfactory ranges” (see 15, 28, 33, 43, 48, 51, 52, 55, 59), i.e. fixed 

thresholds (usually, ≤ 30-min PSG-device difference for TST and WASO, and ≤ 5% 

difference for SE) to determine whether a bias is clinically significant or not. However, use 

of these fixed thresholds has limitations. We believe the rationale behind these proposed 

ranges, leading back to the frequently cited study of Werner et al. (68), remains unclear. 

Further clarification is required before advocating the use of the current “a-priori set 
clinically satisfactory ranges”, and careful interpretation of these measures is needed.

Sometimes it is necessary to adjust the PSG-device bias if it is not constant across the range 

of measurement and shows significant heteroscedasticity. For example, logarithmic 

transformation of the values, calculating the ratio, or the percentage difference, instead of 

the absolute difference, can be done (see 69, 70). Finally, simple regression tests should be 

used to explore potential systematic dependency of PSG-device discrepancies in sleep 

outcomes on the amount of PSG sleep disruption and demographic factors possibly affecting 

motion patterns and/or other biological domains used by the proprietary scoring algorithms 

(see 28, 43).

Although frequently used in the literature, Pearson’s correlations between PSG and device 

outcomes are misleading and should be avoided in evaluating and interpreting PSG-device 
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agreements in measuring sleep outcomes. Indeed, simply correlating PSG and device sleep 

outcomes assesses the extent to which two measures covary, and not whether they are close 

together (see 71). For example, if the sleep tracker systematically reports a sleep onset 

latency two times longer than the PSG, the correlation coefficient would be 1 (perfect 

correlation), whereas in reality, the sleep tracker is not providing a valid measure of sleep 

onset.

A more appropriate approach is the use of intraclass correlation (ICC) which allows 

quantification of the PSG-device agreement for sleep outcomes. Following Cicchetti’s 

guidelines for interpreting ICC reliability coefficients (see 71), clinical significance is stated 

as “poor” for coefficients of less than 0.40, “fair” for coefficients lying between 0.40 and 

0.59, “good” for coefficients lying between 0.60 and 0.74, and “excellent” for coefficients 

between 0.75 and 1.00. However, although some authors consider a device as “valid” based 

on ICC outcomes (51), there is still no consensus as to what are the minimum requirements 

for considering a device “valid” (72).

5.2.4. Accuracy of a device—Epoch-by-epoch (EBE) analysis is the preferred 

approach to assess the accuracy of a device. EBE should be performed in a 30-s resolution to 

evaluate sensitivity (proportion of PSG epochs correctly identified as “sleep” by a wearable 

device, see Figure 1) and specificity (proportion of PSG epochs correctly identified as 

“wake” by the device) of a device. When appropriate, the accuracy in detecting PSG sleep 

stages should be evaluated as the proportion of PSG epochs of a specific PSG sleep stage 

correctly identified by the device. A clarification on EBE terminology is needed. Currently, 

we believe that the terms “sensitivity” and “specificity” (widely used in the actigraphy 

literature) should be used when referring to the ability of a device to correctly classify PSG 

sleep and wake epochs. When evaluating the PSG-device concordance in the EBE sleep 

stages classification (“light”, “deep” and REM sleep), we suggest wording the outcomes as: 

“agreement for” (e.g., the EBE agreement for REM sleep is 0.60, reflecting the fact that 
60% of the PSG REM sleep epochs are correctly classified as REM sleep by the device). In 

our opinion, usage of standardized terminology will prevent confusion and misinterpretation 

of outcomes from validation studies.

EBE overall accuracy (proportion of PSG epochs correctly identified as “sleep” and “wake” 

by a wearable device) is frequently reported when evaluating a device performance. 

However, this measure is misleading due to a strong bias toward the extremely high 

sensitivity of most devices and the consequent tendency of evaluating the performance of a 

device based on its “accuracy”. The relationship between sensitivity and specificity can also 

be visually assessed using the Receiver Operating Characteristic (ROC) curves, which 

provide a visual and quantitative measure of the accuracy of the device (see 73).

EBE analysis should be performed for each individual and the outcomes should be provided 

as mean, SD and ±95%CI of the mean. The determination of PSG-equivalent epochs of 

specific sleep stages from a device is not always straightforward (e.g., PSG N1 and N2 sleep 

may be represented as “light sleep” (see 42, 43)), but this information can be available 

directly from device manufacturers.
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A common issue in performing EBE analysis is that wearables devices do not always 

provide 30-s sleep scoring data, which should be the ideal recording time to match with 

standard PSG scoring (8). Thus, different strategies have been adopted to match PSG and 

device epochs. A common strategy is to convert 30-s PSG epochs into 1-min epochs as W-W 

= W, W-S or S-W = W, and S – S = S (33, 48, 55, 56). Others (47, 50, 51, 58), split the 

device 1-min epochs into two equal 30-s epochs to match the PSG 30-s epochs resolution. 

Results of these procedures can overinflate the amount of PSG wake. For example, as little 

as 16 s of PSG wake (e.g., alpha rhythm more than 50% of the epoch over the occipital 

region according to AASM rule for wake) can result in 1 min of wake.

Another measure that can be derived from EBE analysis is the Cohen’s kappa coefficient, 

which is an index of interrater reliability that reflects the percentage of measurement 

agreement (in this case, the sleep/wake scoring) of two methods not due to chance. However, 

since during sleeping periods the proportion of sleep epochs is generally higher than the 

wake epochs, it is possible to fall into “the first paradox of kappa statistic” (74), that occurs 

when two measures have a high agreement but a low kappa. A way to correct this bias is to 

calculate a prevalence- and bias-adjusted kappa (PABAK), which weights the number of 

sleep and wake epochs (75).

A full representation of the EBE analysis is the error matrix (or confusion matrix). The error 

matrix allows assessment of the device performance in classifying PSG wake and sleep (as 

well as stages of sleep) epochs via a cross-tabular representation of the PSG-device epoch-

by-epoch classifications. The advantage is to obtain a more complete picture providing not 

only the proportion of PSG epochs correctly classified by the device but also the source of 

the potential misclassification (see Figure 1, and (42)). For a better reading of the confusion 

matrix we previously calculated mean, SD and ±95%CI of the proportion of agreement 

between PSG epochs and predicted (device) epochs (42).

Other strategies have been proposed to capture the PSG-device accuracy accounting for 

sleep timing, sleep stage distribution and cycles across the night (see also Table 2). For 

example, in one of the first validation studies for wearable sleep trackers, Montgomery-

Downs et al. (47) calculated EBE sensitivity separately for wake before and after sleep onset 

(an approach that may be useful when performing EBE analysis outside the controlled 

laboratory settings in which lights-off and lights-on time cannot always be accurately 

obtained). Authors also calculated EBE sensitivity separately for PSG N1, N2, N3 and REM 

sleep, and in epochs containing arousals. Our group, recently introduced a PSG-device 

comparison based on the ability of the device to correctly identify PSG NREM-REM cycles 

across the night (42).

5.2.5. Reliability for sleep assessment—Less emphasis has been placed on 

assessment of device reliability (see Section 5.2.5), which has been measured using within-

subject analyses (e.g., paired t-tests) in the only two studies assessing intra-device reliability 

(a person wearing multiple devices simultaneously) (47, 48). Also, most validation studies 

have been based on single-night in-lab recordings due to several pragmatic and logistic 

reasons (e.g., easy to control and implement, cost-effective, validation study nested into 

other research protocols).
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6. Factors to consider when choosing a wearable sleep tracker

A critical requirement for using a wearable in research is to have access to the data. Most 

wearable companies have some form of access to an Application Programming Interface 

(API) and software development kit (SDKs), which allows post-processed data access and 

integration, developing applications and services (e.g., https://dev.fitbit.com/; https://

jawbone.com/up/developer; https://build.misfit.com/; https://developer.health.nokia.com/

api). Some companies also have cloud services or web dashboards which allow to directly 

export summary data in easy-to-read files (e.g., *.csv, *.xls), ready for analysis. An initial 

bridge between research and industry is offered by third party research services, usually 

requiring a subscription, like Fitabase (Small Steps Labs LLC.; https://www.fitabase.com/; 

supporting Fitbit devices and, more recently, Garmin devices) which allows access to more 

technical information, assistance with setting up projects, and pre-processed (but not raw) 

data at different time resolutions.

Other factors to consider if choosing a wearable in research or for clinical purposes are 

shown in Figure 2. Reliability should be a major point of consideration given that these 

devices may be particularly useful for long-term recording in non-laboratory settings, i.e. in 

epidemiological studies. In the following paragraphs we will highlight some important 

reliability issues (see Sections 6.1 and 6.2).

It is also critical to consider the sample being studied. Demographics and other 

characteristics of the sample may impact device performance (see 28, 43, 55). If a specific 

device shows a certain performance in an adult sample, one cannot assume that it will have 

the same performance in children or adolescents. The same is also true for sleep disorders, 

meaning that one cannot assume that a device validated in a healthy population will show 

the same performance in individuals with sleep disorders (see Section 7). Some consumer 

wearables offer different sensitivity settings (e.g., “normal” or “sensitive” mode). The 

“normal” setting is usually indicated for most users, whereas indication for using the 

“sensitive” setting implies its use in the presence of sleep disturbances. However, no clear 

indication for using different sensitivity settings are provided by wearables manufactures. As 

summarized in Table 1, the few studies comparing different algorithm sensitivities in Fitbit 

devices (48, 50, 51) indicated overall a poorer performance of the devices used in “sensitive” 

mode.

Device position may also affect the accuracy of a device, particularly for the new generation 

of multisensory sleep trackers. Other than the effects of position on the pattern of motion, 

other bio-signals may be directly or indirectly affected by the position or incorrect position 

of a device (e.g., PPG signals depend on how accurately blood flow is detected, skin 

conductance is affected by sweating) (see 43). This is particularly important when 

considering using the device in free-living condition, when technicians may be unavailable, 

and participants need to self-apply the device.

6.1. Inter-device reliability

Inter-device reliability can be taken to mean that several devices used in the same conditions 

can provide the same outcome. An at-home study based on three participants wearing two 
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Fitbit “original” devices overnight showed high reliability of these devices (percentage of 

EBE agreement of 96.5%, 99.1% and 97.6%) (47). Similar results were reported by Meltzer 

and colleagues (48), who examined intra-device reliability in 7 subjects wearing 2 Fitbit 

Ultra devices on the same wrist. Nevertheless, the authors prudently suggested that a device 

should not be switched with another device in the middle of a research protocol. Inter-device 

reliability is often overlooked and deserves further attention.

6.2. Device malfunctioning and other issues

A common issue with wearable trackers is data loss. In one study (48), 19% of the Fitbit 

Ultra data (12 participants) were not recorded due to technical issues. Of note, in the same 

study 14% of the data recorded with both the Actiwatch Spectrum and the AMI 

Motionlogger were unusable for technical issues (48). Other studies reported 4.3% of 

unusable sleep data (2 recordings) for Fitbit Charge 2 (42), and 12.5% (7 devices) for Fitbit 

Alta HR (54). Sargent and colleagues (60) reported 10 missing recording (out of 60) from 

Fitbit Charge HR due to an error in transcription (unclear whether this was a human or a 

device error). Mantua and colleagues (49) testing several devices against PSG, reported that 

data from 25% of Fitbit Flex (10 devices), 10% of Basis Health (2014 edition), 37.5% of 

Misfit Shine and 10% of Withings Pulse O2 devices could not be used (either for user errors, 

gross mis-estimation or other miscellaneous reasons). Of note, in the same study authors 

reported that 12.5% of the data from Actiwatch Spectrum were unusable (1 device for gross 

mis-estimation and 4 for malfunctions). More recently, Kang and colleagues (55) reported 

only 2% of the data lost with the Fitbit Flex and 5% with the Actiwatch 2. Toon et al. (55) 

reported unusable data from 4% of the Actiwatch 2 and 13% of Jawbone UP devices. 

Missing data were due to participant behaviors (e.g., child taking off the UP during the 

night) or device malfunctions (e.g., actigraphy recording ceased due to battery malfunction). 

In another study (58), 17.5% of the data recorded with the Jawbone UP3 were unusable due 

to unspecified malfunctions.

Gruwez et al. (57) reported missing data from 14% of the Withings Pulse 02,7% of the 

Jawbone UP MOVE, and 5% of the SenseWear Pro Armband recordings. In another study 

with 20 participants wearing the SenseWear Pro3 Armband the authors were able to use data 

from all but one recordings (76). Interestingly, the same armband showed high reliability 

even when recording several nights of sleep (77). In contrast, Lillehei and colleagues (78) 

using Fitbit One over 5 consecutive nights reported about 86% of missing data. Baroni et al. 

(79) showed a similar picture, with only 14% of the Fitbit Flex devices used in their study 

able to collect six or seven nights of sleep, and 35% of them failed to record any nights of 

sleep.

Overall, these studies show mixed results. Considering that the main advantages of 

wearables is to collect data for several days, future studies are warranted to provide further 

data on the long-term reliability of wearables. A detailed report for reliability should include 

not only the number of recordings/device failure, but also information about the source of 

unusable data (e.g., due to mechanical failure, human factors, software issues).

It is important to remember that wearable companies adopt different decision criteria as to 

whether to provide a data outcome. For example, Fitbit Inc states that “The Fitbit system 
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does not return sleep stages under various conditions. These include cases where the 
heartbeat signal (and hence the heart rate variability) is not cleanly detected throughout the 
night, if the total sleep duration is less than three hours, or if the battery runs out of power 
during the sleeping period”. These criteria are based on different factors including a test of 

the integrity and amount of data they collect, which is not accessible to us. Thus, even when 

a sleep outcome is provided, we do not know specifically how much “reliable” information 

is used to provide that value.

7. The potential role of sleep wearables in clinical sleep disorders, 

intervention delivery and patient monitoring

Although the gold standard to evaluate the presence of sleep disorders is PSG, actigraphy 

has been commonly used in clinical practice to provide additional characterization of 

individuals with sleep disorders and to assess their treatment response (see 80). 

Nevertheless, so far only a few motion-based (first generation) consumer wearables have 

been tested in patients with clinical sleep disorders.

Two studies targeted children and adolescents with sleep disordered breathing (SDB). 

Meltzer et al. (48) showed that discrepancies between PSG and Fitbit Ultra changed as a 

function of SDB status and device sensitivity settings (“normal” or “sensitive”). Specifically, 

the study showed that despite Fitbit Ultra “normal” setting overestimated PSG TST and 

underestimated PSG WASO in both children with or without OSA, the PSG-device 

discrepancies were greater in mild OSA and further exacerbated in children with moderate/

severe OSA. The authors also reported that most of the participants were outside the a priori-

set “clinically satisfactory ranges” (i.e., TST <30 min and SE < 5%; see above for concerns 

about the use of these agreement limits). A reverse pattern was observed for the “sensitive” 
setting, characterized by greater PSG-device discrepancies in the no OSA category (TST 

underestimation and WASO overestimation), which progressively lessened in mild OSA and 

moderate/severe OSA categories (see Table 1 for details). Toon et al. (55) tested the Jawbone 

UP and showed no differences in PSG-Jawbone UP discrepancies in estimating TST, 

WASO, or SE as a function of SDB severity (i.e., primary snoring, mild or moderate-severe 

OSA). Moreover, the authors observed from the Bland-Altman plots that the Jawbone UP 

sleep outcomes were more consistent with PSG measures than were Actiwatch 2-PSG 

outcomes. Nevertheless, similar to Metzer et al. (48), the majority of the participants fell 

outside a priori-set “clinically satisfactory ranges”. The authors indicated that, on the one 

hand, the Jawbone UP should be used as a diagnostic tool with caution; on the other hand, 

they observed that the Jawbone UP performance was, overall, similar to the Actiwatch 2.

Few studies have evaluated device performances in individuals with insomnia. Kang et at. 

(51) reported an overall good performance of the Fitbit Flex in the “normal” mode for good 

sleepers (no significant PSG-device differences for SOL, WASO, and SE, fair to excellent 

ICCs, and the majority of the participants fell inside the “satisfactory clinical agreement 

limits”). However, the Fitbit Flex showed more difficulties to assess sleep in the insomnia 

group. Specifically, the Fitbit Flex significantly overestimated PSG TST, SE and 

underestimate WASO in the insomnia group. Moreover, only 39.4% of the sample fell within 
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the a priori-set “clinical agreement range”. Again, as in Meltzer et al. (48), the “sensitive” 
mode showed a different, and less reliable pattern than the “normal” mode. Despite claims 

that the “sensitive” setting should be used in the presence of sleep disturbances, probably 

due to an algorithm that maximizes specificity (i.e., wake detection) at the detriment of 

sensitivity (i.e., sleep detection), these validation studies suggest that the “sensitive” setting 

is less reliable than the “normal” setting even in the presence of sleep disorders. Differently 

from Kang et at. (51), our group failed to find any difference in PSG-Jawbone UP 

discrepancies between women with and without insomnia disorder (56). The different 

wearables and sample used prevent any study comparison.

Two recent studies by Cook and colleagues tested the performance of the Jawbone UP3 (58) 

and the Fitbit Alta HR (54) against PSG and standard actigraphy (AW-2, only tested against 

the Jawbone UP3) in patients with different type of central disorders of hypersomnolence 

(including narcolepsy) and other sleep disorders tested at night and during multiple sleep 

latency tests (MSLT). The Jawbone UP3 overestimated TST and SE, and underestimated 

WASO and SOL compared to PSG, but showed a similar performance to the AW-2. It also 

showed a good sensitivity (0.97) and a low specificity (0.39) and low agreement for single 

stage scoring, in particular for REM sleep (0.30). The Fitbit Alta HR provided similar 

results, with overestimation of TST and SE, compared to PSG. However, while sensitivity 

was similar to the Jawbone UP3 (0.96), specificity was slightly better (0.58), and in general 

showed a higher agreement for the discrimination of light, deep, and REM sleep (see Table 

1). Of note, both devices failed to detect any SOREMPs during the MSLT. Authors 

concluded that the Jawbone UP3 and the Fitbit Alta HR cannot substitute the standard PSG 

to assess sleep in central disorders of hypersomnolence.

To our knowledge no studies have validated any consumer wearable trackers for circadian 

rhythm disorders. Indeed, these conditions are less common that insomnia or OSA. 

However, considering that actigraphy is a recommended tool for the diagnosis of circadian 

disorders (see 80), the lack of study with this clinical condition is somewhat surprising and 

future studies with wearables need to fill this gap. At-home PSG could be a viable approach 

for addressing validation within this patient population. However, due to the challenges in 

the longitudinal use of ambulatory PSG systems, a more reasonable approach would involve 

the assessment of cross-sectional PSG-device biases in individuals with altered sleep-wake 

times. Advancements should also be made to not only consider PSG-device validation of 

classical outcomes (time spent asleep/awake and in different sleep stages) but also consider 

major indices such as sleep onset and wake-up times used to assess circadian alterations 

(e.g., delayed/advanced/irregular sleep-wake phases, jet lag). Reliable determination of sleep 

onset is challenging with current wearables and advancements in algorithms or, possibly, the 

addition of other sensors to enhance the detection of sleep onset would be valuable (see 

section 5.1 “Detecting sleep onset and offset with wearable devices”).

Currently, there is insufficient evidence to consider consumer wearables as a potential stand-

alone diagnostic tool for sleep disorders.

An important concern of the general enthusiasm around the concept of “quantify self” is 

evident in the growing tendency for people to self-diagnose and even change their sleep 
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habits based on the interpretation of unregulated information of their consumer sleep 

trackers. For example, people may try to stay longer in bed if their wearable device does not 

show a ‘magic number’ of 8 hours slept. Sleep feedback could be particularly problematic in 

those suffering from insomnia, who may exacerbate their anxiety and worry about sleep if 

their trackers display “poor sleep” performance. On the other hand, inaccurate feedback of 

“good sleep” may prevent or delay individuals from looking for professional help. We are 

also facing the situation in which patients are asking their physicians to evaluate their 

wearable sleep graphics. This use of potentially inaccurate information about sleep may not 

only alter the individuals’ perception of sleep, but challenge the clinician’s evaluation of 

their sleep pattern and potential treatments (see 81, 82). However, some guidelines are now 

available for clinicians on how to deal with CST data in clinical settings, as provided by the 

AASM (83).

Nevertheless, if regulated, consumer wearable sleep-trackers may still be useful in clinical 

settings to provide additional information about patients’ sleep-wake patterns (e.g., assess 

regularities and abnormalities in individuals’ sleep schedules), and monitor treatment 

responses and recovery. In this framework, a few studies have combined consumer sleep-

trackers and smartphone Apps to provide different type of interventions (e.g., internet-based 

cognitive-behavioral therapy) (84–87) or to assess the effect of interventions on the sleep 

pattern (88, 89) with mixed results. Sleep trackers may be useful to monitor patient’s 

compliance to a particular sleep intervention such as sleep restriction. In general, clinicians 

should be aware of the risk that patients start to trust their tracker outcomes more than their 

physician’s clinical judgment.

Sleep trackers, if sufficiently validated, may potentially be useful to screen for sleep 

disorders in the future. So far, to our knowledge, only smartphone applications using phone 

and additional external sensors to extract and combine multiple features (position, audio, 

oxygen saturation) have been used to screen for sleep apnea (90, 91), with some promising 

results. Similarly, sleep trackers, in particular the second generation of multisensory sleep 

trackers, may help to screen for potential sleep disorders in order to increase the number of 

individuals who can ask for a clinical evaluation. However, although wearable technology 

has been used to assess sleep quality in OSA patients, no currently available consumer 

wearable devices are suitable for diagnosing OSA. Guidance from the Centers for Medicare 

and Medicaid Services indicates four types of equipment for diagnosis of OSA: 1) in-

laboratory PSG (Type I); 2) in-home PSG (Type II); 3) in-home measures of respiratory 

effort, airflow, cardiac data and blood oxygen saturation (Type III); 4) in-home measures of 

blood oxygen saturation and airflow (Type IV) (92). It is also the position of the AASM that 

care should be taken in the interpretation of the results of at-home sleep apnea testing, with 

raw data that should be reviewed and interpreted by a board-certified sleep medicine 

physician (93). In a recent position statement (83) the AASM in reference to CST (which 

includes sleep wearables devices) clearly stated that “CSTs cannot be utilized for the 
diagnosis and/or treatment of sleep disorders at this time”.
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8. Limitations, barriers and future direction for the use of wearable sleep 

trackers

There is a lack of incentives from both the scientific community and industry (which 

frequently relies on their own internal non-peer-reviewed tests) to perform dedicated 

scientific validation of sleep-tracking wearables. Thus, the existing validation studies are 

frequently initiated by the curiosity of isolated researchers or research groups, moved by the 

need to find affordable, accurate, and reliable alternatives to the expensive medical grade 

devices for measuring sleep in natural contexts. Further studies are needed to validate 

wearable devices in different populations and conditions, particularly in individuals with 

sleep disorders, in whom studies are few. Recently, the National Institute of Health (NIH) 

recognized the potential of wearables for biosensing applications and the need to fill the gap 

between validation and use of wearables within the scientific field. NIH promoted several 

initiatives within the Small Business Innovation Research (SBIR) and Small Business 

Technology Transfer (STTR) programs, and other funding opportunities to promote the 

development (e.g., wearable devices to monitor blood alcohol levels and identify biomarkers 

of drug addiction relapse in real time, identifying physiologic changes with old age) and 

validation of wearable devices for health measurement and intervention delivery (e.g., 

wearables to improve diagnosis and early treatment in minority and health disparity 

populations).

The consumer wearable market is extremely crowded, and the wearable industry is 

struggling with market differentiation. For the scientific sleep community, the necessity of 

opening the “black-box” wearable devices is important for raw data access and 

standardization, but raw data access and cloud services do not come free. Within this 

scenario, it is unclear if a line of consumer products and platforms more focused on the 

needs of researchers and clinicians would fit the consumer wearable companies’ business 

model. On the other hand, it is still unclear if the consumer wearables devices will maintain 

the advantage over standard actigraphy in the recording of multiple bio-signals and related 

assessment of sleep staging. In fact, within the medical space, new actions by actigraphy 

companies may be taken (e.g., moving to a multisensory approach and still offering 

validated algorithms based on multiple channels of information) (27). In addition, it is still 

unclear what the limit of the level of performance is for these early-stage non-EEG 

consumer wearable devices, and whether further advancement and integration of peripheral 

information will be able to more accurately approximate EEG-defined sleep staging. Also, 

the role of EEG consumer wearable devices within the sleep and circadian fields is still 

unclear. The Zeo headband (Zeo, Inc.), which was the first product of its kind, showed 

promising results in sleep measurement when compared to gold-standard lab-grade PSG 

(94–96). After its failure (the company went out of business in 2013), other EEG-based 

wearable headbands (e.g., Muse, Dreem, Neuroon) populated the market, and have shown 

promise in detecting sleep stages in clinical and non-clinical populations (97, 98). However, 

they are taking a different path from Zeo, more toward sleep-hacking (e.g., 

neuromodulation, brain entrainment for sleep enhancement) than sleep-tracking per se. The 

use of in-ear EEG (EEG recorded within the ear canal) is also of interest, but it is still in its 

infancy (99). It is unlikely that, in the immediate future, these EEG-like devices will make 
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the same impact as multisensory non-EEG wearables in the field of sleep and circadian 

science due to their greater invasiveness and relatively higher costs, limited use (they cannot 

be easily worn 24/7), and the challenges in recording good quality EEG signals in 

uncontrolled, non-laboratory conditions.

The sleep community still should clearly state what are their specific minimal requirements 

(e.g., raw data access, algorithm standardization, validation steps) for accepting and 

potentially introducing a consumer wearable sleep tracker in research and clinical sleep 

settings. This should be the first step to opening a discussion with industry (Table 3).

Time is critical because consumer sleep wearables are increasingly used in observational and 

interventional studies (see 2), and are already implemented in corporate wellness programs 

(84, 100, 101). Also, consumer sleep trackers are a core part of the growing area of the 

Internet of Things (102) and Big Data for eHealth and mHealth (103) applications, an 

unstoppable digital health revolution. Press releases and reports from wearable companies, 

based on analysis of billions of wearable data of unproven accuracy, are also growing in 

popularity. The ability to map sleep in entire countries, breaking down sleep data by regions, 

in association with major historical events, investigate sex- and age-differences in sleep 

patterns in large populations (see 104, for example), is of value. But, without knowing the 

performance of these devices, and without a scientific approach to the Big Data, any 

interpretation of these results could be misleading. Having large amounts of data from these 

devices does not necessary reduce the within- and between-subject variability. On the 

contrary, it may amplify the inaccuracy of the results they provide, particularly when the 

discrepancy between PSG and device (bias) for the measure of interest differs from zero or 

when the discrepancy varies as a function of the PSG measure (i.e. the bias is not constant). 

In the new generation of multisensory wearables, the consistency of the algorithm used in 

measuring sleep is further challenged by the fact that the relationship between cardiac 

features and sleep stages may vary as a function of different factors such as age, sex and 

even by geographical area where participants live (105). Of concern is the growing 

perception from the public that population-based sleep data as provided by wearables 

companies (obtained by a specific sub-sample of the general population - the wearables 

users) are the new normative sleep data. In addition, people may be making changes to their 

sleep behaviors based on their wearable outcomes and frequently non-scientific validated 

“tips” for sleeping better (direct or indirect claims made by most wearable companies). 

Similarly, there could be situations in which people do not take actions when they should, 

due to potentially false feedbacks from their wearable device (e.g., they may truly have 

severe sleep disruption or altered sleep patterns, but their device is telling them that their 

sleep is good).

Another factor to consider in using consumer wearables, particularly concerning a potential 

role in precision medicine, is their accuracy at the level of the individual. The translation of 

group-average results of validation studies to the individual is challenging due to several 

factors such as variability in demographics, sleep and daytime habits which may affect the 

performance of a device. An open-access data repository of de-identified PSG and wearable 

data, including demographics and other information collected from validation studies, may 

ultimately allow correction for key factors affecting device performance. For example, the 
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characterization of the relation (function) between demographics (e.g., age and sex ) and 

PSG-device biases on a group level (see 28), could be used to adjust device outcomes at the 

individual level.

9. Conclusion

Sleep is fundamental for health (106). About one-third of the population is struggling with 

their sleep, a number that is estimated to increase. In our 24/7 sleepless society, sleep 

wearables may have a key role to better characterize and understand sleep and, within the 

framework of precision medicine, to ultimately improve health, safety and well-being for 

individuals and society. Collection of continuous data, day and night, could also lead to 

better understanding of links between sleep and daytime behaviors such as exercise.

Wearable sleep trackers are being increasingly adopted by both the general public and sleep 

researchers and clinicians. The second generation of multisensory sleep trackers opens a 

path for greater accuracy in measuring sleep, as compared to the motion-based approach to 

sleep/wake assessment. However, the proven theoretical advantage of the multisensory 

approach to sleep staging needs further empirical validation. Currently, these devices should 

be used cautiously, and interpretation of their outcomes should be carefully considered to 

avoid generating large inaccurate datasets leading to potential misleading scientific 

conclusions, assessment of sleep disturbances, and therapeutic decisions.

Further work is needed to investigate the potential use and performance, pros and cons, and 

limitations of these novel sleep trackers, particularly in sleep disorder populations. Keeping 

in mind the differential and overlapping motivations of various end-users’ groups (e.g., 

research and clinical sleep community, wearable industry, consumers), partnership with 

industry is beneficial to combine excellence and speed in technological advancement from 

industry and advanced psychophysiological knowledge and scientific rigor from sleep 

science.
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Figure 1. 
Recommendations for the analysis and evaluation of the performance of a consumer 

wearable sleep tracker against polysomnography (PSG). EBE, epoch-by-epoch; WASO, 

wake after sleep onset

de Zambotti et al. Page 28

Med Sci Sports Exerc. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Critical factors to consider when evaluating the potential use of a consumer wearable sleep 

trackers in research and clinical sleep settings
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Table 2

An example of a qualitative approach to evaluate device performance.

An alternative way to evaluate the performance of a device is whether it adequately (compared to PSG) captures a significant literature effect 
(e.g., a group difference in sleep architecture between healthy individuals and those with a sleep disorder, sleep recovery after cognitive-
behavioral treatments in insomnia sufferers, sleep alterations following acute stress-inducing experimental manipulation). For example, 
similarly to PSG, we previously showed that a multisensory sleep tracker (the ŌURA ring) was able to significantly detect the age-related 
decline in N3 sleep in an adolescence sample. This finding is encouraging given that the device showed its greatest limitation in PSG N3 
classification (51% agreement in detecting PSG N3 sleep) (43).
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Table 3

Assuming that the proprietary algorithms used by consumer wearables will remain proprietary, what else can 

the wearable industry do to facilitate the use of consumer wearable sleep-trackers in clinical and sleep research 

settings?

Open access to raw data Allows application of publicly available algorithms to wearable raw accelerometer data 
(and/or plethysmography derived IBIs) obtaining a standardized sleep stage classification

Allow the choice of a specific version of the 
proprietary algorithm used for sleep 
classification when exporting/extracting 
sleep data

Allows consistency for data collection within a study period, by avoiding uncontrollable 
algorithm updates that may affect sleep parameter calculations
Also allows researchers to choose a specific wearable device model using a specific algorithm 
with proven validation

Have a separate line of products more 
aligned with research and clinical needs

Would remove many concerns of using an uncontrolled consumer product for research and 
clinical sleep assessment

Increase partnership with sleep research 
and clinical centers

Allows access to domain expertise in basic sleep science and clinical sleep disorders, which 
can lead to consistent use of accepted terminology, and insight into the meaning and value of 
Big Data
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