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Abstract

The rapid decrease in DNA sequencing cost is revolutionizing medicine and science. In medicine, 

genome sequencing has revealed millions of missense variants that change protein sequences, yet 

we only understand the molecular and phenotypic consequences of a small fraction. Within protein 

science, high-throughput deep mutational scanning experiments enable us to probe thousands of 

variants in a single, multiplexed experiment. We review efforts that bring together these topics via 

experimental and computational approaches to determine the consequences of missense variants in 

proteins. We focus on the role of changes in protein stability as a driver for disease, and how 

experiments, biophysical models and computation are providing a framework for understanding 

and predicting how changes in protein sequence affect cellular protein stability.
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The DNA Avalanche and Interpreting Missense Variations

Technological advances in DNA sequencing have made human genome sequencing on a 

large scale not only feasible, but also affordable. The resulting data avalanche has 

highlighted the challenge of interpreting the phenotypic consequences of genetic variants 

[1,2]. Variant interpretation is particularly challenging since more than half of the distinct 

variants found in an analysis of >60 000 human exomes were only observed in a single 

individual [3] and since many diseases have a complex, polygenic origin [4]. Although the 

problem is difficult and complicated, the potential to improve the understanding, diagnosis, 

and treatment of human diseases is enormous (Fig. 1).
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Missense variants, in which one amino acid is replaced by another, represent over 40% of 

the unique variants observed in the Exome Aggregation Consortium database [3], yet their 

phenotypic consequences are often difficult to predict. This is in contrast to nonsense or 

frameshift variants that cause large changes to the encoded protein and consequently are 

usually deleterious. As an example, systematic mutagenesis studies of the highly conserved 

protein ubiquitin have shown that many single amino acid changes only have a minor impact 

on protein function in a cellular assay [5]. An analysis of similar high-throughput data across 

multiple proteins suggest that, indeed about two thirds of single amino acid changes have 

only a minor effect on function [6]. Some variants are, however, severely detrimental and 

cause essentially complete loss of function. An interesting observation from further studies 

on ubiquitin is that, at least for this highly conserved protein, there can be substantial 

variation of the effect of a variant depending on the cellular status and conditions, so that 

most are detrimental under at least one condition [7]. Thus, in a biological and clinical 

context there can be wide variability in the number and type of tolerated mutations in a gene 

[8,9].

In a clinical setting it would be useful to have robust methods and sufficient data for 

interpretation of genetic variants and accurate classifications of whether they are pathogenic 

or benign (Fig. 1a) [10]. This is particularly important for diseases where such information 

can lead to clinical action [11]. To further our understanding of the origins of disease it 

would also be extremely valuable to have reliable predictors of the underlying mechanisms 

by which variants lead to disease.

There are several conceptual frameworks available to study, model and predict the 

phenotypic consequences and pathogenicity of sequence variation. For example, one may 

use cellular or biochemical assays to quantify the effects of a variant on function and other 

properties, and recent developments are enabling such studies in high-throughput by 

covering all possible individual amino acid changes (Fig. 1b) [12]. Another framework is to 

use bioinformatics and machine learning methods to integrate existing data, in particular 

information about sequence conservation, to interpret what sequence variation is compatible 

with function [13]. Finally, one may use the accumulated knowledge about protein structure, 

function and folding to determine the likely effect of a variant (Fig. 1c) [14]. These different 

approaches are not mutually exclusive and ongoing efforts indeed aim to combine them (Fig. 

1d).

In this review, we focus on missense variants that result in a change from one amino acid to 

another (henceforth called variants). Further, we focus on recent efforts to understand and 

predict the effects these variants have on biophysical properties of proteins, and, 

consequently, their effect on function. While protein-coding regions only make up ~1.5% of 

the genome, around 5-10% of hits in genome-wide association studies fall into them, 

although linkage disequilibrium (joint inheritance of elements proximal on a chromosome) 

makes it challenging to identify precisely which of multiple nearby variants is causal [15]. 

Beyond diagnosis, we may use existing knowledge of proteins and their cellular pathways to 

help elucidate the disease-causing mechanisms. Because proteins can be targeted by small 

molecules or peptides, these insights can potentially open up therapeutic avenues.
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Loss of protein stability as origin of disease

Protein stability is one of the most basic properties of a protein, and may be strongly 

affected by missense variants. As most proteins need to be folded to function, loss of 

stability may lead to loss of function. In the context of a biophysical or biochemical 

experiment, stability generally refers to the thermodynamic or kinetic stability between a 

fully folded and globally unfolded state, but in a cellular and disease context many other 

factors and protein conformations play a role. These factors include interactions with the 

cellular protein quality control system, protein-protein interactions, cellular trafficking and 

post-translational modifications. Analyses linking the predicted effect of amino acid changes 

to the thermodynamic stability of a protein with its cellular stability and pathogenicity 

suggest that loss of stability could be a main driver and origin of inherited diseases [16-20]. 

Thus, an improved understanding of the complex relationship between protein sequence, 

structure, folding, and cellular stability could provide new possibilities for diagnosis and 

even treatment.

Experimental studies of protein folding and stability in vitro and in vivo may provide 

detailed, quantitative descriptions and mechanistic insights of the effects of individual amino 

acid changes. Until recently, however, they were limited to studying the effects of a few 

variants, generally limiting studies to retrospective analyses of variants already seen in 

patients. Recent developments in high-throughput experiments are, however, beginning to 

provide us with orders-of-magnitude more data to improve our models and understanding of 

protein stability, and to perform prospective studies of variants not yet seen in patients [21]. 

By leveraging the same advances in DNA sequencing that are enabling cheap sequencing of 

human genomes, high-throughput experiments are making it possible to study the effects of 

sequence variation on a scale not previously possible [22]. Combined with genetic selection 

systems, DNA sequencing methods can also be used to study the mechanisms and sequence 

specificity of cellular protein quality control [23].

Together, these developments are now being put to use to improve the predictions of clinical 

outcomes and to provide mechanistic models for diseases. Below we review recent 

developments in these areas, focusing on the role that loss of protein stability and resulting 

loss of function plays in human diseases. We begin with an overview of the cellular protein 

quality control system which recognizes unstable or misfolded proteins and target them for 

degradation, and thus is the mechanistic link between loss of stability and decreased cellular 

abundancy of proteins. We proceed to show how DMS experiments are transforming our 

ability to study functional and mechanistic consequences of variants. We then describe 

recent developments in using computational methods to predict the consequences of 

variants, and end by outlining how insights into the mechanisms underlying loss of cellular 

protein stability may be used to develop new therapies.

Cellular protein quality control

Since structurally destabilized or misfolded proteins may form various toxic inclusions or 

aggregates, all organisms have evolved a number of protective measures to guard against 

these potentially harmful proteins. Collectively these mechanisms are known as protein 
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quality control (PQC) systems, with the two main strategies being either refolding or 

degradation of the misfolded proteins [24,25].

During or after synthesis, proteins may undergo transitions through various metastable 

folding intermediates towards the native state and be protected from aggregation by 

molecular chaperones; in a similar manner chaperones may also catalyse the refolding of 

proteins that become damaged after synthesis [24]. Degradative PQC, on the other hand, 

relies on proteases to irreversibly clear the intracellular environment of non-native proteins. 

Both of these PQC systems must be highly specific for incorrectly folded proteins, but also 

be broadly inclusive to ensure that many structurally diverse proteins can be targeted. 

Accordingly, defects in either of these systems can lead to accumulation of toxic protein 

species which in turn may trigger diseases, including several neurodegenerative disorders 

[26,27]. Conversely, an overaggressive destruction of structurally destabilized, but 

functional, proteins has been linked to various hereditary diseases, including cystic fibrosis 

[28,29] and Lynch syndrome [19,30,31]. It therefore becomes clear that substrate selection is 

a trade-off between specificity and recognition of a wide variety of substrates.

In eukaryotes, most protein degradation occurs in the cytosol and nucleus via the ubiquitin-

proteasome system (UPS) or the autophagy-lysosomal pathway [32], with the latter system 

typically responsible for the degradation of highly misfolded and insoluble protein 

aggregates. Aggregation has also been linked to a number of diseases; however this is 

beyond the scope of this article and is reviewed in [33]. The UPS generally targets soluble or 

partially soluble proteins through a process involving conjugation of a polyubiquitin chain to 

the substrate protein, thus targeting it to degradation by the 26S proteasome. Ubiquitin 

conjugation is catalysed by an enzymatic cascade that includes substrate specific E3 

ubiquitin-protein ligases that add the ubiquitin chains to the target protein. The 

discriminating feature in a destabilized protein that elicits its recognition by E3s and 

degradation, the so-called degron, is despite tremendous recent efforts [23,34-36]not 

completely understood, but it is likely to involve hydrophobic regions that are buried in the 

native protein, but exposed in misfolded proteins (Fig. 2) as well as intrinsically disordered 

segments where degradation can be initiated. We refer the reader to recent reviews of the 

role and components of the PQC that are important to the degradation of misfolded proteins 

and of the molecular and biophysical origins of proteasomal degradation [37-39]

In the context of disease-causing variants, a key question is how much structural 

destabilization is tolerated before the PQC system kicks in? Recently, it was shown that the 

degree of protein destabilization correlates with the turnover rate in the Lynch-syndrome 

related protein MSH2 [19]. Surprisingly, however, as little as 3 kcal mol−1 was sufficient to 

trigger degradation [19]. Although this figure is likely to vary from protein to protein, 

depending on how stable the wild type protein is, a 3 kcal mol−1 destabilization is certainly 

not dramatic, compared with, for example, the average stability of 5 kcal mol−1 for a series 

of small proteins [40]. It is, however, in agreement with genetic studies in yeast that have 

shown that the PQC system operates by following a better-safe-than-sorry principle and is 

thus highly diligent and prone to target proteins that are only slightly perturbed and still 

functional [31,41,42].
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A key problem to tackle in the future is to understand better what structural features are 

actually recognized by the PQC system and thus refine our understanding of degradation 

signals, both at stage of ubiquitin conjugation at when substrates are degraded at the 

proteasome [34,35,37-39]. For example, it is unclear whether cells generally recognize 

global or local unfolding events, and what the relationship is between such unfolding events 

and transient exposure of degron sequences (Fig. 2). In this context, a single amino acid 

change causing a destabilization of a few kcal mol−1 could cause a substantial increase in the 

population of locally unfolded structures, which in turn would lead to degradation and 

insufficient levels of the affected protein.

Deep Mutational Scanning

Much of what we know about how proteins fold and are stabilized has been learned by 

studying individual amino acid changes. However, this one-at-a-time approach probes only a 

tiny fraction of the possible genetic variation we could observe in an individual, and hence 

limits our understanding and ability to predict phenotypic consequences. Deep mutational 

scanning (DMS) experiments leverage cheap DNA sequencing to probe the effects of 

hundreds or thousands of variants in a single, multiplexed assay [22,43]. First, selection for a 

protein property of interest is applied to a large library of variants. Selections used so far 

include coupling protein activity to cell growth, coupling protein activity or stability to a 

fluorescent reporter, or selecting for ligand binding using phage or yeast display. Variants in 

the library change in frequency depending on how well they able to perform under selective 

conditions. Finally, the frequency of each variant before and after the selection is read out 

using next-generation DNA sequencing and each variant’s change in frequency is used to 

compute a score that quantifies the effect of the variant on the property and conditions 

selected under.

Most applications of DMS have employed selection for a biological function of the protein 

that can be probed in high throughput. For example, in a recent tour de force, the effect of 

variants of the BRCA1 gene were assayed using saturation genome editing. Here, 

approximately 4000 variants were introduced into 13 of BRCA1’s 24 exons using CRISPR/

Cas9 editing of the genomic copy of BRCA1 in a haploid cell line [12]. The functional 

consequences of each variant on cell viability was measured using next-generation 

sequencing, and correlated strongly with existing expert-based assessment of pathogenicity. 

Variants that are common in the human population were more likely to be scored as 

functional in the assay. Importantly, this experiment also provided functional data for the 

several thousand variants that have not yet been seen in any patient. These unseen variants 

are of unknown pathogenicity, so the functional data will be of immediate use if any of them 

are seen in the future. An interesting observation was also that ~90% of all loss-of-function 

variants had no substantial changes in mRNA levels, suggesting that most missense variants

—at least in BRCA1—affect function at the protein level. As observed from the results on 

ubiquitin discussed in the introduction, as well as a dual-assay DMS study of BRCA1 [44], 

different assays and conditions might reveal different sensitivities to variants. Further, in a 

physiological context, individual genes vary in how much they tolerate sequence variations 

[8,9], making it important to determine the relationship between the DMS results and 

pathogenicity.
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The results of growth-based saturation genome editing experiments like those described for 

BRCA1 above depend on the combined effects that sequence variation may have on 

numerous properties including RNA splicing, expression levels, protein function, protein-

protein interaction, post-translational modifications, and protein folding and stability. 

Because the cellular growth rate may capture many of the biologically-relevant effects of 

variants it can be extremely accurate and useful for assessing the pathogenicity. On the other 

hand, the results may be less informative for disentangling the mechanism by which each 

variant exerts an effect, and the knowledge obtained is not easily transferable to studying the 

effects of variants in other proteins.

To enable more widespread analysis of variant consequences without needing to establish 

protein-specific assays, and to learn more general rules regarding the relationship between 

protein stability and cellular abundance, we have recently developed variant abundance by 

massively parallel sequencing (VAMP-seq, Fig. 3). VAMP-seq measures the impact of 

variants on the steady-state cellular abundance of a protein [45]. Here, a library of variants 

of the protein of interest is fused to green fluorescent protein (GFP; Fig. 3a). Then, the 

library is expressed in cultured mammalian cells such that each cell expresses one and only 

one variant (Fig. 3b). The stability of the variant dictates the stability of the GFP fusion, so 

each cell’s GFP fluorescence reports on the abundance of the protein variant. Cells are 

sorted into bins based on their fluorescence, next-generation sequencing is used determine 

the frequency of every variant in each bin, and variant frequencies are used to compute 

abundance scores (Fig. 3c). Thus, a single VAMP-seq experiment provides quantitative 

abundance data for thousands of variants simultaneously and enables one to separate variants 

with modest effects on stability from those that are substantially destabilizing (Fig. 3d).

In the context of enabling computational prediction methods, it is worth highlighting that a 

single VAMP-seq experiment provides information about a number of variants comparable 

in size to the entire database used to train current state-of-the-art models for predicting 

protein stability [46,47] (Fig. 3e). Another advantage of VAMP-seq and other DMS 

experiments is that they often target most or all of the 19 possible amino acid substitutions at 

each position. Thus, unlike the majority of available biophysical data that is highly biased 

[48] and mostly consists of side chain truncations to alanine or glycine (Fig. 3e), 

comprehensive stability data can be used to guide the development of improved prediction 

methods. While most biophysical experiments probe only a subset of the possible mutations, 

a recent study made it possible to examine how accurate DMS experiments can probe 

protein stability [49]. By comparing measurements of in vitro measurements of 

thermodynamic stability, performed in high-throughput, with the results of a mechanistic 

analysis of a DMS experiment, the authors showed that DMS may indeed provide 

quantitative data on protein stability.

DMS is already a widely-applied method, and will become even more useful as methods for 

generating and sequencing variant libraries improve and decrease in cost. The resulting data 

is useful in the clinic because it can be used to aid the interpretation of any variant including 

those not yet seen in any patient, and because it may be used to train better prediction 

methods. We also note that DMS and related high-throughput experiments may provide very 
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useful information for understanding and improving protein function and stability for 

example in protein engineering and design [50,51].

Predicting the consequences of missense variation

While experimental testing of variants is expanding in scope and scale, computational 

predictions of variant consequences will continue to be the only widely applicable method to 

assess pathogenicity for the foreseeable future. A number of predictors have been trained 

specifically for this purpose, often using known benign and pathogenic variants [52]. Here, 

we instead focus on three distinct approaches developed to address more general questions 

concerning how changes in the protein sequence affect, for example, protein stability or 

general functional properties. These methods have not been specifically trained on 

pathogenic variants; instead, they were created to capture thermostability of folding, 

evolutionary tolerance, and patterns observed in DMS experiments, respectively. To 

illustrate the outcome and performance of these three classes of prediction methods, we 

show the results of stability calculations (Fig. 4a), a sequence likelihood model (Fig. 4b) and 

the DMS-based prediction method (Fig. 4c) on the protein MSH2, and discuss them in more 

detail below.

Modelling amino acid substitution(s) directly in a protein’s 3-dimensional structure should, 

in principle, enable an accurate assessment of the resulting change in folding energy. Two 

tools that take this approach are FoldX [47] and Rosetta [53], which each predict the effect 

of an amino acid change on stability with an accuracy of about 1 kcal mol−1 and a 

correlation coefficient of ~0.7 (depending on test set [46]). In addition to predicting stability 

effects, these and related methods have been shown to successfully identify pathogenic 

variants in several proteins [16,19]. In selected cases, experimental validation yielded a 

correlation between the predicted loss of stability and cellular protein levels [19,45,54]. In 

addition to classifying unstable variants as pathogenic, stability predictions have the 

additional advantage of indicating the likely underlying mechanism; this information is 

useful when developing therapeutic strategies (see below).

Prediction methods that focus on a specific mechanism such as loss of stability will, of 

course, not capture variants that give rise to disease via different mechanisms. Thus, stability 

predictions are most useful when combined with other predictors [52,55-57]. Analysis of the 

conservation patterns in a multiple sequence alignment of a protein family is a powerful and 

general approach to identify substitutions that are pathogenic by their paucity in, or absence 

from, the alignment, and indeed is used in most prediction methods [52]. One caveat with 

analysing the conservation at individual sites is that it neglects the context in which the 

variation occurs although such effects may be important [58]. A recent development is, 

however, the construction of higher-order statistical models that examine both conservation 

at individual sites and also between multiple sites [59-62]. While these latter approaches 

generally provide greater accuracy than methods that analyse each site independently [63], 

they require a larger number of homologous sequences [64]. This restriction arises because 

the methods involve building global sequence models rather than examining each site 

independently. Analyses that consider both site conservation and pairwise co-varying 

positions have successfully been applied to predict variant pathogenicity [63,65], and more 
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recently, more general models have been introduced [13]. Co-variation also occurs between 

different genes, and may be indicative of direct protein-protein interactions.

Because evolutionary conservation across a protein family is likely to capture residues 

required for the protein’s core function, these approaches can identify variants that affect 

many protein properties including stability, enzymatic activity, post-translational 

modifications, or protein–protein interactions. Thus, a conserved variant may be neutral 

from the perspective of thermodynamic folding energy but have strong functional 

consequences. On the other hand, evolutionary sequence analysis may miss pathogenic 

changes where the residue in question is critical only for human biology, or in a small 

branch of the protein family’s phylogenetic tree, or where the variation has specific effects 

on regulation or modifications. In this context, recent analyses focusing on sequence 

conservation in non-human primates are particularly interesting [66].

As an alternative to analyses of conservation through deep multiple sequence alignments, 

one may use other sources of data to learn what kind of amino acid changes typically lead to 

perturbed function. Here, DMS experiments now provide us with a large collection of the 

functional effects of tens of thousands of substitutions across a diverse set of proteins [6]. 

Annotation of this functional data with biochemical and coarse-grained structural features 

was combined with machine learning to create Envision, a tool for quantitative prediction of 

the effect of missense variants [67]. In contrast to the biophysical modelling and sequence 

conservation analysis approaches discussed above, Envision does not require specific data 

on the protein in question beyond its sequence, and is thus more widely applicable than 

stability calculations and statistical sequence analysis, yet it successfully identified many 

pathogenic variants in a recent benchmark [67].

As an example of the power of using these three prediction paradigms, we show their 

application to the protein MSH2, where variants may lead to cancer predisposition (Lynch 

syndrome) (Fig. 4). Specifically, as previously described [19], we used FoldX [47] to 

calculate changes in protein stability from the structure of MSH2. We also used Gremlin 

[60], a method to learn a probabilistic model from a multiple sequence alignment, to analyse 

conservation patterns in MSH2 [19]. Finally, we used a Envision [67], the abovementioned 

machine learning method trained on DMS data, structure and sequence features, to predict 

the consequences of variants. In contrast to our previous work that focused on a smaller set 

of variants, we here used ClinVar [68], an archive of medically important variants and 

phenotypes, to select 66 pathogenic and 21 benign variants, and also analysed the 587 

missense variants of MSH2 found in the Genome Aggregation Database, gnomAD [3], 

which aggregates information from several different exome and whole-genome sequencing 

projects.

The results show clearly that, although these methods have not been trained on population 

genetics data or disease variants, they are able to separate known disease-causing variants 

from benign variants with relatively high accuracy. For example, benign variants generally 

have modest effects on stability, whereas many pathogenic variants are highly destabilizing. 

It is also worth noting that only three of the 66 pathogenic variants seen in ClinVar have 

actually been observed in the ~150 000 genome and exome sequences available in gnomAD, 
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while 19/21 benign variants have been observed. Thus, there is a clear trend that more 

common population variants are predicted to have milder effects, whereas many uncommon 

variants and pathogenic variants are predicted to have more dramatic effects (Fig. 4a). These 

observations imply that there is a clear difference in the distribution of predicted scores 

between benign and pathogenic variants (Fig. 4b) which in turn can be transformed into 

relatively accurate predictions (Fig. 4c). Nonetheless, the analyses also show that these 

predictions of functional effects are not yet alone sufficient to fully separate benign from 

pathogenic variation. Thus, we note that many other methods exist for predicting 

pathogenicity. We have chosen three methods that each aim to predict rather basic properties 

and are not based on analysis of any known disease-causing variants, and generally 

applicable to a wide range of proteins. In a clinical setting and for optimal prediction 

accuracy one could combine assessment of the effects of variants on multiple protein 

properties [52,55-57,69,70].

Therapeutic possibilities

In addition to the prospect for improved diagnosis via prediction of pathogenicity, the 

experimental and computational studies discussed above provide new opportunities for 

treatment of diseases. For variants that gives rise to disease via loss of stability, intracellular 

degradation and thereby loss of function, it might be possible to rescue function via 

restabilization. In particular, because the PQC is overzealous in targeting potentially 

functional, but mildly destabilized proteins, many disease-causing variants might be 

sufficiently functional that pathogenicity could potentially be averted if the proteins were 

stabilized [31] (Fig. 5).

The most dramatic approach is perhaps to inhibit the proteasome, and proteasome inhibitors 

are indeed already approved drugs [71]. In many cases, a more direct and elegant approach 

might be to target the components in the PQC that are relevant for degrading a specific 

disease-causing variant. To enable this approach, we need to map in much greater detail the 

E3 enzymes and chaperones involved in recognizing specific substrates and targeting them 

for degradation. As an example, in yeast, certain mutant variants of MSH2 linked to Lynch 

syndrome can be rescued by deleting the E3 ligase that targets the MSH2 variants for 

degradation, thus restoring cellular MSH2 protein levels and MSH2 function [30]. Thus, 

targeting the equivalent, but still unknown [72] human E3 ligase may provide treatment 

options for individuals with certain MSH2 variants. Since a number of the PQC E3s display 

overlapping substrate specificity [73], this will likely be complicated. Other strategies 

involve increasing or decreasing the levels of chaperones that either aid in refolding or 

degradation [74,75].

Some protein variants might be so unstable that even inhibiting their degradation would not 

be sufficient to restore cellular stability and function. These variants might, however, be 

rescued via small molecules that bind directly to the destabilized variant protein [76]. This 

chemical chaperone or corrector approach has already been shown to rescue function for 

example in mutant TP53 [77] and CFTR [78].
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Concluding Remarks

Widespread access to cheap DNA sequencing is transforming medicine and science. Within 

precision medicine, genome or exome sequencing provides possibilities for finding causal 

variants and for improved diagnosis and possible treatment. Within protein science, DMS 

experiments are enabling the study of the effects of thousands of variants in a single 

experiment. Recent efforts are bringing these fields together by using DMS to help classify 

variants as benign or pathogenic, and by providing data to benchmark or train prediction 

methods for variant classification. These approaches may be particularly important for so-

called rare genetic disease that are difficult to diagnose from population-based studies [79]. 

Accurate predictions of variant consequences may also be useful in finding rare causal 

variants or aggregating information across variants.

So far, these approaches have mostly been applied to simple, monogenic Mendelian 

disorders. In the future it will be interesting to investigate whether they can improve 

polygenic risk scores [80] that aggregate information across variants in multiple genes (see 

Outstanding Questions). Here it is worth noting how stability predictions for protein-protein 

complexes provide a direct mechanism for finding apparently non-additive effects. For 

example, two variants that individually only cause a mild change in the stability of the 

complex may, when combined, have a dramatic effect because of the non-linear relationship 

between energy and population of the complex.

One of the problems in assessing the importance of loss of stability for disease is that we do 

not fully understand when and why the current prediction methods fail. This is in part due to 

the fact that they were trained and benchmarked on a biased dataset that mostly contains 

experiments where a large amino acid is mutated to a smaller one, often alanine or glycine. 

We expect that unbiased data from DMS experiments will be extremely useful in assessing 

and parameterizing prediction methods for a much wider set of amino acid changes. 

Stability calculations generally predict the consequence on the global thermodynamic 

stability describing the equilibrium between the fully folded state and an implicitly 

represented fully unfolded state. Such calculations are thus not directly applicable to 

modelling effects on local unfolding events, though—as described above—these could play 

a central role in cellular stability, and we need better and computationally efficient tools to 

study these. An important problem to tackle in the future is also to map genetic variants to 

accurate structural models for the entire human proteome [81], and to develop prediction 

methods that better utilize structural information and are robust towards structural noise in 

homology models. Finally, an important open question is how the different prediction 

methods are best combined, and how they can both provide accurate predictions of 

pathogenicity and aid in developing mechanistic hypotheses for the origin of disease.
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Highlights

• Human exome sequencing is revealing millions of missense variants that 

change protein sequences, but their phenotypic consequences are mostly 

unknown

• Deep mutational scanning and other high-throughput experiments provide 

simultaneous insights into the effects of thousands of variants

• Loss of protein stability is a common origin of inherited diseases, and 

computational predictions of protein stability are useful for assessing variant 

consequences

• Cellular protein quality control provides a mechanistic link between altered 

protein stability and cellular protein levels and degradation

• Computational biophysics, evolutionary sequence analyses and machine 

learning methods each provide information about variant consequences and 

may potentially be combined

• Mechanistic models for how mutations give rise to disease provide a starting 

point for therapeutic strategies
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Outstanding Questions

• What are the structural features of the unfolded and misfolded states, and how 

are they recognized by the PQC system?

• Are there generic PQC components including chaperones and E3s that target 

a wide range of human missense variants?

• When current predictors fail, why is that? Can we develop confidence scores 

to identify less reliable predictions?

• Can biophysics, statistical sequence analysis and machine learning on DMS 

data improve polygenic risk scores?

• How are predictors best combined, both to improve accuracy and to develop 

mechanistic hypotheses for the origin of genetic diseases?

• Can we develop therapeutic strategies to target many different variants in a 

single protein, or variants in different proteins that are degraded by similar 

pathways?
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Figure 1. 
Using high-throughput experiments and computational methods to classify protein variants. 

(a) Genomic variation across the human population gives rise to phenotypic variation, some 

of which is caused by ‘protein variants’ in which the encoded proteins differ in sequence at a 

single amino acid position. A key problem is to determine whether such variation has little 

biological consequence (‘benign’) or increases the risk for a certain disease (‘pathogenic’). 

(b) High-throughput experiments such as deep mutational scanning (DMS) is one strategy to 

probe the effect of virtually all possible missense variants in a single experiment, and may 

be summarised by a heat-map that shows whether the variant causes severe loss of function 

or another property (red), or whether the variant protein behaves similar to the wild type 
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(blue). (c) Alternatively, or as a supplement to experiments, computational methods can be 

used to predict whether the variant is likely to perturb for example, activity, stability or other 

properties important for function. Such prediction methods may for example be based on 

sequence conservation through evolution, specific biophysical models, or be trained through 

machine learning to capture experimental observations. (d) The experimental data or 

computational results are then used, sometimes in concert, to help predict phenotypic 

consequences of genomic variation of use for example in patient diagnosis, gene discovery, 

or to provide mechanistic models of the origins of disease.
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Figure 2. 
Mechanisms for cellular protein quality control and degradation, and effects of sequence 

variation on the folding energy landscape. (a) In a folded protein (left), the degradation 

signals (degrons, orange) are generally buried inside the protein. Upon local and partial 

unfolding (bottom route) or full unfolding (top route) one or more degrons may become 

exposed. The cellular protein quality control (PQC) components (magnifying glass), such as 

molecular chaperones and E3 ubiquitin-protein ligases, scan the cell for such degradation 

signals and target the substrates for degradation (right). Variants may affect all of these steps 

including increasing the populations of unfolded or partially unfolded states, or creating or 

removing degron sequences. (b) A globally destabilising variant brings the free energy of the 

folded conformation closer to that of the fully unfolded state, increasing the population of 

this state and making the protein more easily targeted for degradation. (c) Because local 

unfolding involves smaller free energy differences, amino acid changes with more modestly 

destabilizing effects may still cause a substantial increase in locally unfolded states, and 

possible exposure of degrons. In this way such variants can have a stronger effect in the cell 

than one would expect from the predicted thermodynamic change of global stability.
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Figure 3. 
Deep mutational scanning for protein stability and variant abundance. Panels A–C outline 

the variant abundance by the massively parallel sequencing (VAMP-seq) method [45]: (a) 

generation of a large library of variants, typically all possible 19 variants at each site, and 

fusion to GFP; (b) abundance of the respective variant fusion construct determines each 

cell’s fluorescence; (c) fluorescence activated cell sorting (FACS), followed by sequencing 

and data analysis allows for the quantification of the abundance of each variant. (d) 

Distribution of VAMP-seq scores for missense variants in the protein PTEN, normalized 

such that unity corresponds to the wild type protein sequence and zero to the average of the 

1% lowest scoring variants [45]. Green lines indicate the 5th and 95th percentile for 

synonymous variants; 56% of the missense variants fall within this range. (e) Accurate 

biophysical measurements of the change in protein stability upon amino acid changes have 

been collected over many years [46], but are dominated by substitutions to alanine, and a 

few other chemically, structurally, biophysically-motivated substitutions [82] (left). In 

contrast, a single VAMP-seq experiment provides data for a comparable number of variants, 

but is less bias chemically (right).
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Figure 4. 
Three paradigms for predicting the consequences of amino acid changes. We illustrate the 

utility of (top) stability predictions, (middle) evolutionary analyses and (bottom) a regression 

model trained on deep mutational scanning data to predict the consequences for pathogenic 

and benign MSH2 variants from the ClinVar database [68]. (a) The allele frequencies in the 

gnomAD database of genome sequences (gnomad.broadinstitute.org) are plotted against the 

predicted score of the variant. The variant scores are ordered so that detrimental variants are 

shown at the top, and stability prediction scores were truncated at 15 kcal mol−1. Red and 

blue points are those reported as (likely) pathogenic and benign, respectively, in ClinVar. 

The left-most ‘column’ of points (labelled ‘not reported in gnomAD’) contains variants 

reported in ClinVar, but not observed in gnomAD; they mostly correspond to known 

pathogenic variants expected to be found at very low allele frequencies. (b) Raincloud plots 

[83] illustrating the predicted score distributions of pathogenic (red), population (grey) and 

benign (blue) variants. For all three prediction methods there is a clear, yet also non-perfect, 

separation between pathogenic and benign variants. (c) Cumulative distribution functions 

showing which fraction of variants are above/below any given score threshold. The red curve 

shows the fraction of pathogenic variants below the value (false negatives) and the blue 

curve the fraction of benign variants above the threshold (false positives). The horizontal 

dashed lines indicate the respective threshold for 25% false negative predictions, and the 

dotted lines are the thresholds for no false positives. Solid lines indicate the respective 

predictor’s value for the wild type. Overall the plots illustrate that all three predictors 

correctly identify many of the pathogenic variants as detrimental, and most of the benign 
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variants as tolerated. The ‘area under the curve’ (AUC) in a receiver operating characteristic 

(ROC) analysis is 0.91, 0.90, and 0.91 for the three methods, respectively. To address the 

imbalance between the sizes in the pathogenic and benign datasets, the pathogenic dataset 

was split in three; these AUCs are averages over these three ROC analyses.
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Figure 5. 
Rescuing protein stability as a strategy for therapy. The cellular levels of a destabilized 

protein variant may be increased by blocking the protein quality control (PQC) system 

(magnifying glass; middle) or the degradation machinery (trashcan; right). Alternatively, a 

small molecule (star) that associates with the native form of the protein may act to stabilize 

the protein.
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