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Abstract

The accurate assessment of sleep is critical to better understand and evaluate its role in health and
disease. The boom in wearable technology is part of the digital health revolution and is producing
many novel, highly sophisticated and relatively inexpensive consumer devices collecting data from
multiple sensors and claiming to extract information about users’ behaviors, including sleep.
These devices are now able to capture different bio-signals for determining, for example, heart rate
and its variability, skin conductance, and temperature, in addition to activity. They perform 24/7,
generating overwhelmingly large datasets (Big Data), with the potential of offering an
unprecedented window on users’ health. Unfortunately, little guidance exists within and outside
the scientific sleep community for their use, leading to confusion and controversy about their
validity and application. The current state-of-the-art review aims to highlight use, validation and
utility of consumer wearable sleep-trackers in clinical practice and research. Guidelines for a
standardized assessment of device performance is deemed necessary, and several critical factors
(proprietary algorithms, device malfunction, firmware updates) need to be considered before using
these devices in clinical and sleep research protocols. Ultimately, wearable sleep technology holds
promise for advancing understanding of sleep health, however, a careful path forward needs to be
navigated, understanding the benefits and pitfalls of this technology as applied in sleep research
and clinical sleep medicine.
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2. The landscape for wearable sleep-tracking technologies

Wearable sleep-trackers (e.g., wristbands, armbands, smartwatches, headbands, rings, sensor
clips) are part of a larger consumer sleep technology (CST) family. CST includes
smartphones, in-bed sensors, and contactless sensors, as well as other devices designed to
enhance sleep and/or improve sleep behaviors such as neurostimulators, bio-feedback
devices, and brainwave entrainment systems.

We consider ‘wearable sleep-trackers’ as those over-the-counter, relatively low-cost devices
available without prescription or clinical recommendations. With many originally designed
as fitness-trackers, these devices now claim to measure several bio-signals (e.g., heart rate
and its variability, skin conductance, temperature), in addition to motion, from which
information about behaviors, including sleep, can be extracted. Their accessibility (cloud-
based platforms used for data storage and integration), usability (mobile user interfaces),
novelty, and affordability has led to their widespread use and contributed to an increased
awareness about the importance of sleep in the general population.

Within the research and clinical sleep communities, there is growing recognition of the
potential benefits of using wearable sleep trackers. Benefits include the easy accessibility of
an incredible and unprecedented amount of information about sleep and other behaviors,
collected in peoples’ natural environments for extensive periods. Data can be collected at
any time without active engagement from the users (who simply wear a device) and without
the need of specialized technicians processing the data (which are usually provided in a
summary form, such as total minutes spent asleep). However, despite these potential
advantages, a fundamental issue is still unsolved. For many of the devices and associated
systems, there are inadequate data available about their validity, accuracy and reliability in
measuring the various sleep parameters and other indices, such as those reflecting cardiac
function, that they report.

Although new regulatory models such as the Digital Health Software Precertification (Pre-
Cert) Program (1) may ultimately affect the consumer wearable space, currently the US
Food and Drug Administration does not regulate consumer-level wearables that provide
“general wellness” information. There also is no consensus among sleep clinicians and
research scientists on how to deal with the wearable boom, and no widely accepted
standards as to how to implement the use of these devices in research and clinical sleep
settings.

Alarmingly, with little knowledge and understanding of the performance of consumer
wearables, the use of these devices is growing exponentially within the scientific field. For
example, the Fitabase website (https://www.fitabase.com/research-library/), which keeps
track of publications using Fitbit devices in research, lists >650 abstracts and journal papers
for the Fitbit devices alone.

The focus of the current state-of-the-art review is on the use and validation of consumer
wearable sleep-trackers and an evaluation of their utility in clinical practice and research.
For the use and validation of other sleep technologies including mobile platforms for
screening and monitoring sleep, the use of wearables in healthcare, please see (2-7).
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Comprehensive literature searches were performed across the main electronic databases of
PubMed, Google Scholar, Web of Science and PsycINFO for studies published in the
English language about use and validation of wearables sleep tracking technology. One or

more of the following terms were used: “wearable”, “sleep”, “validation”, “accuracy”,

“sensitivity”, “specificity”, “reliability”, “polysomnography”, “comparison”, “fitness-
tracker”, “sleep-tracker”, “actigraphy”, “commercial device”, “Fitbit”, “Jawbone”, “Misfit”,
“Basis”, “Withings”, “OURA”. Full-text manuscripts were reviewed for relevance. Studies
evaluating device performance were included only if they used 1) standard
polysomnography (PSG) as the main reference for comparison, and 2) showed “acceptable
standards” for methodological rigor, including adequate statistics and methods for PSG —

device comparison (e.g., Bland-Altman method and/or epoch-by-epoch comparison).

3. Objective measurement of sleep: Polysomnography and actigraphy

PSG is the gold standard method to assess sleep and is the main reference for device
validation. PSG is a comprehensive measure of sleep, based on the simultaneous recording
of cortical (electroencephalogram [EEG]), submental muscle (electromyogram), and
electroocular activity via the standardized positioning (international 10/20 EEG system) of
scalp surface electrodes (8). As part of the PSG assessment, a number of additional
physiological signals (e.g., electrocardiogram [ECG], respiration, leg movements, nasal
pressure, oxygen desaturation and body position) are routinely assessed and help to
characterize the complex nature of sleep and potential presence of sleep disorders. Following
standardized visual rules based on the American Academy of Sleep Medicine (AASM)
recommendations (8), sleep is manually scored in 30-s intervals by visual identification of
specific phasic (e.g., arousals, K-complexes, spindles) and tonic (e.g., percentage of slow
wave sleep within an epoch) features from the multiple EEG and physiological channels to
assign each epoch as either: wake, N1, N2, N3 or REM sleep. PSG is usually confined to
sleep laboratory research and clinical settings as it requires specialized equipment (a
dedicated PSG acquisition system) and expertise (professionally trained personnel) for
recording, scoring and interpreting PSG data. Although portable ambulatory PSG systems
exist, the use of PSG is too expensive and impractical to be feasible for measuring sleep for
prolonged periods outside of research studies.

The accepted alternative to PSG for non-laboratory settings is actigraphy. Actigraphy
devices (mainly wrist-worn devices) rely on an accelerometer to measure patterns of activity
(motion) and estimate sleep/wake states accepting the simple assumption that motion
implies wake, and no-mation implies sleep. Due to their small size, comfort and waterproof
properties, actigraphy devices are designed to be worn 24/7 and thus are suitable for
prolonged recordings in non-laboratory settings. The device’s accelerometer detects the
occurrence and degree of motion in multiple directions (e.g., 3-axis), which is converted into
a digital signal to derive an activity count. Then, depending on the sleep-wake threshold of
the algorithm, an epoch is determined as wake if its activity count exceeds the threshold, or
sleep if it is below the threshold. Data can be stored at different rates, which contributes to
how long a device can store continuous data. Owing to limitations in data storage, the
majority of the literature using actigraphy is based on 1 min resolution for data collection.
Algorithms used by actigraphy are either provided by the manufacturer (e.g., Philips
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Respironics, Inc. Bend, OR) or publicly available (e.g., Cole-Kripke and Sadeh algorithms),
and have been validated against PSG in healthy and clinical populations, on infants through
the elderly (see 9, 10).

Although the majority of studies report high sensitivity (ability to detect true sleep) and
accuracy (overall ability to detect true wake and sleep), actigraphy is inherently impaired in
detecting true wake (specificity) as it is unable to identify motionless wake. For studies that
have included healthy participants, specificity ranged from 26.9% to 77%, (11-20), while
others that have included a variety of patient groups report specificity values ranging
between 32.5% and 80% (21-23). Although many studies report specificity less than 50%,
this finding is often minimized or overlooked, and actigraphy is accepted as providing an
accurate estimate of PSG. Studies that have assessed the accuracy of actigraphy (in the
classification of PSG sleep and wake epochs) using the different sensitivity thresholds of the
Philips Respironics algorithms (11, 15, 17, 21, 23-25), as well as publicly available
algorithms (15, 19, 26), have consistently shown that there is a trade-off between sensitivity
and specificity. For example, for Philips Respironics algorithms, the “low” threshold
requires smaller activity counts to deem an epoch as wake, therefore increasing specificity
but at the cost of sensitivity. Conversely, the “medium” threshold increases sensitivity at the
cost of specificity, due to the greater activity count threshold required for wake. Whether
researchers should aim for high overall accuracy and sensitivity and acknowledge that sleep
is overestimated, or whether they should instead aim to more accurately detect wake at the
cost of sleep is still an open question, and is probably best decided based on the object of the
investigation. For example, if the aim of a study is to determine changes in the amount of
sleep disruption following a sleep treatment, it would be better to prioritize high accuracy in
wake detection. Differently, if the purpose of a study is to evaluate changes in time spent
asleep across adolescence, an algorithm prioritizing accuracy in sleep detection would be
preferred. Furthermore, although studies have validated particular devices and algorithms
against PSG and have reported that some algorithms are more accurate than others (15, 19,
26), the differences between devices, algorithms, participant groups and study designs
makes it very difficult to draw firm conclusions across studies as to which device and
algorithm is best. In addition, studies have reported specific device x algorithm interactions
(19) and threshold x group interactions (23), further complicating the conclusions that can
be drawn between studies and populations.

Although actigraphy has a number of advantages, there are limitations to consider. It is less
costly than a PSG system, however, clinical devices are often upwards of $1000 each, which
remains a limiting factor, particularly when sleep needs to be recorded on large datasets in
populations like adolescents who may be reluctant to wear a research-grade device.
Furthermore, although actigraphy does not require an “expert” to manually score sleep
records or monitor recordings overnight, an experienced staff member with expertise in
sleep analysis is still required to identify any issues with the actigram, such as artefacts or
missing data. Additionally, although there are alternative algorithms which are publicly
available, they are not integrated into existing software, and require expertise to conduct
further post-hoc analysis. Even when algorithms have been shown to be less affected by
wake (e.g., regression algorithms (17)) they have not been widely evaluated or adopted and
researchers often apply settings recommended by the manufacturer (e.g., “medium”
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sensitivity threshold), despite them not necessarily being appropriate for their sample. Thus,
there is still no consensus on specific recommendations for different patient groups, devices
and algorithm thresholds for actigraphy.

Among the several limitations and the immobility of the actigraphy field (27), probably the
cost of actigraphy and the requirement of technical staff and time for processing the data are
among the main factors leading researchers and clinicians to consider consumer wearables
as an alternative solution to easily collect sleep data in non-laboratory settings.

4. Consumer wearable sleep trackers

The availability and easy use of wearable sleep trackers contrasts with their hidden
complexity, frequently leading to an erroneous adoption of these devices, and misleading
interpretation of their outcomes.

In the following sections, we aim to summarize the advances made in the sleep wearable
consumer market, the published validation studies, and the main factors and challenges to
consider before using a consumer wearable sleep tracker in clinical and research settings.

These aspects should be taken as a starting point for researchers and clinicians to initiate a
discussion about clarification and standardization for evaluating the accuracy and reliability
of wearable sleep trackers. The conditions for which these new tools should be accepted and
used in clinical and research settings need to be determined. Here, we propose initial
guidelines to evaluate consumer wearable sleep technology.

It is important to recognize that consumer wearables are commercial devices designed for
general consumers and are not specifically developed for clinical or research purposes. The
algorithms used by these devices are proprietary and no raw data (direct sensor reading
before any algorithms’ implementation) are currently available. Also, wearable companies
can change their algorithms without notice, an important aspect to consider when using a
device over a certain period of time, and particularly for longitudinal studies. Although the
number of validation studies is growing, validation clearly moves at a slower pace than the
wearable industry, which keeps introducing new devices every year. Thus, evidence for the
validation of a specific device model may be available when that model is no longer
produced.

Lastly, it is important to understand that the second generation of multisensory consumer
sleep trackers is fundamentally different from the first motion-based generation of consumer
wearables (and actigraphy). The use of multiple sensors should theoretically overcome some
of the challenges in detecting sleep and wake patterns, as discussed next. However, there are
no direct comparisons — at least in the public domain - between motion-based and
multisensory consumer sleep trackers, and their theoretical advantages over the previous
generation remain to be empirically proven.
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4.1. Advances made in sleep wearable technology: Toward a multisensory approach for
sleep detection

The first generation of consumer sleep wearables (e.g., Jawbone UP, Fitbit Tracker
“original”, Fitbit Ultra, Fitbit Flex, Misfit Shine), similarly to standard actigraphy, extracted
motion-based features from a built-in accelerometer-type sensor to measure wake and sleep.
As for standard actigraphy, the limitation is that people can lie in bed awake for prolonged
periods without moving, and in that case, the algorithm would misclassify wake epochs as
sleep. For this reason, the first generation of consumer sleep wearables were limited in
detecting wake. Also, despite attempts to differentiate sleep stages using motion-based
pattern classification algorithms (see 28), these devices are limited to the binary detection of
sleep and wake. Based on this intrinsic limitation, it is unlikely that further improvements in
the levels of accuracy in sleep measurement (wake/sleep and sleep stage classification) will
be achieved with motion-only based devices.

More intriguing is the new generation of wearables. The technological advances in sensor
technology including miniaturization, low power consumption, low cost, connectivity and
functionality of bio-sensors, allow new-generation wearables to continuously record a broad
range of bio-signals (see (5, 29), for a review about methods and measurements of relevant
wearable digital parameters) using, for example, skin temperature and optical
photoplethysmography (PPG) sensors in addition to motion sensors that may advance sleep
stage classification (30, 31).

Analysis of beat-to-beat cardiac information extracted from peripheral sensors such as PPG,
can offer a valid approximation of ECG-derived heart rate variability [HRV; beat-to-beat
variations in heart rate], a reliable indicator of cardiac autonomic nervous system (ANS)
function, at least under conditions of minimal movement such as during sleep (see 32). For
example, our group tested the accuracy of a multisensory sleep wearable (Fitbit Charge HR)
against gold standard ECG in measuring heart rate during sleep in healthy sleepers, and we
found an average ECG-PPG discrepancy for heart rate of <1 bpm (33). The comparison was
based on min-by-min averages of HR across the night since beat-to-beat PPG data is
currently inaccessible from consumer wearables, and thus, beat-to-beat accuracy levels are
still unknown. Also, it is unknown whether the level of accuracy we found in healthy
sleepers can be maintained in patients with sleep disorders (34), as well as during wake-time
activities when the accuracy of wearable-based HR data is more questionable (35).

The main rationale underlying attempts to stage sleep (e.g., “light [PSG N1+N2]”, “deep
[PSG N3]” and REM) in addition to the dichotomous distinction between sleep and wake
states, relying in part on derived HRV data, is based on the concept of central nervous
system (CNS) and ANS coupling (see 36). Sleep is not merely reflected by changes in
cortical EEG activity but is characterized by changes in several other bio-systems including
the functioning of the ANS, which regulates the majority of the organism’s internal
functions (e.g., myocardial function, circulation, digestion) and mediates an individual’s
responses to environmental challenges. ANS measures fluctuate across the night under
homeostatic and circadian influences, and these fluctuations, particularly those reflecting
vagal function (e.g., high frequency HRV), are tightly coupled with fluctuations in CNS
EEG indices (e.g., activity in the slow delta EEG frequency band) (36).
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A growing body of evidence indicates that wake and sleep stage classification could benefit
by combining motion data and autonomic features (e.g., heart rate, HRV indices) (see 31, 37,
38-40). It remains unclear whether other recorded bio-signals (e.g., skin temperature, skin
conductance (41)) will advance sleep staging in the future. However, at this juncture, the
correspondence of these bio-signals with sleep-related EEG features and PSG stages is less
evident, and future research is warranted to determine whether their addition could improve
wake-sleep classification.

Our group provided promising results for the first validation studies of the new generation of
multisensory wearables for PSG stage classification in healthy individuals, with reasonable
differentiation of “light sleep” (PSG N1+N2) and REM sleep, although classification of slow
wave sleep and wake were less consistent (42, 43) ( see Table 1). Also, these multisensory
wearables still had relatively low specificity in detecting wake.

There could be several reasons for this failure, among which, the most likely seems to be
that attempts to classify sleep stages using multisensors is still in the early stages. As
reviewed in (36), sleep is characterized by a sophisticated range of phasic, coordinated
cortico-cardiac oscillations, reflecting the complexity of the dynamic communication
between central and periphery. To leverage this complexity to achieve new improvements in
sleep staging and sleep-wake classification, the wearable industry may benefit from input
from domain experts within the sleep science and other fields (e.g., Network Physiology
(44)) investigating the characterization and dynamic interactions of multiple aspects of
central and peripheral systems which underlie the generation of different physiological states
(sleep/wake, ‘light’, ‘deep’ and REM sleep).

We should also acknowledge that these devices are facing the challenge of performing 4
choices (wake, “light”, “deep”, and REM sleep) compared to the simplest dichotomous
choice between sleep and wake, impacting their ability to discriminate between sleep and
wake. Further, for validation studies relative to PSG, any automatic sleep scoring algorithm
is referenced to manually-scored epochs of sleep. The AASM manual scoring system for
PSG has high inter- and intra-scorer variability (45, 46), challenging the notion of stability
of the gold-standard reference method, although a 10% of disagreement between scorers in
the 5-choices (wake, N1, N2, N3, REM sleep) for PSG sleep staging is tolerated.

Finally, the influence of factors like demographics (e.g., age, sex) and environmental
conditions (e.g., stress exposure, evening medication or alcohol use, environmental
temperature) on the multiple signals recorded by these devices (e.g., HR and its variability)
(see Section 5.1), and thus their capability in accurately staging sleep, should not be
underestimated.

5. Validation of sleep wearables

5.1. Results of validation studies

New wearable devices and algorithms are introduced on the market every year. Due to the
dynamic field, and the slow pace of scientific validations, it is challenging to provide an
overall picture for the accuracy of wearable sleep trackers. Table 1 summarizes studies in
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chronological order that have examined the performance of wearables against gold standard
PSG. Fitbit (33, 42, 47-54) and Jawbone (28, 52, 55-58) sleep trackers are among the
wearables more frequently tested against PSG. In some studies, both consumer-based
wearable devices and standard actigraphy were simultaneously used, together with PSG. In
this review, we did not consider any direct comparison between wearable devices and
standard actigraphy or sleep logs (see Section 5.2), which are summarized elsewhere (2).

It is important to realize that what we call “validation studies” are actually “second-step
validations” whereby post-processed signals (e.g., heart rate) (see 33) and derived behaviors
(e.g., sleep) are compared against gold standard methods; any comparison based on raw data
is not available due to the black box nature of these devices. These limitations cannot be
easily overcome. For details about algorithm validation and sensor validation see (6).

Despite several differences existing among studies, participants usually wore the wearable
sleep trackers (and standard actigraphy) on the wrist of the non-dominant hand, for a fixed
time, from lights-off to lights-on. The majority of studies were conducted in the laboratory
and only a few studies have been conducted in free-living conditions (49, 51, 53, 57, 59).
The latter point needs to be carefully considered since performance may differ at home
relative to controlled in-lab conditions. Data from the first-generation motion-based
wearables were usually manually extracted in a 1-min resolution and then matched with the
resolution of PSG, or vice versa. In contrast, recent studies have been able to directly
compare PSG and device epochs with a 30-s resolution, the same resolution used for PSG
sleep stage classification.

To date, there are no accepted standard rules or regulations on how to evaluate and interpret
the performance of commercial wearable sleep trackers and there is a wide range of
validation measures used between studies. Overall, wearables show high sensitivity (above
90%) in detecting sleep but lower specificity in detecting wake, which is reflected in a
general overestimation of PSG total sleep time (TST) and underestimation of wake after
sleep onset (WASO), a performance that is in line with the majority of actigraphy literature
(10). In studies that used both a consumer-wearable and clinical actigraph, compared to
PSG, in the same participants, this pattern was still evident (47, 50-52, 55, 58, 59). Studies
assessing the performance (accuracy in wake and sleep stage classification) of the second
generation multisensory wearable devices in healthy participants, indicated a relatively
higher performance in classifying PSG N1+N2 (“light sleep”) (42, 43, 54, 58) and PSG
REM sleep (60-75% agreements) (42, 43, 54, 58), compared to a relative lower performance
for PSG wake and N3 sleep classification (42, 43, 54, 58). A relatively poorer performance
for REM detection was found in one study testing a multisensory device in patients with
hypersomnolence and mix sleep disturbances (58) (see Table 1).

Impact of nocturnal wake periods and age on device performance—Several
studies have shown that greater sleep disruption (i.e., increased wake intrusions during a
sleep period) exacerbates PSG-device biases, for actigraphy (see 17, for an example) as well
as consumer wearables. In an adult sample of midlife women wearing Jawbone UP over two
PSG nights, the PSG-device discrepancies in detecting WASO as well as TST were greater
on the night with the higher amount of PSG WASO (56). Similarly, in a sample of
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adolescents wearing OURA rings, we found that the PSG-device discrepancy in assessing
WASO depended on the amount of PSG wakefulness (43). In several other studies, the
relations between PSG-device discrepancies and alterations in PSG sleep were not directly
tested but observed as a qualitative interpretation of the Bland-Altman plots (see section
below for details about Bland-Altman plots). Similarly, the presence of sleep disorders,
possibly driven by increases in the amount of PSG sleep disruption, may also affect devices
performance. However, few studies directly tested device performance in patients with sleep
disorders (see Section 7 and Table 1 for details), reporting mixed results, probably due to the
use of different wearables and sample characteristics.

Factors other than sleep disruption also affect device performance. For example, some
evidence suggests that performance may vary as a function of age, particularly in children
and adolescents. When testing a sample of sixty-five healthy adolescents, our group showed
that with increasing age, the performance of Jawbone UP significantly shifted from
underestimating to overestimating TST and SE, and from overestimating to underestimating
SOL and WASO (28). Similar results were provided by Toon et al. (55), who tested Jawbone
UP against PSG in groups of preschool children, primary school children, and adolescents.
In contrast, age, body mass index and sex did not affect device performance when testing a
novel multisensory wearable (the first version of the OURA ring) in forty-one healthy
adolescents (43). Therefore, it remains unclear if age, particularly across different
developmental groups, affects the performance of motion-based wearables only. More
research aimed to understand the factors accounting for variations in device performance
across age is needed.

Detecting naps with wearable devices—Since consumer wearables may be worn
around the clock, they have the potential of being used to track sleep outside of the nocturnal
period. To our knowledge, few studies have assessed the performance of consumer sleep
trackers in measuring daytime naps. Cook et al. (58) investigated the capability of the
Jawbone UP3 to correctly identify the number of sleep-onset REM periods (SOREMPS)
during a multiple sleep latency test in patients with hypersomnolence/mixed sleep
disturbances, while Sargent et al. (60) tested the capability of Fitbit Charge HR in detecting
daytime naps in athletes. Both studies showed strong limitations of these devices in
automatic daytime sleep assessment. These limitations could be due to specific algorithm
requirements for a minimum duration of sleep to allow sleep classification which are, so far,
unknown to the users. For example, currently https://help.fitbit.com/ reports that “Naps at
least an hour in length will be automatically detected by your device and stored in your sleep
history”, and in another help section states that “ Your device needs at least 3 hours of sleep
aata to estimate your sleep stages, so you won'’t see sleep stages for shorter naps”. Also, the
poor performance in detecting naps may be due to the low specificity of wearables
(including actigraphy) in distinguishing sleep from quiet wakefulness. Daytime sleep is
common in pediatric and older adult populations as well in some sleep disorders (e.g.,
narcolepsy) or shift-workers, and frequently overlooked compared to night-time sleep (see
61). The ability to automatically track day-time sleep (even < 1h) is extremely important.
Wearable companies should provide clear guidelines about the daytime sleep tracking
capability of their devices, including whether and how the daytime sleep periods are merged
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with nighttime sleep (e.g., a 30 minutes nap plus a 6 h nocturnal sleep is displayed as a total
of 6 h and 30 minutes of sleep) or showed as two separate sleeping periods. Future studies
need to investigate the ability of wearables not only to assess nighttime sleep, but all
sleeping periods during 24h.

Detecting sleep onset and offset with wearable devices—Another frequently
overlooked aspect of wearables, is the ability of a device to accurately assess the onset and
offset (morning awakening) of sleep. This is particularly important given that the timing of
sleep onset and offset directly affect the determination of the sleep duration and its derived
measures. Sleep onset is PSG-defined as the first epoch of any sleep stage, according to
AASM criteria (8). In contrast, standard actigraphy determines sleep onset based on
immobility time thresholds (see 62) within “rest intervals” determined by sleep diaries
checked off-line by expert scorers. Event markers, used by individuals pressing a button on
the device, and information about light exposure from embedded light sensors may also be
available on some actigraphy models and used to determine lights-off and lights-on times.

The new generation consumer sleep-trackers use proprietary algorithms to automatically
determine bedtime. Thus, lights-off and lights-on are determined without asking any active
engagement from users (the off-line adjustment of these intervals is still available for some
devices). However, commercial devices, like actigraphy, are limited in reliable determination
of lights-off times, making it challenging to determine sleep onset latency without
supplementary information from users about their self-reported lights-out times. Pesonen
and Kuula (59) investigated the accuracy of a consumer device in determining onset and
offset of sleep in children and adolescents, compared to PSG in an at-home setting. In that
study, there were no significant differences in the onset and offset of sleep as derived by the
Polar A370 sleep tracker compared to those determined by PSG. However, in the group of
adolescents, although the mean differences were not significant, the standard deviation of the
differences for the sleep onset estimation was quite wide (38 min) suggesting high
variability in device performance for sleep onset time between individuals. Similarly, in
healthy young adults, Liang and Martell (53) found that most of the time (68%) there was a
positive delay (between 0 and 20 min) in sleep onset estimation from Fitbit Charge 2
compared to a single channel PSG at home, whereas in 24% of the cases, the delay was >20
min. Further research is needed to address the accuracy of consumer devices in determining
timing for onset and offset of sleep (as well as the timing of REM onset, and the onset and
offset of NREM-REM sleep cycles), particularly in populations in which sleep timings are
altered (e.g., delayed sleep phase syndrome).

5.2. Testing and understanding the performance of a consumer wearable sleep tracker

To aid comparison across studies, it would be beneficial to use standard means of testing
validity. Figure 1 outlines our recommended steps for evaluating the performance (validity)
of a wearable against PSG, and these steps are further discussed here.

When validating a sleep device, controlled in-laboratory PSG should be the reference.
However, given the barriers and limitations of in-laboratory PSG (e.g., cost, time, artificial
setting) and the need for evaluation of wearable devices in more naturalistic settings (where
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wearables are used), the utilization of validated unattended ambulatory PSG (Type II,
comprehensive portable PSG) is also appropriate. This is particularly true in evaluating the
performance of wearable devices in convenient populations in which ambulatory PSG is
routinely used, like in the evaluation and management of sleep-related breathing disorders
(63). One of the main challenges in the PSG-device comparison in at-home environments is
the accurate selection of the time windows for comparison, particularly the bed-time (lights-
off) which is usually determined by participants’ self-reported data. Careful instructions for
logging lights-off and lights-on times for both night-time and day-time sleep may partially
overcome the limitation. Any direct comparison between wearables and standard actigraphy
for device validation should be avoided. In fact, this may result in inconclusive and
misleading outcomes. When both wearables and standard actigraphy are used in conjunction
with PSG, both devices should be compared directly with PSG and data outcomes
interpreted accordingly. It is also important to consider that the current PSG scoring system
(64) is similar to the one introduced almost 50 years ago (see 65), which relies on the
discrete arbitrary and visual determination of sleep composition. Given that, we believe that
PSG records used in study validation should always be double scored (two independent
scorers) to avoid potential rater-specific biases in the outcomes. A high (usually >90%)
inter-scorer agreement (or /nter-rater reliability) should be set.

5.2.1. Synchronization—In validation studies, the first step is to guarantee an accurate
PSG-device synchronization. Although most wearable devices do not disclose specific
timing about how sleep parameters or epoch-by-epoch staging is calculated (e.g., server
clock, device clock), synchronization is critical, particularly when performing epoch-by-
epoch (EBE) analysis. We recently showed the impact of PSG-device synchronization
misalignments on PSG-device discrepancies (42).

At a minimum, synchronization of the computer times where PSG and the wearable devices
are running should be performed; however, this procedure does not guarantee an accurate
PSG-device synchronization given that the precise onset/offset of the automatic device sleep
staging algorithm is unknown. In our lab, it is common practice to start the PSG recording
(time 0) at a rounded time (e.g., 22:32:00).

5.2.2. Direct comparison between PSG and wearable outcomes—Comparing
PSG outcomes and PSG-equivalent sleep outcomes provided by the device via statistical
tools is the first step in assessing the reliability of any sleep tracker. Within-subject tests
(e.g., ttests, repeated measure ANOVAS) compare the mean and standard deviation (SD) of
several outcomes of the devices versus PSG. This step is fundamental to interpret potential
significance in overestimating/underestimating PSG outcomes by the device, forming the
basis to interpret Bland-Altman biases (see below). However, these analyses do not account
for the heterogeneity of the participants’ behavior, i.e., high variability in their behaviors,
such as some subjects having very high and other subjects very low amounts of WASO. The
latter issues can be overcome using mixed-effects models which can account for both the
average population behavior and the natural heterogeneity of participant outcomes (66).

5.2.3. Concordance and agreement between PSG and wearables—The Bland-
Altman plot is the most important tool to assess concordance between instruments and
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should be used to evaluate the overall performance of a device, by plotting the PSG-device
discrepancies (y-axis) against the PSG values (x-axis), for each parameter of interest (the
most common are TST, WASO, time spent in N1, N2, N3, REM sleep). In the original
Bland-Altman plots, mean differences between devices are plotted on the x-axis (67), but
since PSG is the accepted gold standard method for sleep assessment, a more conservative
approach using PSG as a reference is recommended. While the Bland-Altman plots allow a
visual (qualitative) assessment of both agreement and heteroscedasticity (i.e., whether there
is an increase error as a function of the magnitude of the measured value), quantitative
indices such as mean differences (or biases), SD and £95%CI of the biases, lower and upper
limits of agreement (mean difference £1.96*SD) and £95%CI of the agreement limits
should be reported. A significant direct comparison test and a positive bias indicates that the
device underestimated the observed PSG sleep outcome, whereas a significant direct
comparison test and a negative bias indicates that the device overestimated the PSG sleep
measure.

There is a general tendency to overemphasize the magnitude of the biases and underestimate
the width of the agreement limits. However, it should be kept in mind that even if the biases
are not significant, the performance of a device cannot be considered good when the
discrepancies are “quite wide”. A common practice is to report the number or percentage of
participants falling outside the Bland-Altman agreement limits, which emphasizes potential
large discrepancies between the PSG and the device. Still, this metric is dependent and needs
to be interpreted by considering the distribution of the PSG-device discrepancies, which vary
greatly across studies. Unfortunately, we are still relying on a case-by-case interpretation of
the results based on our expertise and best judgement, more than on standardize performance
quality metrics.

As shown in Table 1, a common metric used to investigate performance of a device is “a-
priori set clinically satisfactory ranges” (see 15, 28, 33, 43, 48, 51, 52, 55, 59), i.e. fixed
thresholds (usually, < 30-min PSG-device difference for TST and WASO, and < 5%
difference for SE) to determine whether a bias is clinically significant or not. However, use
of these fixed thresholds has limitations. We believe the rationale behind these proposed
ranges, leading back to the frequently cited study of Werner et al. (68), remains unclear.
Further clarification is required before advocating the use of the current “a-priori set
clinically satisfactory ranges’, and careful interpretation of these measures is needed.

Sometimes it is necessary to adjust the PSG-device bias if it is not constant across the range
of measurement and shows significant heteroscedasticity. For example, logarithmic
transformation of the values, calculating the ratio, or the percentage difference, instead of
the absolute difference, can be done (see 69, 70). Finally, simple regression tests should be
used to explore potential systematic dependency of PSG-device discrepancies in sleep
outcomes on the amount of PSG sleep disruption and demographic factors possibly affecting
motion patterns and/or other biological domains used by the proprietary scoring algorithms
(see 28, 43).

Although frequently used in the literature, Pearson’s correlations between PSG and device
outcomes are misleading and should be avoided in evaluating and interpreting PSG-device
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agreements in measuring sleep outcomes. Indeed, simply correlating PSG and device sleep
outcomes assesses the extent to which two measures covary, and not whether they are close
together (see 71). For example, if the sleep tracker systematically reports a sleep onset
latency two times longer than the PSG, the correlation coefficient would be 1 (perfect
correlation), whereas in reality, the sleep tracker is not providing a valid measure of sleep
onset.

A more appropriate approach is the use of intraclass correlation (ICC) which allows
quantification of the PSG-device agreement for sleep outcomes. Following Cicchetti’s
guidelines for interpreting ICC reliability coefficients (see 71), clinical significance is stated
as “poor” for coefficients of less than 0.40, “fair” for coefficients lying between 0.40 and
0.59, “good” for coefficients lying between 0.60 and 0.74, and “excellent” for coefficients
between 0.75 and 1.00. However, although some authors consider a device as “valid” based
on ICC outcomes (51), there is still no consensus as to what are the minimum requirements
for considering a device “valid” (72).

5.2.4. Accuracy of a device—Epoch-by-epoch (EBE) analysis is the preferred
approach to assess the accuracy of a device. EBE should be performed in a 30-s resolution to
evaluate sensitivity (proportion of PSG epochs correctly identified as “sleep” by a wearable
device, see Figure 1) and specificity (proportion of PSG epochs correctly identified as
“wake” by the device) of a device. When appropriate, the accuracy in detecting PSG sleep
stages should be evaluated as the proportion of PSG epochs of a specific PSG sleep stage
correctly identified by the device. A clarification on EBE terminology is needed. Currently,
we believe that the terms “sensitivity” and “specificity” (widely used in the actigraphy
literature) should be used when referring to the ability of a device to correctly classify PSG
sleep and wake epochs. When evaluating the PSG-device concordance in the EBE sleep
stages classification (“light”, “deep” and REM sleep), we suggest wording the outcomes as:
“agreement for’ (e.g., the EBE agreement for REM sleep is 0.60, reflecting the fact that
60% of the PSG REM sleep epochs are correctly classified as REM sleep by the device). In
our opinion, usage of standardized terminology will prevent confusion and misinterpretation
of outcomes from validation studies.

EBE overall accuracy (proportion of PSG epochs correctly identified as “sleep” and “wake”
by a wearable device) is frequently reported when evaluating a device performance.
However, this measure is misleading due to a strong bias toward the extremely high
sensitivity of most devices and the consequent tendency of evaluating the performance of a
device based on its “accuracy”. The relationship between sensitivity and specificity can also
be visually assessed using the Receiver Operating Characteristic (ROC) curves, which
provide a visual and quantitative measure of the accuracy of the device (see 73).

EBE analysis should be performed for each individual and the outcomes should be provided
as mean, SD and +95%CI of the mean. The determination of PSG-equivalent epochs of
specific sleep stages from a device is not always straightforward (e.g., PSG N1 and N2 sleep
may be represented as “light sleep” (see 42, 43)), but this information can be available
directly from device manufacturers.
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A common issue in performing EBE analysis is that wearables devices do not always
provide 30-s sleep scoring data, which should be the ideal recording time to match with
standard PSG scoring (8). Thus, different strategies have been adopted to match PSG and
device epochs. A common strategy is to convert 30-s PSG epochs into 1-min epochs as W-W
=W, W-Sor S-W =W, and S-S =S (33, 48, 55, 56). Others (47, 50, 51, 58), split the
device 1-min epochs into two equal 30-s epochs to match the PSG 30-s epochs resolution.
Results of these procedures can overinflate the amount of PSG wake. For example, as little
as 16 s of PSG wake (e.g., alpha rhythm more than 50% of the epoch over the occipital
region according to AASM rule for wake) can result in 1 min of wake.

Another measure that can be derived from EBE analysis is the Cohen’s kappa coefficient,
which is an index of interrater reliability that reflects the percentage of measurement
agreement (in this case, the sleep/wake scoring) of two methods not due to chance. However,
since during sleeping periods the proportion of sleep epochs is generally higher than the
wake epochs, it is possible to fall into “the first paradox of kappa statistic” (74), that occurs
when two measures have a high agreement but a low kappa. A way to correct this bias is to
calculate a prevalence- and bias-adjusted kappa (PABAK), which weights the number of
sleep and wake epochs (75).

A full representation of the EBE analysis is the error matrix (or confusion matrix). The error
matrix allows assessment of the device performance in classifying PSG wake and sleep (as
well as stages of sleep) epochs via a cross-tabular representation of the PSG-device epoch-
by-epoch classifications. The advantage is to obtain a more complete picture providing not
only the proportion of PSG epochs correctly classified by the device but also the source of
the potential misclassification (see Figure 1, and (42)). For a better reading of the confusion
matrix we previously calculated mean, SD and £95%CI of the proportion of agreement
between PSG epochs and predicted (device) epochs (42).

Other strategies have been proposed to capture the PSG-device accuracy accounting for
sleep timing, sleep stage distribution and cycles across the night (see also Table 2). For
example, in one of the first validation studies for wearable sleep trackers, Montgomery-
Downs et al. (47) calculated EBE sensitivity separately for wake before and after sleep onset
(an approach that may be useful when performing EBE analysis outside the controlled
laboratory settings in which lights-off and lights-on time cannot always be accurately
obtained). Authors also calculated EBE sensitivity separately for PSG N1, N2, N3 and REM
sleep, and in epochs containing arousals. Our group, recently introduced a PSG-device
comparison based on the ability of the device to correctly identify PSG NREM-REM cycles
across the night (42).

5.2.5. Reliability for sleep assessment—Less emphasis has been placed on
assessment of device reliability (see Section 5.2.5), which has been measured using within-
subject analyses (e.g., paired £tests) in the only two studies assessing intra-device reliability
(a person wearing multiple devices simultaneously) (47, 48). Also, most validation studies
have been based on single-night in-lab recordings due to several pragmatic and logistic
reasons (e.g., easy to control and implement, cost-effective, validation study nested into
other research protocols).
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6. Factors to consider when choosing a wearable sleep tracker

A critical requirement for using a wearable in research is to have access to the data. Most
wearable companies have some form of access to an Application Programming Interface
(API) and software development kit (SDKs), which allows post-processed data access and
integration, developing applications and services (e.qg., https://dev.fitbit.com/; https:/
jawbone.com/up/developer; https://build.misfit.com/; https://developer.health.nokia.com/
api). Some companies also have cloud services or web dashboards which allow to directly
export summary data in easy-to-read files (e.g., *.csv, *.xIs), ready for analysis. An initial
bridge between research and industry is offered by third party research services, usually
requiring a subscription, like Fitabase (Small Steps Labs LLC.; https://www.fitabase.com/;
supporting Fitbit devices and, more recently, Garmin devices) which allows access to more
technical information, assistance with setting up projects, and pre-processed (but not raw)
data at different time resolutions.

Other factors to consider if choosing a wearable in research or for clinical purposes are
shown in Figure 2. Reliability should be a major point of consideration given that these
devices may be particularly useful for long-term recording in non-laboratory settings, i.e. in
epidemiological studies. In the following paragraphs we will highlight some important
reliability issues (see Sections 6.1 and 6.2).

It is also critical to consider the sample being studied. Demographics and other
characteristics of the sample may impact device performance (see 28, 43, 55). If a specific
device shows a certain performance in an adult sample, one cannot assume that it will have
the same performance in children or adolescents. The same is also true for sleep disorders,
meaning that one cannot assume that a device validated in a healthy population will show
the same performance in individuals with sleep disorders (see Section 7). Some consumer
wearables offer different sensitivity settings (e.g., “normal’ or “sensitive’ mode). The
“normal’ setting is usually indicated for most users, whereas indication for using the
“sensitive” setting implies its use in the presence of sleep disturbances. However, no clear
indication for using different sensitivity settings are provided by wearables manufactures. As
summarized in Table 1, the few studies comparing different algorithm sensitivities in Fitbit
devices (48, 50, 51) indicated overall a poorer performance of the devices used in “sensitive”
mode.

Device position may also affect the accuracy of a device, particularly for the new generation
of multisensory sleep trackers. Other than the effects of position on the pattern of motion,
other bio-signals may be directly or indirectly affected by the position or incorrect position
of a device (e.g., PPG signals depend on how accurately blood flow is detected, skin
conductance is affected by sweating) (see 43). This is particularly important when
considering using the device in free-living condition, when technicians may be unavailable,
and participants need to self-apply the device.

Inter-device reliability

Inter-device reliability can be taken to mean that several devices used in the same conditions
can provide the same outcome. An at-home study based on three participants wearing two
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Fitbit “original” devices overnight showed high reliability of these devices (percentage of
EBE agreement of 96.5%, 99.1% and 97.6%) (47). Similar results were reported by Meltzer
and colleagues (48), who examined intra-device reliability in 7 subjects wearing 2 Fitbit
Ultra devices on the same wrist. Nevertheless, the authors prudently suggested that a device
should not be switched with another device in the middle of a research protocol. Inter-device
reliability is often overlooked and deserves further attention.

6.2. Device malfunctioning and other issues

A common issue with wearable trackers is data loss. In one study (48), 19% of the Fitbit
Ultra data (12 participants) were not recorded due to technical issues. Of note, in the same
study 14% of the data recorded with both the Actiwatch Spectrum and the AMI
Motionlogger were unusable for technical issues (48). Other studies reported 4.3% of
unusable sleep data (2 recordings) for Fitbit Charge 2 (42), and 12.5% (7 devices) for Fitbit
Alta HR (54). Sargent and colleagues (60) reported 10 missing recording (out of 60) from
Fitbit Charge HR due to an error in transcription (unclear whether this was a human or a
device error). Mantua and colleagues (49) testing several devices against PSG, reported that
data from 25% of Fitbit Flex (10 devices), 10% of Basis Health (2014 edition), 37.5% of
Misfit Shine and 10% of Withings Pulse O2 devices could not be used (either for user errors,
gross mis-estimation or other miscellaneous reasons). Of note, in the same study authors
reported that 12.5% of the data from Actiwatch Spectrum were unusable (1 device for gross
mis-estimation and 4 for malfunctions). More recently, Kang and colleagues (55) reported
only 2% of the data lost with the Fitbit Flex and 5% with the Actiwatch 2. Toon et al. (55)
reported unusable data from 4% of the Actiwatch 2 and 13% of Jawbone UP devices.
Missing data were due to participant behaviors (e.g., child taking off the UP during the
night) or device malfunctions (e.g., actigraphy recording ceased due to battery malfunction).
In another study (58), 17.5% of the data recorded with the Jawbone UP3 were unusable due
to unspecified malfunctions.

Gruwez et al. (57) reported missing data from 14% of the Withings Pulse 02,7% of the
Jawbone UP MOVE, and 5% of the SenseWear Pro Armband recordings. In another study
with 20 participants wearing the SenseWear Pro3 Armband the authors were able to use data
from all but one recordings (76). Interestingly, the same armband showed high reliability
even when recording several nights of sleep (77). In contrast, Lillehei and colleagues (78)
using Fitbit One over 5 consecutive nights reported about 86% of missing data. Baroni et al.
(79) showed a similar picture, with only 14% of the Fitbit Flex devices used in their study
able to collect six or seven nights of sleep, and 35% of them failed to record any nights of
sleep.

Overall, these studies show mixed results. Considering that the main advantages of
wearables is to collect data for several days, future studies are warranted to provide further
data on the long-term reliability of wearables. A detailed report for reliability should include
not only the number of recordings/device failure, but also information about the source of
unusable data (e.g., due to mechanical failure, human factors, software issues).

It is important to remember that wearable companies adopt different decision criteria as to
whether to provide a data outcome. For example, Fitbit Inc states that “ 7/e Fitbit system
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aoes not return sleep stages under various conditions. These include cases where the
heartbeat signal (and hence the heart rate variability) is not cleanly detected throughout the
night, if the total sleep duration is less than three hours, or if the battery runs out of power
auring the sleeping period’. These criteria are based on different factors including a test of
the integrity and amount of data they collect, which is not accessible to us. Thus, even when
a sleep outcome is provided, we do not know specifically how much “reliable” information
is used to provide that value.

7. The potential role of sleep wearables in clinical sleep disorders,

intervention delivery and patient monitoring

Although the gold standard to evaluate the presence of sleep disorders is PSG, actigraphy
has been commonly used in clinical practice to provide additional characterization of
individuals with sleep disorders and to assess their treatment response (see 80).
Nevertheless, so far only a few motion-based (first generation) consumer wearables have
been tested in patients with clinical sleep disorders.

Two studies targeted children and adolescents with sleep disordered breathing (SDB).
Meltzer et al. (48) showed that discrepancies between PSG and Fitbit Ultra changed as a
function of SDB status and device sensitivity settings (“normal’ or “sensitive’). Specifically,
the study showed that despite Fithit Ultra “normal” setting overestimated PSG TST and
underestimated PSG WASO in both children with or without OSA, the PSG-device
discrepancies were greater in mild OSA and further exacerbated in children with moderate/
severe OSA. The authors also reported that most of the participants were outside the a priori-
set “clinically satisfactory ranges” (i.e., TST <30 min and SE < 5%; see above for concerns
about the use of these agreement limits). A reverse pattern was observed for the “sensitive”
setting, characterized by greater PSG-device discrepancies in the no OSA category (TST
underestimation and WASO overestimation), which progressively lessened in mild OSA and
moderate/severe OSA categories (see Table 1 for details). Toon et al. (55) tested the Jawbone
UP and showed no differences in PSG-Jawbone UP discrepancies in estimating TST,
WASO, or SE as a function of SDB severity (i.e., primary snhoring, mild or moderate-severe
OSA). Moreover, the authors observed from the Bland-Altman plots that the Jawbone UP
sleep outcomes were more consistent with PSG measures than were Actiwatch 2-PSG
outcomes. Nevertheless, similar to Metzer et al. (48), the majority of the participants fell
outside a priori-set “clinically satisfactory ranges”. The authors indicated that, on the one
hand, the Jawbone UP should be used as a diagnostic tool with caution; on the other hand,
they observed that the Jawbone UP performance was, overall, similar to the Actiwatch 2.

Few studies have evaluated device performances in individuals with insomnia. Kang et at.
(51) reported an overall good performance of the Fitbit Flex in the “normal” mode for good
sleepers (no significant PSG-device differences for SOL, WASO, and SE, fair to excellent
ICCs, and the majority of the participants fell inside the “satisfactory clinical agreement
limits”). However, the Fitbit Flex showed more difficulties to assess sleep in the insomnia
group. Specifically, the Fitbit Flex significantly overestimated PSG TST, SE and
underestimate WASO in the insomnia group. Moreover, only 39.4% of the sample fell within
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the a priori-set “clinical agreement range”. Again, as in Meltzer et al. (48), the “sensitive”
mode showed a different, and less reliable pattern than the “normal”’ mode. Despite claims
that the “sensitive” setting should be used in the presence of sleep disturbances, probably
due to an algorithm that maximizes specificity (i.e., wake detection) at the detriment of
sensitivity (i.e., sleep detection), these validation studies suggest that the “sensitive” setting
is less reliable than the “normal” setting even in the presence of sleep disorders. Differently
from Kang et at. (51), our group failed to find any difference in PSG-Jawbone UP
discrepancies between women with and without insomnia disorder (56). The different
wearables and sample used prevent any study comparison.

Two recent studies by Cook and colleagues tested the performance of the Jawbone UP3 (58)
and the Fitbit Alta HR (54) against PSG and standard actigraphy (AW-2, only tested against
the Jawbone UP3) in patients with different type of central disorders of hypersomnolence
(including narcolepsy) and other sleep disorders tested at night and during multiple sleep
latency tests (MSLT). The Jawbone UP3 overestimated TST and SE, and underestimated
WASO and SOL compared to PSG, but showed a similar performance to the AW-2. It also
showed a good sensitivity (0.97) and a low specificity (0.39) and low agreement for single
stage scoring, in particular for REM sleep (0.30). The Fitbit Alta HR provided similar
results, with overestimation of TST and SE, compared to PSG. However, while sensitivity
was similar to the Jawbone UP3 (0.96), specificity was slightly better (0.58), and in general
showed a higher agreement for the discrimination of light, deep, and REM sleep (see Table
1). Of note, both devices failed to detect any SOREMPs during the MSLT. Authors
concluded that the Jawbone UP3 and the Fitbit Alta HR cannot substitute the standard PSG
to assess sleep in central disorders of hypersomnolence.

To our knowledge no studies have validated any consumer wearable trackers for circadian
rhythm disorders. Indeed, these conditions are less common that insomnia or OSA.
However, considering that actigraphy is a recommended tool for the diagnosis of circadian
disorders (see 80), the lack of study with this clinical condition is somewhat surprising and
future studies with wearables need to fill this gap. At-home PSG could be a viable approach
for addressing validation within this patient population. However, due to the challenges in
the longitudinal use of ambulatory PSG systems, a more reasonable approach would involve
the assessment of cross-sectional PSG-device biases in individuals with altered sleep-wake
times. Advancements should also be made to not only consider PSG-device validation of
classical outcomes (time spent asleep/awake and in different sleep stages) but also consider
major indices such as sleep onset and wake-up times used to assess circadian alterations
(e.g., delayed/advanced/irregular sleep-wake phases, jet lag). Reliable determination of sleep
onset is challenging with current wearables and advancements in algorithms or, possibly, the
addition of other sensors to enhance the detection of sleep onset would be valuable (see
section 5.1 “Detecting sleep onset and offset with wearable devices”).

Currently, there is insufficient evidence to consider consumer wearables as a potential stand-
alone diagnostic tool for sleep disorders.

An important concern of the general enthusiasm around the concept of “quantify self” is
evident in the growing tendency for people to self-diagnose and even change their sleep
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habits based on the interpretation of unregulated information of their consumer sleep
trackers. For example, people may try to stay longer in bed if their wearable device does not
show a ‘magic humber’ of 8 hours slept. Sleep feedback could be particularly problematic in
those suffering from insomnia, who may exacerbate their anxiety and worry about sleep if
their trackers display “poor sleep” performance. On the other hand, inaccurate feedback of
“good sleep” may prevent or delay individuals from looking for professional help. We are
also facing the situation in which patients are asking their physicians to evaluate their
wearable sleep graphics. This use of potentially inaccurate information about sleep may not
only alter the individuals’ perception of sleep, but challenge the clinician’s evaluation of
their sleep pattern and potential treatments (see 81, 82). However, some guidelines are now
available for clinicians on how to deal with CST data in clinical settings, as provided by the
AASM (83).

Nevertheless, if regulated, consumer wearable sleep-trackers may still be useful in clinical
settings to provide additional information about patients’ sleep-wake patterns (e.g., assess
regularities and abnormalities in individuals’ sleep schedules), and monitor treatment
responses and recovery. In this framework, a few studies have combined consumer sleep-
trackers and smartphone Apps to provide different type of interventions (e.g., internet-based
cognitive-behavioral therapy) (84-87) or to assess the effect of interventions on the sleep
pattern (88, 89) with mixed results. Sleep trackers may be useful to monitor patient’s
compliance to a particular sleep intervention such as sleep restriction. In general, clinicians
should be aware of the risk that patients start to trust their tracker outcomes more than their
physician’s clinical judgment.

Sleep trackers, if sufficiently validated, may potentially be useful to screen for sleep
disorders in the future. So far, to our knowledge, only smartphone applications using phone
and additional external sensors to extract and combine multiple features (position, audio,
oxygen saturation) have been used to screen for sleep apnea (90, 91), with some promising
results. Similarly, sleep trackers, in particular the second generation of multisensory sleep
trackers, may help to screen for potential sleep disorders in order to increase the number of
individuals who can ask for a clinical evaluation. However, although wearable technology
has been used to assess sleep quality in OSA patients, no currently available consumer
wearable devices are suitable for diagnosing OSA. Guidance from the Centers for Medicare
and Medicaid Services indicates four types of equipment for diagnosis of OSA: 1) in-
laboratory PSG (Type 1); 2) in-home PSG (Type I1); 3) in-home measures of respiratory
effort, airflow, cardiac data and blood oxygen saturation (Type Il1); 4) in-home measures of
blood oxygen saturation and airflow (Type 1V) (92). It is also the position of the AASM that
care should be taken in the interpretation of the results of at-home sleep apnea testing, with
raw data that should be reviewed and interpreted by a board-certified sleep medicine
physician (93). In a recent position statement (83) the AASM in reference to CST (which
includes sleep wearables devices) clearly stated that “CSTs cannot be utilized for the
diagnosis anad/or treatment of sleep disorders at this time”.
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8. Limitations, barriers and future direction for the use of wearable sleep

trackers

There is a lack of incentives from both the scientific community and industry (which
frequently relies on their own internal non-peer-reviewed tests) to perform dedicated
scientific validation of sleep-tracking wearables. Thus, the existing validation studies are
frequently initiated by the curiosity of isolated researchers or research groups, moved by the
need to find affordable, accurate, and reliable alternatives to the expensive medical grade
devices for measuring sleep in natural contexts. Further studies are needed to validate
wearable devices in different populations and conditions, particularly in individuals with
sleep disorders, in whom studies are few. Recently, the National Institute of Health (NIH)
recognized the potential of wearables for biosensing applications and the need to fill the gap
between validation and use of wearables within the scientific field. NIH promoted several
initiatives within the Small Business Innovation Research (SBIR) and Small Business
Technology Transfer (STTR) programs, and other funding opportunities to promote the
development (e.g., wearable devices to monitor blood alcohol levels and identify biomarkers
of drug addiction relapse in real time, identifying physiologic changes with old age) and
validation of wearable devices for health measurement and intervention delivery (e.g.,
wearables to improve diagnosis and early treatment in minority and health disparity
populations).

The consumer wearable market is extremely crowded, and the wearable industry is
struggling with market differentiation. For the scientific sleep community, the necessity of
opening the “black-box” wearable devices is important for raw data access and
standardization, but raw data access and cloud services do not come free. Within this
scenario, it is unclear if a line of consumer products and platforms more focused on the
needs of researchers and clinicians would fit the consumer wearable companies’ business
model. On the other hand, it is still unclear if the consumer wearables devices will maintain
the advantage over standard actigraphy in the recording of multiple bio-signals and related
assessment of sleep staging. In fact, within the medical space, new actions by actigraphy
companies may be taken (e.g., moving to a multisensory approach and still offering
validated algorithms based on multiple channels of information) (27). In addition, it is still
unclear what the limit of the level of performance is for these early-stage non-EEG
consumer wearable devices, and whether further advancement and integration of peripheral
information will be able to more accurately approximate EEG-defined sleep staging. Also,
the role of EEG consumer wearable devices within the sleep and circadian fields is still
unclear. The Zeo headband (Zeo, Inc.), which was the first product of its kind, showed
promising results in sleep measurement when compared to gold-standard lab-grade PSG
(94-96). After its failure (the company went out of business in 2013), other EEG-based
wearable headbands (e.g., Muse, Dreem, Neuroon) populated the market, and have shown
promise in detecting sleep stages in clinical and non-clinical populations (97, 98). However,
they are taking a different path from Zeo, more toward sleep-hacking (e.g.,
neuromodulation, brain entrainment for sleep enhancement) than sleep-tracking per se. The
use of in-ear EEG (EEG recorded within the ear canal) is also of interest, but it is still in its
infancy (99). It is unlikely that, in the immediate future, these EEG-like devices will make
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the same impact as multisensory non-EEG wearables in the field of sleep and circadian
science due to their greater invasiveness and relatively higher costs, limited use (they cannot
be easily worn 24/7), and the challenges in recording good quality EEG signals in
uncontrolled, non-laboratory conditions.

The sleep community still should clearly state what are their specific minimal requirements
(e.g., raw data access, algorithm standardization, validation steps) for accepting and
potentially introducing a consumer wearable sleep tracker in research and clinical sleep
settings. This should be the first step to opening a discussion with industry (Table 3).

Time is critical because consumer sleep wearables are increasingly used in observational and
interventional studies (see 2), and are already implemented in corporate wellness programs
(84, 100, 101). Also, consumer sleep trackers are a core part of the growing area of the
Internet of Things (102) and Big Data for eHealth and mHealth (103) applications, an
unstoppable digital health revolution. Press releases and reports from wearable companies,
based on analysis of billions of wearable data of unproven accuracy, are also growing in
popularity. The ability to map sleep in entire countries, breaking down sleep data by regions,
in association with major historical events, investigate sex- and age-differences in sleep
patterns in large populations (see 104, for example), is of value. But, without knowing the
performance of these devices, and without a scientific approach to the Big Data, any
interpretation of these results could be misleading. Having large amounts of data from these
devices does not necessary reduce the within- and between-subject variability. On the
contrary, it may amplify the inaccuracy of the results they provide, particularly when the
discrepancy between PSG and device (bias) for the measure of interest differs from zero or
when the discrepancy varies as a function of the PSG measure (i.e. the bias is not constant).
In the new generation of multisensory wearables, the consistency of the algorithm used in
measuring sleep is further challenged by the fact that the relationship between cardiac
features and sleep stages may vary as a function of different factors such as age, sex and
even by geographical area where participants live (105). Of concern is the growing
perception from the public that population-based sleep data as provided by wearables
companies (obtained by a specific sub-sample of the general population - the wearables
users) are the new normative sleep data. In addition, people may be making changes to their
sleep behaviors based on their wearable outcomes and frequently non-scientific validated
“tips” for sleeping better (direct or indirect claims made by most wearable companies).
Similarly, there could be situations in which people do not take actions when they should,
due to potentially false feedbacks from their wearable device (e.g., they may truly have
severe sleep disruption or altered sleep patterns, but their device is telling them that their
sleep is good).

Another factor to consider in using consumer wearables, particularly concerning a potential
role in precision medicine, is their accuracy at the level of the individual. The translation of
group-average results of validation studies to the individual is challenging due to several
factors such as variability in demographics, sleep and daytime habits which may affect the
performance of a device. An open-access data repository of de-identified PSG and wearable
data, including demographics and other information collected from validation studies, may
ultimately allow correction for key factors affecting device performance. For example, the
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characterization of the relation (function) between demographics (e.g., age and sex ) and
PSG-device biases on a group level (see 28), could be used to adjust device outcomes at the
individual level.

9. Conclusion

Sleep is fundamental for health (106). About one-third of the population is struggling with
their sleep, a number that is estimated to increase. In our 24/7 sleepless society, sleep
wearables may have a key role to better characterize and understand sleep and, within the
framework of precision medicine, to ultimately improve health, safety and well-being for
individuals and society. Collection of continuous data, day and night, could also lead to
better understanding of links between sleep and daytime behaviors such as exercise.

Wearable sleep trackers are being increasingly adopted by both the general public and sleep
researchers and clinicians. The second generation of multisensory sleep trackers opens a
path for greater accuracy in measuring sleep, as compared to the motion-based approach to
sleep/wake assessment. However, the proven theoretical advantage of the multisensory
approach to sleep staging needs further empirical validation. Currently, these devices should
be used cautiously, and interpretation of their outcomes should be carefully considered to
avoid generating large inaccurate datasets leading to potential misleading scientific
conclusions, assessment of sleep disturbances, and therapeutic decisions.

Further work is needed to investigate the potential use and performance, pros and cons, and
limitations of these novel sleep trackers, particularly in sleep disorder populations. Keeping
in mind the differential and overlapping motivations of various end-users’ groups (e.g.,
research and clinical sleep community, wearable industry, consumers), partnership with
industry is beneficial to combine excellence and speed in technological advancement from
industry and advanced psychophysiological knowledge and scientific rigor from sleep
science.
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~
_ 4Tl PSG | Device pesement b
(wake/sleep) | (sleep stages)
i1 True W True W
P . . 2 W ‘15" False S False “LS”
Within-subject analysis T - —
Comparison between PSG and PSG- EBE analysis 4 N2 | s Trues True “LS”
: : . 5 N2 “DS” True S False “DS”
equivalent device sleep outcomes. To evaluate the proportion of : NL | i Tre s True 157
The tests indicate if the device PSG epochs correctly classified 7 N3 [ REM True False “REM”
significantly overestimates or as wake (sensitivity), sleep I REM | REM TrueS True “REM”
. o : ) REM W False W False W
underestimates the PSG parameters (specificity) and its stages o EREE S e
(agreement for each stage of

Sleep (S), wake (W), light sleep (LS), deep sleep (DS), rapid-eyes-
movement sleep (REM). Sensitivity = True S / (True S + False W),
specificity = True W / (True W + False S), the agreement for each
stage of sleep is calculated as total number of True S/ (True S +

False S)

sleep) from the device

_

Bland-Altman plots

Plotting the PSG-device
differences (or biases, y-axis)
against the PSG values (x-axis)
for each of the main sleep

How to
evaluate the
performance

of a device

_— 5

Error matrix

outcomes Plotting the PSG-device agreements, for each
120 of the wake and sleep epochs, accounts for
£3 80 Upper limit the nature of the misclassification. In the
~3
§s - ? Y 2 example below, the device correctly
=8 = : o H% o — categorizes PSG wake 60% of the time, and
@ L
€3 O %32 when it misclassifies wake, it classifies “light
g = 40 o ©  Lowerlimit sleep” 30% of time, “deep sleep” 1% of the
é g -80 time and REM sleep, 9% of the time
S a2
0 20 40 60 80 100 120 Others Device
PSG N3 sleep (min) Intraclass
correlations (ICC), Epoch | Wake | “Light sleep” | “Deep sleep”| REM
Regression tests sleep cycle Wake | 0.60 0.30 0.01 0.09
Investigation of the potential factors comparison 3 LERAPAES 0:80
(e.g., amount of PSG WASO, age, sex) 3 = N3 050
REM 0.70

affecting the PSG-device discrepancies

Figure 1.
Recommendations for the analysis and evaluation of the performance of a consumer

wearable sleep tracker against polysomnography (PSG). EBE, epoch-by-epoch; WASO,
wake after sleep onset
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Know your sample before
chosing a device

Demographics and amount of sleep
disruption may influence device
performance, to a different extent
depending on the device. Priority
should be given to a device tested
on the closest population to the
one that will be the target of
observation

A brand is not equal to a
specificmodel

A common misinterpretation is to
extend the performance of a
specific device model to the brand
of that device. Outcomes from a
validation study are only valid for
that specific model and device
tested

Reliability over time

It is important that under the same
conditions, a device provides the
same outcomes. Reliability is
particularly critical for long-term
use of these devices

Figure 2.

Partnership with industry
and use of third -party
services

Partnership with device
manufacturers and/or third party
research services (e.g., Fitabase) is

possible and can facilitate study
design and execution

(5]

Device position may affect
the device performance

Device manufacturers usually
provides detailed guidelines on
device positioning. A training
session to teach participants on
how to accurately position the
device, when technician are not
available, may avoid position
related issues

(8

Device malfunction
Data loss can be of great concern.

Appropriate instruction on how to
wear and use a particular device
may reduce data loss due to
technical failure and inappropriate
users' behaviors

Page 29

Understanding device
outcomes

Wearable devices provide multiple
sleep and other outcomes, and
each of them has a different level
of accuracy versus PSG (gold
standard). Priority should be given
to devices with proven
performance

(6]

Proprietary algorithms:
How to choose a specific
setting?

Algorithms are proprietary and raw
data cannot be accessed. Some
manufacturers allow users to
choose sensitivity thresholds for
sleep detection. Current evidence
discourages the use of settings
other than the standard one

Firmware updates may
challenge study completion

Features used in sleep scoring, and
thus device sleep outcomes, may
be updated without notice. Any
updates of the firmware during the
data collection period should be
avoided

Critical factors to consider when evaluating the potential use of a consumer wearable sleep
trackers in research and clinical sleep settings
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Table 2

An example of a qualitative approach to evaluate device performance.

An alternative way to evaluate the performance of a device is whether it adequately (compared to PSG) captures a significant literature effect
(e.g., a group difference in sleep architecture between healthy individuals and those with a sleep disorder, sleep recovery after cognitive-
behavioral treatments in insomnia sufferers, sleep alterations following acute stress-inducing experimental manipulation). For example,
similarly to PSG, we previously showed that a multisensory sleep tracker (the OURA ring) was able to significantly detect the age-related
decline in N3 sleep in an adolescence sample. This finding is encouraging given that the device showed its greatest limitation in PSG N3
classification (51% agreement in detecting PSG N3 sleep) (43).

Med Sci Sports Exerc. Author manuscript; available in PMC 2020 July 01.



1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

de Zambotti et al.

Page 34

Table 3

Assuming that the proprietary algorithms used by consumer wearables will remain proprietary, what else can
the wearable industry do to facilitate the use of consumer wearable sleep-trackers in clinical and sleep research

settings?

Open accessto raw data

Allows application of publicly available algorithms to wearable raw accelerometer data
(and/or plethysmography derived IBIs) obtaining a standardized sleep stage classification

Allow the choice of a specific version of the
proprietary algorithm used for sleep
classification when exporting/extracting
sleep data

Allows consistency for data collection within a study period, by avoiding uncontrollable
algorithm updates that may affect sleep parameter calculations

Also allows researchers to choose a specific wearable device model using a specific algorithm
with proven validation

Have a separ ate line of products more
aligned with research and clinical needs

Would remove many concerns of using an uncontrolled consumer product for research and
clinical sleep assessment

Increase partner ship with sleep research
and clinical centers

Allows access to domain expertise in basic sleep science and clinical sleep disorders, which
can lead to consistent use of accepted terminology, and insight into the meaning and value of
Big Data
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