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Abstract

Purpose of Review—Connecting organ-scale loads to cellular signals in their local in vivo 
environment is a current challenge in the field of bone (re)modelling. Understanding this critical 

missing link would greatly improve our ability to anticipate mechanotransduction during different 

modes of stimuli, and the resultant cellular responses. This review characterises computational 

approaches that could enable coupling links across the multiple scales of bone.

Recent Findings—Current approaches using strain and fluid shear stress concepts have begun 

to link organ-scale loads to cellular signals, however these approaches fail to capture localised 

microstructural heterogeneities. Furthermore, models that incorporate downstream communication 

from osteocytes to osteoclasts, bone-lining cells and osteoblasts, will help improve the 

understanding of (re)modelling activities. Incorporating this potentially key information in the 

local in vivo environment will aid in developing multiscale models of mechanotransduction that 

can predict or help describe resultant biological events related to bone (re)modelling.

Summary—Progress towards multiscale determination of the cell mechanical environment from 

organ-scale loads remains elusive. Construction of organ-, tissue- and cell-scale computational 

models that include localised environmental variation, strain amplification, and intercellular 

communication mechanisms will ultimately help couple the hierarchal levels of bone.
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Introduction

Within the last few decades, significant advances in imaging and computational technologies 

have allowed new insights into biomedical phenomena. However, our ability to utilize these 

tools has struggled to keep pace with their rapidly expanding capabilities. In the field of 
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bone biomechanics, this is evident in our lack of understanding how organ-scale loads 

translate to biochemical responses via cellular mechanotransduction. Such information 

would help to gain deeper insight into how cells respond to loading modalities, leading to 

computationally driven understanding of, and therapies for, skeletal diseases such as 

osteoporosis (1). This review discusses how the transmission of in vivo mechanical stimuli 

across multiple scales can be greatly improved by using computational methods, often in 

conjunction with other well-established approaches. The aim is to define a computationally 

driven framework for translating organ-scale loads into relevant cell-scale responses, which 

would ultimately increase our understanding of the in vivo mechanosensitive aspects and 

mechanisms of bone (re)modelling, and its importance in the pathophysiology of bone.

Existing Tools, Techniques and Concepts

The knowledge of bone systems biomechanics is not new, though translating this into 

substantial improvements in bone health is yet to be realised. The theory of load driven bone 

(re)modelling was first postulated over a century ago (2, 3), however, only with the 

development of powerful in vivo imaging techniques, such as micro-computed tomography 

(micro-CT), has detailed time-lapsed microscale observation of bone (re)modelling for both 

formation and resorption been possible (4, 5). Concurrently, advances in computational 

power has driven the development of predictive models of mechanical loading within bone 

tissue (6–8). Coupling these technologies has revealed great insights into dynamic bone 

(re)modelling via comparisons between mechanical loading and structural changes in bone 

tissue (6, 9–11). As these imaging and computational modelling methods have matured, they 

have become accurate enough to inform techniques such as laser capture microdissection to 

investigate individual cells within the bone tissue, and to perform “mechanomic” analysis, 

reconciling genetic responses to mechanical stimuli (12, 13) of the acquired cells (14, 15). 

The extraction of small populations of cells (16) and the assessment of their molecular and 

genetic profiles (17) has been combined with computational predictions of mechanical loads 

within the local in vivo environment (LivE) of these cells (17), advancing our understanding 

of how organ-scale loads influence individual cells and the resultant (re)modelling 

behaviour. Understanding the mechanical environment in which these cell populations reside 

is a key link in the chain towards understanding the governing mechanisms between 

mechanical loads and (re)modelling of bone.

Within bone, the organ, tissue and cell scales are linked via complex macro- and micro-

structural geometries. The hierarchical structure of bone can be subdivided into four scales: 

the organ scale, comprising the whole bone; the tissue scale, consisting of cortical and 

trabecular structures; the cell scale, which also includes microstructural features such as 

osteons, lamellae plates, lacunae and canaliculi (18); and the molecular scale, consisting of 

ions (19) and proteins such as signalling molecules, receptor and ligands (20). At the larger 

scales, mechanical supporting roles are evident from the flaring of proximal condyles in 

bone, to the changing density and thickness of trabecular struts. However, at the cell-scale 

and beyond, the functionality is less obvious. These scales and their respective 

computational approaches can be seen in Figure 1. This environment extends into the bone 

marrow, where many of the mechanosensitive cells reside, such as osteoblasts, osteoclasts, 

bone lining cells and mesenchymal and hemapoetic stem cells. Accurately imaging and 
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modelling the multiscale structures of bone is fundamental to predicting multiscale 

mechanotransduction. Capturing these features using in vivo imaging and converting the 

organ and tissue scale geometries into a computational model is well established (4, 5). 

However, in vivo imaging beyond the cell-scale poses a significant challenge. Technologies 

such as confocal microscopy (21), synchrotron radiation computed tomography (22) and 

ultra-high-resolution computed tomography (23) have been applied ex vivo to attempt to 

capture the microstructural geometry. With these methods, several authors (22, 24) have 

performed comprehensive analyses of osteocyte networks and individual lacunae, assessing 

typical densities and distributions (22, 23), as well as studies on strain amplification on 

individual lacunae-canaliculi structures (21). Even with the multitude of tools and 

techniques available to gather information, they are often single-scale focused, and seem to 

struggle coupling the hierarchies of bone.

Bridging the Multiple Scales with Computational Models

Organ and Tissue-Scale Load Determination

Micro-finite element analysis (micro-FE) has become a standard for organ and tissue-scale 

load calculations in bone. It has been extensively used for in vivo studies to compare and 

correlate strain with bone resorption, formation and quiescence (8, 10, 25–29). Such models 

are created with a mesh generated by direct conversion of micro-CT voxels into hexahedral 

elements, and solved using well-established micro-FE principles (30). In contrast to 

traditional FE approaches, this micro-FE approach provides simple meshing, and a unified 

approach to solving large-sacle problems. The resolution of these models is governed by the 

resolution of the scanner settings, which typically ranges from 10 to 80 micrometres in vivo 
(4), where the very high resolution images provide voxels in the same size range as 

osteocytes and osteoblasts, but substantially less than osteoclasts. Primarily these models are 

elastic, isotropic, and homogenous, omitting ultrastructural details. Further simplification 

includes modelling of cyclic and dynamic organ-scale boundary conditions as static loads 

(10, 29), shown still capable of capturing (re)modelling behaviour (31). Schulte at al. (10) 

and Lambers et al. (26) applied the micro-CT to micro-FE approach to determine the 

mechanical environment and its effect on bone (re)modelling in mouse tail vertebrae under 

normal (10, 26), ovarectomised (10) and aging conditions (26). For both studies, strain 

energy density (SED) was calculated for each voxel in the vertebrae, with this SED-voxel 

value representing the mechanical stimuli present at the bone surface. This allowed for 

correlation of SED values to in vivo formation or resorption at that same voxel. Cresswell et 

al. (23, 29) applied a similar approach to calculate the mechanical in vivo environment 

during (re)modelling in rat vertebrae. Micro-CT images of rat vertebrae were converted to 

micro-FE appropriate hexahedral element using custom software and solved using ABAQUS 

(29) or a custom solver (23). Similarly, the SED, maximum principle strain and von Mises 

stress for each element represented the local mechanical in vivo environment. Using 

florescent markers of bone formation, they correlated high bone formation with high SED 

values. In a study in which young and adult mouse tibia were subjected to extraphysiological 

loads, Willie et al. (9) converted micro-CT images to tetrahedral elements which were then 

solved using ABAQUS via conventional finite element analysis (FEA). Age related and 

location related material properties were implemented, and maximum and minimum strain 
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were used to assess the local mechanical in vivo environment. Here, both groups had 

increased anabolic response, though they observed a delayed and reduced response to 

stimuli in the aged mice versus the young mice. Such studies demonstrate that these 

computational models can provide a mechanical context for complimentary experimental 

data.

Another common approach is the use of poroelastic models, instead of linear elastic models, 

to calculate the mechanical environment. Kameo et al. (6, 32) applied a voxel-based micro-

FE poroelastic model for a fluid shear stress based approach to predict (re)modelling of 

trabeculae under both bending and uniaxial loads. A uniform and isotropic poroelastic model 

was used on a cube of randomly arranged trabeculae with a bone volume ratio of 0.4. Over a 

simulation period 30 days, an increasing load was used to induce fluid shear stress, which 

was used as a measure of the local mechanical environment. The initially randomly arranged 

trabecular rearranged in the loading direction, with an increase in mean equivalent stress and 

SED observed when comparing the initial state to the end state of the (re)modelling 

simulation. However, a significant reduction in the standard deviation of the SED and mean 

equivalent stress was also observed, confirming their hypothesis that (re)modelling leads to 

homogenization of tissue strains. Conventional FEA has also been used to provide a 

mechanical environment for (re)modelling. Pereira et al. (33) also applied a poroelastic 

model to simulate (re)modelling in a loaded mouse tibia, in which micro-CT images were 

acquired from mouse tibia and then converted to a triangular volume mesh, and solved 

dynamically using a commercial solver. The bone was modelled as a poroelastic material, 

with isotropic elastic parameters and an anisotropic permeability, where the highest 

permeability was assumed to lie in line with the primary direction of the lacunacanalicular 

structures. The combination of both fluid and solid phases into a single non-poroelastic 

model, was investigated by Tiwari et al. (34), where a (re)modelling simulation was driven 

by a combination of both strain based measures (compressive and tensile strain and tensile 

shear) as well as fluid shear stresses. The mechanical environment was calculated via FEA, 

and this prediction accuracy of (re)modelling was assessed based on six variations of 

mechanical parameters in a mouse tibia. Strains were calculated with FEA and the tibia was 

idealised as a homogeneous, isotropic cantilevered beam. Their model showed that highest 

prediction accuracy occurred upon combination of all types of strain and fluid shear stress.

When approaching the mechanical environment outside the mineralised bone tissue, the 

bone marrow and the fluid structure interface pose a challenge in determining the 

mechanical environment surrounding non-osteocyte cells. Webster et al. (35) applied voxel-

based micro-FE to determine SED within the bone marrow of a murine vertebrae, 

illustrating the importance of the mechanical environment of bone marrow on osteoblast and 

osteoclast activity. In this study, bone marrow was modelled as a linear elastic solid, and 

they reported that newly formed bone correlated best with the SED gradient of the marrow. 

Metzger et al. (36, 37) investigated the mechanical environment of bone marrow using 

conventional FEA and fluid-structure interaction. Within a region of 3x3x3mm cubic regions 

of human trabecular bone, they investigated the effect of constitutive model choice on the 

mechanical environment within the bone marrow, comparing linear-elastic solid, neo-

hookean solid, viscoelastic solid and a power law fluid constitutive models. They observed 

differences of up to 25% in mean shear stress between the constitutive models, indicating the 
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importance of constitutive model selection. Additionally, significant heterogeneities in 

spatial shear stress distributions were noted.

Approaches other than FEA have also been applied to determine the mechanical 

environment on a tissue scale. In studies working towards coupling (re)modelling biology 

with mechanics, Lerebours et al. (38) and Scheiner et al. (11, 39) applied representative 

volume element (RVE) concepts, beam theory and continuum micromechanics theory, under 

assumptions of pure normal and bending force, to a femur mid-shaft. Both studies argue that 

this analytical approach, adopted from Hellmich et al. (40), provides a preferable alternative 

to the conventional micro-FE approach. With this approach, Lerebours et al. (38) 

investigated site-specific bone loss due to mechanical disuse in a multiscale model 

combining organ, tissue and cell scale simulation. This approach allowed the combination of 

tissue and vascular phases into a singular model with an analytical solution and predicted 

SED for a given RVE, which was coupled with a bone-(re)modelling algorithm. Within the 

beam theory assumptions lies a challenge for this type of approach. It is assumed that no 

shear forces or torsional loads are present, and the material cross-section need to remain 

plane and un-deflected relative to the bone’s neutral axis. Lerebours et al. (38) claim these 

assumptions hold true primarily at the femur mid-shaft under small deformations, however 

expanding this model to other sections, geometries or anatomical location would require 

validation that these assumptions hold true for each location.

Due to the scale and availability of techniques to gather information at the organ and tissue 

scale, bridging of these levels using fundamental concepts has been demonstrated. 

Expanding and integrating this with smaller scales becomes the next challenge.

Tissue to Cell

One aspect that would help linking these hierarchical scales is differentiating between the 

modes of cellular mechanotransduction. Strain experienced by a cell arises primarily from 

matrix deformation strain and fluid flow strain (20). However, at least with osteocytes, these 

mechanisms are coupled to some degree (35); volumetric tissue deformation surrounding an 

osteocyte causes interstitial fluid flow, inducing a pressure gradient within the lacunar-

canalicular network (41). Correctly capturing the mechanical environment at a cellular level 

requires incorporating ultrastructural features and their relation to the mechanisms of cell 

mechanotransduction. In the immediate cell environment, the effect of the ECM, the 

pericellular matrix (PCM) and microstructural features such as Volkmann canals and 

lamellar layers influence strain transmission from tissue level to the cell. This was first 

shown by Anderson and Tate (42), who modelled fluid flow on osteocytes processes. Using 

computational fluid dynamics, localised stress spikes of up to 5x were found on geometries 

constructed from transmitted electron micrographs (TEM), compared with idealised 

geometries. Investigating localised structural deformation, Verbruggen et al. (21) constructed 

geometries of osteocytes and their ECM and PCM from confocal microscopic images, 

comparing this to FE-based strain results based on idealised geometries. For simulations of 

physiological tissues strains of 500 to 3000 microstrain, they reported that both the ECM 

and PCM increased strain transfer to the osteocyte. Specifically, the PCM decreased peak 

strain transferred but increased the overall transmission of strain to the osteocyte. This 
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suggests that real geometries, consisting of an osteocyte surrounded by ECM and PCM, 

amplify average strain by 3 - 4 times that of idealised geometries without an ECM or PCM 

network, reaching maximum strains of more than 10’000 microstrain. In a further extension 

of this work using fluid-structure interaction modelling, Verbruggen et al. (43) introduced 

fluid in the PCM, between the ECM and the cell. This fluid-structural coupling was analysed 

using ANSYS CFX and Structural finite element solver, and solved using a staggered 

iteration approach. All solid structures were linear, elastic and isotropic, while the interstitial 

fluid was modelled as a laminar flow, with fluid properties of salt water. They reported that 

the highest stress levels occurred not in the cell body itself, but within the surrounding 

canaliculi. As such, compared with idealised canaliculi, real canaliculi caused an 

amplification of stimuli by 2 - 3 times. Vaughan et al. (7) also showed similar strain 

amplification when modelling inhomogeneities in the microstructure around osteocytes, by 

incorporating Volkmann and Haversian canals into an osteon. Osteocytes around the 

Volkmann canals experienced strain up to 9 times the generalised applied strain, while 

osteocytes in the region of lamella rings around the osteon experienced greater strain 

amplification as their primary axis angle relative to the rings increased. This amplification 

aligns well with several in vitro studies, which report that osteocytes require a stimulation of 

5’000 to 10’000 microstrain to elicit a biological response (44), as well as similar results 

from computational approaches performed by Bonivtch et al. (45), Wang et al. (46) and 

Kamioka et al. (47). Estimating the mechanical loads transferred from the tissue scale to the 

cell scale is achievable with such computational approaches, albeit without in vivo reference, 

and becomes even more challenging beyond this scale.

Cell and Beyond

While intracellular mechanics models exist, it is questionable whether multiscale models 

incorporating intracellular complexity would increase accuracy, or only increase 

computational burden. Hence, at this stage, it may be more beneficial to incorporate these 

mechanisms outside of the models. Indeed, several mechanisms transduce mechanical 

stimuli that ultimately lead to the production of molecules orchestrating the (re)modelling 

behaviour between all involved cells. Extracellular matrix (ECM)-integrin-cytoskeleton 

connections, such as focal adhesions, sense and process ECM strain and fluid shear stress, 

transferring these signals across transmembrane integrin proteins to the actin cytoskeleton 

(48). Proteins, including myosin II motors, actin filaments, and actin crosslinkers, link the 

cell’s membrane via anchoring proteins such as α-actinin or filamin, that sense dilation 

versus shear cell deformations, respectively (49). Fluid flow is also sensed by primary cilium 

that extend from the cell surface, whose deformation leads to the opening of ion channels 

resulting in the internalization or release of ions (50), though its exact role is debated (51). 

Other mechanisms include glycocalyx, and membrane-bound proteins such as connexions, 

or stretch-activated channels (52). It is yet to be ascertained whether detailed modelling of 

the cellular mechanisms that transduce the cell mechanical environment to the cell signals is 

even necessary; simply treating the region as a ‘black box’ while experimentally quantifying 

the inputs and outputs may be sufficient for tissue (re)modelling research, at least at this 

relatively early stage of computational prowess. Such computational biophysical simulations 

that explore and understand molecular dynamics are under development (53), however, 
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incorporating such simulations into multiscale approaches in bone biomechanics would pose 

a challenge.

For now, one accessible building block could be the lacuna-canalicular system, which acts as 

a communication pathway, chemically, as shown by osteocyte calcium signalling 

correlations to dynamic loading magnitude (54) and frequency (55), and physically, via gap 

junctions. Ridha et al. (56) captured elements of these features by applying FEA to simulate 

rupturing of osteocyte cell connections, showing how the loss of connection leads to bone 

resorption, while Jahani et al. (57) used network simulations to model osteocyte apoptosis 

and its effect on bone lining cells, showing that only a 3% decrease in osteocytes was needed 

to have a significant reduction in peak signal to the bone lining cells. These types of studies 

begin to shed light on the interlinked, mechanosensitive biochemical relationship between 

osteocytes, osteoclasts and osteoblasts which collectively governs bone (re)modelling. The 

vast majority of these inter- and intra- cellular pathways, molecules and signals have been 

discovered in vitro, where creation of an artificial mechanical environment is relatively 

simple. Contrastingly, it is only in vivo, where the mechanical environment is 

inhomogeneous and substantially harder to measure, that such cell-specific information can 

be validated in the context of bone (re)modelling. Here, quantitative computational tools 

may be key to estimate and appreciate in vivo cell-scale loads and responses.

Towards Multiscale Approaches

Several approaches have attempted to aggregate the influence of mechanics over the range of 

scales required to investigate biological processes such as bone remodelling. Frost (58) 

proposed the concept of the Bone Multicellular Unit (BMU), a unit in which the relevant cell 

populations establish a localised mechanically driven homeostasis via (re)modelling. This 

concept allows the behaviour of this unit to be modelled without taking into account 

individualised cell behaviour, addressing the behaviour of cell populations within this BMU 

instead. Several authors (11, 38, 59) have adopted this approach and made use of a RVE of 

cortical bone to attempt to aggregate mechanics and capture the combined behaviour of the 

bone (re)modelling cells. The RVE approach claims to be large enough to account for all the 

microstructural heterogeneities, yet small enough to allow averaging of material behaviour 

over the region (60), hence predicting a relevant mechanical stimuli (11), especially if RVE 

convergence is considered (61). Further, the interconnectedness of the lacunar-canalicular 

network integrates extracellular matrix strain as well as fluid shear stress, and provides 

adequate connection between individual osteocytes that can sense mechanical stimuli on a 

larger scale, rather solely in the immediate dimensions surrounding a single cell (24). This 

results in the averaging of tissue level strain over a particular volume, and the conversion of 

these stimuli into a set of biochemical responses (38). Such approaches could argue that 

cellular stimuli can be captured by a volume substantially larger than an individual cell. 

Conversely, to sufficiently capture the microstructural heterogeneities of bone, such an RVE 

needs to be substantially smaller than the cell-scale; hence the appropriateness of the use of 

a RVE in trabecular bone is contested (62).

In contrast to the RVE approach, in vitro investigations have shown that osteocytes require 

substantially greater levels of strain to display a biological response than that measured in 
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the tissue scale mechanical environment, established and termed as strain amplification (45). 

As known, complex interactions between solid and fluid states (43) and the microstructural 

geometries of the tissue (7, 21) lead to significant amplification factors. These can occur 

between the average tissue strain and the deformation of osteocytes, or the fluid shear stress 

either on the cell itself or on its processes (63). Currently, representative systems have begun 

to approach multiscale bridging. Whether full multiscale approaches, comprising of the 

organ to molecular scale, will provide insights that are more relevant over representative 

systems, is yet unclear.

Validation of Computational Approaches

While the use of computational bone-based biomechanical models consistently increases, 

validation of the mechanical signals used is in general very much lacking. Ascertaining 

whether mechanical signal inputs into (re)modelling models are truly representative of the in 
vivo mechanical signals is very difficult, with increasing ambiguity at smaller scales. At 

larger scales, the validation of models is somewhat achievable (61); historically, strain 

gauges have helped validate surface strains of finite element simulations (28). Other 

approaches, such as digital image correlation, have also been implemented as validation 

tools with varying degrees of success (64). A limitation of these techniques is that they are 

only appropriate for surface strains, they stiffen the bone surface, or only capture in plane 

movement of 2D sections (65).

Beyond the organ-scale, experimental in vivo validation of mechanical signals poses the 

greatest challenges. Cell amplification concepts, as discussed by Vaughan et al. (7), and 

Verbruggen et al. (21, 43), begin to address this with models that converge on results 

observed in experimental studies, generating results that align well with in vitro 
experimentation. Such indirect validation, with experimental observation within the 

mechanical local in vivo environment, has been performed with varying degrees of success. 

Several decades ago, Weinans et al. (66) proposed a feedback driven mechanical loading 

approach to bone remodelling, in which FEA calculated the mechanical environment, which 

was used as a remodelling stimulus in the simulation, leading to bone architecture changes. 

Over the years, more detailed and modern approaches have built on this. Recently, Schulte et 

al. (8) extended their own prior model (10), applying SED as a (re)modelling stimulus to 

predict local spatial patterns of formation and resorption. Here, an osteocyte density 

distribution of 1/10.5µm3 was combined with (re)modelling stimuli approximated by 

Gaussian smoothing of the mechanical environment. Using the same micro-FE methods 

(10), measured by SED value in the region, they could predict changes in bone volume 

fraction (BV/TV) with a maximum prediction error of 2.4%. However, this approach did not 

predict dynamics rates of bone formation/resorption effectively, with significant differences 

between the simulated data and experimental data. This approach was implemented by 

Levchuk et al. (67) in a large scale validation study of feedback controlled bone 

remodelling. The in silico model was used to predict bone (re)modelling behaviour in 

osteopenic mice under mechanical loading with treatments of bisphosphonates or 

parathyroid hormone. SED was once again used to describe the local mechanical 

environment and BV/TV was used as the assessment variable for simulation to experimental 

comparison. Similarly to Schulte et al. (8), overall errors for BV/TV prediction were low, 
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ranging from 0.1% (combined mechanical loading and bisphosphonate treatment) to 4.5%, 

(control group), though again, they could not predict dynamic parameters well. Both these 

studies indicate the effectiveness of SED as a predictor of mechanical environment, 

primarily for static parameters. This “soft validation” approach of mechanical signals has 

provided an acceptable approach for assessing the local mechanical environment. Similar 

validation approaches have been used in other in silico models (6), such as model behaviour 

aligning to fundamental (re)modelling theories of bone. Despite the progress, what remains 

sorely lacking, is the in vivo validation by direct comparison of predicted (re)modelling 

patterns to in vivo outcomes. As computational methods gain complexity and incorporate 

multiple scales, the fundamental challenge of aligning and validating these models becomes 

even more demanding.

At the organ scale, material models are usually isotropic and purely elastic; inclusion of the 

viscous effects (68, 69) and anisotropic effects (70) found in bone could improve such 

models. This can be extended to bone marrow, where comparisons between highly viscous 

fluid, viscoelastic solid and soft elastic solid constitutive models display different results 

(36). Therefore, the correct choice of model is essential, and parameters require a 

comprehensive and application specific database. Of further benefit would be an ability to 

quantify the differences between mechanical environments determined under varying model 

parameters and solving approaches, i.e. linear versus non-linear solvers.

While tissue-averaged strain approaches have shown success in predicting (re)modelling, it 

is clear that strain and fluid stresses are amplified within the canaliculi-lacunae network, 

causing cells to receive stimulation in the range found to cause a biological response in in 
vitro experiments. Hence, multiscale models incorporating strains and fluid stresses on the 

cells themselves, based on tissues strains, could help explain the role of single cells on the 

(re)modelling process. These models would provide cell specific mechanical stimuli 

boundary conditions to inform experimental techniques heading towards single cell analysis. 

However, many challenges remain. Firstly, accurate mapping of the osteocyte lacunae 

system, or the location of osteoblasts or osteoclasts on the bone surface, is needed for 

(re)modelling experiments. Secondly, coupling detailed imaging techniques with in vivo 
experiments represents a significant challenge due to destructive doses of radiation, or long 

imaging times (22), and a lack of techniques linking the two realms. Regardless, validation 

of input signals, and the model themselves, appear the biggest hurdle towards accuracy and 

confidence.

Conclusion

Over the last few decades in bone systems biomechanics, substantial progress has begun to 

elucidate the mechanosensitive mechanisms of bone (re)modelling. Complete multiscale 

modelling of the mechanical environment has significant application towards understanding 

cellular mechanotransduction, and the resultant processes in bone. In particular, the 

knowledge of the exact forces and strain experiences by an individual cell, or small 

populations of cells can be leveraged by rapidly maturing experimental techniques. 

Techniques, such as laser capture microdissection, or imaging mass spectroscopy, that can 

gather molecular information from small populations of cells, can be coupled with inter- and 
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intra-cellular downstream simulations converting the mechanical local in vivo environment 

to direct mechanical transduction within the cell. Combining multiscale models, from organ 

level to protein and molecular responses, with experimental data, will allow the 

establishment of a continuum of knowledge from organ-scale to protein expression. This 

will foster progress towards understanding of the exact effect mechanics have on bone 

tissue, allowing accurate characterisation of the molecular pathways and processes involved 

in (re)modelling, repair and growth.

Acknowledgments

This work has been supported by the European Union (ERC Advanced MechAGE, ERC-2016-ADG-741883; 
Marie-Curie-COFUND CaP+MECHLOAD, WHRI-ACADEMY-608765).

References

Papers of particular interest, published recently, have been highlighted as:

• Of importance

•• Of major importance

1. Yuan Y, Chen X, Zhang L, Wu J, Guo J, Zou D, et al. The roles of exercise in bone remodeling and 
in prevention and treatment of osteoporosis. Progress in Biophysics and Molecular Biology. 2016; 
122(2):122–30. [PubMed: 26657214] 

2. Roux, W. Der Kampf der Theile im Oranismus: Ein Beitrag zur verollständigung der mechanischen 
Zweckmässigkeitslehre. Leipzig: W. Engelmann; 1881. 

3. Wolff, J. Das Gesetz der Transformation der Knochen. Hirchwald; 1892. 

4. Christen P, Müller R. In vivo visualisation and quantification of bone resorption and bone formation 
from time-lapse imaging. Current osteoporosis reports. 2017; 15(4):311–7. [PubMed: 28639146] 

5. Birkhold AI, Razi H, Weinkamer R, Duda GN, Checa S, Willie BM. Monitoring in vivo 
(re)modeling: A computational approach using 4D microCT data to quantify bone surface 
movements. Bone. 2015; 75:210–21. [PubMed: 25746796] [•• This paper covers the key tools for 
providing temporal and spatial information essential for development of geometries for 
computational models at the organ to tissue scale and longitudinal analysis for validation of 
remodelling simulations.]

6. Kameo Y, Adachi T. Interstitial fluid flow in canaliculi as a mechanical stimulus for cancellous bone 
remodeling: in silico validation. Biomechanics and modeling in mechanobiology. 2014; 13(4):851–
60. [PubMed: 24174063] [•• This paper provides a good example of an implementation of a 
poroelastic micro-FE simulation used to model the remodelling process coupled with an in 
silico validation.]

7. Vaughan TJ, Verbruggen SW, McNamara LM. Are all osteocytes equal? Multiscale modelling of 
cortical bone to characterise the mechanical stimulation of osteocytes. International journal for 
numerical methods in biomedical engineering. 2013; 29(12):1361–72. [PubMed: 23897701] 

8. Schulte FA, Zwahlen A, Lambers FM, Kuhn G, Ruffoni D, Betts D, et al. Strain-adaptive in silico 
modeling of bone adaptation - A computer simulation validated by in vivo micro-computed 
tomography data. Bone. 2013; 52(1):485–92. [PubMed: 22985889] 

9. Willie BM, Birkhold AI, Razi H, Thiele T, Aido M, Kruck B, et al. Diminished response to in vivo 
mechanical loading in trabecular and not cortical bone in adulthood of female C57Bl/6 mice 
coincides with a reduction in deformation to load. Bone. 2013; 55(2):335–46. [PubMed: 23643681] 

10. Schulte FA, Ruffoni D, Lambers FM, Christen D, Webster DJ, Kuhn G, et al. Local mechanical 
stimuli regulate bone formation and resorption in mice at the tissue level. Plos One. 2013; 8(4)

Paul et al. Page 10

Curr Osteoporos Rep. Author manuscript; available in PMC 2019 August 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



11. Scheiner S, Pivonka P, Hellmich C. Coupling systems biology with multiscale mechanics, for 
computer simulations of bone remodeling. Computer Methods in Applied Mechanics and 
Engineering. 2013; 254:181–96.

12. Knothe Tate ML, Gunning PW, Sansalone V. Emergence of form from function - mechanical 
engineering approaches to probe the role of stem cell mechanoadaptation in sealing cell fate. 
Bioarchitecture. 2016

13. Wang JW, Lu DY, Mao DB, Long M. Mechanomics: an emerging field between biology and 
biomechanics. Protein & Cell. 2014; 5(7):518–31. [PubMed: 24756566] 

14. Trussel A, Müller R, Webster D. Toward mechanical systems biology in bone. Annals of 
biomedical engineering. 2012; 40(11):2475–87. [PubMed: 22618803] 

15. Scheuren A, Wehrle E, Flohr F, Müller R. Bone mechanobiology in mice: toward single-cell in 
vivo mechanomics. Biomechanics and modeling in mechanobiology. 2017:1–18.

16. Nichterwitz S, Chen G, Benitez JA, Yilmaz M, Storvall H, Cao M, et al. Laser capture microscopy 
coupled with Smart-seq2 for precise spatial transcriptomic profiling. Nature Communications. 
2016; 7

17. Trüssel AJ. Spatial mapping and high throughput microfluidic gene expression analysis of 
osteocytes in mechanically controlled bone remodeling: ETH-Zürich. 2015

18. Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. 
Medical Engineering & Physics. 1998; 20(2):92–102. [PubMed: 9679227] 

19. Dermience M, Lognay G, Mathieu F, Goyens P. Effects of thirty elements on bone metabolism. 
Journal of Trace Elements in Medicine and Biology. 2015; 32:86–106. [PubMed: 26302917] 

20. Bonewald LF. The Amazing Osteocyte. Journal of Bone and Mineral Research. 2011; 26(2):229–
38. [PubMed: 21254230] 

21. Verbruggen SW, Vaughan TJ, McNamara LM. Strain amplification in bone mechanobiology: a 
computational investigation of the in vivo mechanics of osteocytes. Journal of the Royal Society 
Interface. 2012; 9(75):2735–44.

22. Mader KS, Schneider P, Müller R, Stampanoni M. A quantitative framework for the 3D 
characterization of the osteocyte lacunar system. Bone. 2013; 57(1):142–54. [PubMed: 23871748] 

23. Cresswell EN, Nguyen TM, Horsfield MW, Alepuz AJ, Metzger TA, Niebur GL, et al. 
Mechanically induced bone formation is not sensitive to local osteocyte density in rat vertebral 
cancellous bone. Journal of Orthopaedic Research. 2017

24. Buenzli PR, Sims NA. Quantifying the osteocyte network in the human skeleton. Bone. 2015; 
75:144–50. [PubMed: 25708054] 

25. Lambers FM, Koch K, Kuhn G, Ruffoni D, Weigt C, Schulte FA, et al. Trabecular bone adapts to 
long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates. 
Bone. 2013; 55(2):325–34. [PubMed: 23624292] 

26. Lambers FM, Kuhn G, Weigt C, Koch KM, Schulte FA, Müller R. Bone adaptation to cyclic 
loading in murine caudal vertebrae is maintained with age and directly correlated to the local 
micromechanical environment. Journal of Biomechanics. 2015; 48(6):1179–87. [PubMed: 
25543278] 

27. Lambers FM, Stuker F, Weigt C, Kuhn G, Koch K, Schulte FA, et al. Longitudinal in vivo imaging 
of bone formation and resorption using fluorescence molecular tomography. Bone. 2013; 52(2):
587–95. [PubMed: 23142804] 

28. Webster DJ, Morley PL, van Lenthe GH, Müller R. A novel in vivo mouse model for mechanically 
stimulated bone adaptation - a combined experimental and computational validation study. 
Computer methods in biomechanics and biomedical engineering. 2008; 11(5):435–41. [PubMed: 
18612871] 

29. Cresswell, E, Goff, M, Nguyen, T, Lee, W, Hernandez, C. Spatial relationships between bone 
formation and mechanical stress within cancellous bone. Elsevier; 2016. 222–8. 

30. Vanrietbergen B, Weinans H, Huiskes R, Odgaard A. A new method to determine trabecular bone 
elastic properties and loading using micromechanical finite-element models. Journal of 
Biomechanics. 1995; 28(1):69. [PubMed: 7852443] 

31. Huiskes R. If bone is the answer, then what is the question? Journal of Anatomy. 2000; 197:145–
56. [PubMed: 11005707] 

Paul et al. Page 11

Curr Osteoporos Rep. Author manuscript; available in PMC 2019 August 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



32. Kameo Y, Adachi T. Modeling trabecular bone adaptation to local bending load regulated by 
mechanosensing osteocytes. Acta Mechanica. 2014; 225(10):2833.

33. Pereira AF, Javaheri B, Pitsillides AA, Shefelbine SJ. Predicting cortical bone adaptation to axial 
loading in the mouse tibia. Journal of the Royal Society Interface. 2015; 12(110)

34. Tiwari AK, Prasad J. Computer modelling of bone’s adaptation: the role of normal strain, shear 
strain and fluid flow. Biomechanics and modeling in mechanobiology. 2017; 16(2):395–410. 
[PubMed: 27585446] 

35. Webster D, Schulte FA, Lambers FM, Kuhn G, Wuller R. Strain energy density gradients in bone 
marrow predict osteoblast and osteoclast activity: A finite element study. Journal of Biomechanics. 
2015; 48(5):866–74. [PubMed: 25601212] 

36. Metzger TA, Niebur GL. Comparison of solid and fluid constitutive models of bone marrow during 
trabecular bone compression. Journal of Biomechanics. 2016; 49(14):3596–601. [PubMed: 
27660172] 

37. Metzger TA, Kreipke TC, Vaughan TJ, McNamara LM, Niebur GL. The in situ mechanics of 
trabecular bone marrow: The potential for mechanobiological response. Journal of Biomechanical 
Engineering-Transactions of the Asme. 2015; 137(1) [• This paper provides thorough 
investigation into the mechanics of bone marrow, providing an approach for the investigation 
into the mechano-response of cells on the surface of the bone tissue and within the marrow.]

38. Lerebours C, Buenzli PR, Scheiner S, Pivonka P. A multiscale mechanobiological model of bone 
remodelling predicts site-specific bone loss in the femur during osteoporosis and mechanical 
disuse. Biomechanics and modeling in mechanobiology. 2016; 15(1):43–67. [PubMed: 26239380] 
[• This paper provides an alternative approach to the standard finite element approach for 
calculating the mechanical environment, using analytical or semi-analytical methods to 
model the local mechanical environment.]

39. Scheiner, S; Pivonka, P; Hellmich, C. Poromechanical stimulation of bone remodeling: A 
continuum micromechanics - based mathematical model and experimental validation. Fifth Biot 
Conference on Poromechanics; 2013. 1867–76. 

40. Hellmich C, Kober C, Erdmann B. Micromechanics-based conversion of CT data into anisotropic 
elasticity tensors, applied to FE simulations of a mandible. Annals of biomedical engineering. 
2008; 36(1):108–22. [PubMed: 17952601] 

41. You LD, Weinbaum S, Cowin SC, Schaffler MB. Ultrastructure of the osteocyte process and its 
pericellular matrix. Anatomical Record Part a-Discoveries in Molecular Cellular and Evolutionary 
Biology. 2004; 278a(2):505–13.

42. Anderson EJ, Tate MLK. Idealization of pericellular fluid space geometry and dimension results in 
a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes. 
Journal of Biomechanics. 2008; 41(8):1736–46. [PubMed: 18482728] 

43. Verbruggen SW, Vaughan TJ, McNamara LM. Fluid flow in the osteocyte mechanical 
environment: a fluid-structure interaction approach. Biomechanics and modeling in 
mechanobiology. 2014; 13(1):85–97. [PubMed: 23567965] [•• This paper provides an excellent 
example of coupling fluid and structural mechanics within the cell scale, indicating the 
importance of a combined structural/fluid appraoch within bone tissue.]

44. Vaughan T, Haugh M, McNamara L. A fluid-structure interaction model to characterize bone cell 
stimulation in parallel-plate flow chamber systems. Journal of the Royal Society Interface. 2013; 
10(81)

45. Bonivtch AR, Bonewald LF, Nicolella DP. Tissue strain amplification at the osteocyte lacuna: A 
microstructural finite element analysis. Journal of Biomechanics. 2007; 40(10):2199–206. 
[PubMed: 17196968] 

46. Wang LP, Dong JH, Xian CJ. Strain amplification analysis of an osteocyte under static and cyclic 
loading: A finite element study. Biomed Research International. 2015

47. Kamioka H, Kameo Y, Imai Y, Bakker AD, Bacabac RG, Yamada N, et al. Microscale fluid flow 
analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-
dimensional model. Integrative Biology. 2012; 4(10):1198–206. [PubMed: 22858651] 

48. Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nature 
Reviews Molecular Cell Biology. 2009; 10(1):21–33. [PubMed: 19197329] 

Paul et al. Page 12

Curr Osteoporos Rep. Author manuscript; available in PMC 2019 August 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



49. Luo TZ, Mohan K, Iglesias PA, Robinson DN. Molecular mechanisms of cellular mechanosensing. 
Nature materials. 2013; 12(11):1063–70.

50. Nguyen AM, Jacobs CR. Emerging role of primary cilia as mechanosensors in osteocytes. Bone. 
2013; 54(2):196–204. [PubMed: 23201223] 

51. Delling M, Indzhykulian AA, Liu X, Li Y, Xie T, Corey DP, et al. Primary cilia are not calcium-
responsive mechanosensors. Nature. 2016; 531(7596):656–60. [PubMed: 27007841] 

52. Walker LM, Publicover SJ, Preston MR, Ahmed MAAS, El Haj AJ. Calcium-channel activation 
and matrix protein upregulation in bone cells in response to mechanical strain. Journal of Cellular 
Biochemistry. 2000; 79(4):648–61. [PubMed: 10996855] 

53. Dror RO, Dirks RM, Grossman JP, Xu HF, Shaw DE. Biomolecular Simulation: A Computational 
Microscope for Molecular Biology. Annual Review of Biophysics. 2012; 41:429–52.

54. Jing D, Baik AD, Lu XL, Zhou B, Lai XH, Wang LY, et al. In situ intracellular calcium oscillations 
in osteocytes in intact mouse long bones under dynamic mechanical loading. Faseb Journal. 2014; 
28(4):1582–92. [PubMed: 24347610] 

55. Lewis KJ, Frikha-Benayed D, Louie J, Stephen S, Spray DC, Thi MM, et al. Osteocyte calcium 
signals encode strain magnitude and loading frequency in vivo. Proceedings of the National 
Academy of Sciences of the United States of America. 2017; 114(44):11775–80. [PubMed: 
29078317] 

56. Ridha H, Almitani KH, Chamekh A, Toumi H, Tavares JMRS. A theory for bone resorption based 
on the local rupture of osteocytes cells connections: A finite element study. Mathematical 
Biosciences. 2015; 262:46–55. [PubMed: 25640868] 

57. Jahani M, Genever PG, Patton RJ, Ahwal F, Fagan MJ. The effect of osteocyte apoptosis on 
signalling in the osteocyte and bone lining cell network: a computer simulation. Journal of 
Biomechanics. 2012; 45(16):2876–83. [PubMed: 23040883] 

58. Frost HM. Bone mass and the mechanostat - a proposal. Anatomical Record. 1987; 219(1):1–9. 
[PubMed: 3688455] 

59. Pivonka P, Buenzli PR, Scheiner S, Hellmich C, Dunstan CR. The influence of bone surface 
availability in bone remodelling - a mathematical model including coupled geometrical and 
biomechanical regulations of bone cells. Engineering Structures. 2013; 47:134–47.

60. Grimal Q, Raum K, Gerisch A, Laugier P. A determination of the minimum sizes of representative 
volume elements for the prediction of cortical bone elastic properties. Biomechanics and modeling 
in mechanobiology. 2011; 10(6):925–37. [PubMed: 21267625] 

61. Erdemira A, Guess TM, Halloran J, Tadepalli SC, Morrison TM. Considerations for reporting 
finite element analysis studies in biomechanics. Journal of Biomechanics. 2012; 45(4):625–33. 
[PubMed: 22236526] 

62. Jasiuk, I. Micromechanics of bone modeled as a composite materialMicromechanics and 
Nanomechanics of Composite Solids. Meguid, SAaW; George, J, editors. Springer; 2018. 281–
306. 

63. Nicolella DP, Moravits DE, Gale AM, Bonewald LF, Lankford J. Osteocyte lacunae tissue strain in 
cortical bone. Journal of Biomechanics. 2006; 39(9):1735–43. [PubMed: 15993413] 

64. Begonia M, Dallas M, Johnson ML, Thiagarajan G. Comparison of strain measurement in the 
mouse forearm using subject-specific finite element models, strain gaging, and digital image 
correlation. Biomechanics and modeling in mechanobiology. 2017; 16(4):1243–53. [PubMed: 
28204985] 

65. Begonia MT, Dallas M, Vizcarra B, Liu Y, Johnson ML, Thiagarajan G. Non-contact strain 
measurement in the mouse forearm loading model using digital image correlation (DIC). Bone. 
2015; 81:593–601. [PubMed: 26388521] 

66. Weinans H, Huiskes R, Grootenboer HJ. The behavior of adaptive bone - remodeling simulation - 
models. Journal of Biomechanics. 1992; 25(12):1425–41. [PubMed: 1491020] 

67. Levchuk A, Zwahlen A, Weigt C, Lambers FM, Badilatti SD, Schulte FA, et al. The Clinical 
Biomechanics Award 2012-Presented by the European Society of Biomechanics: Large scale 
simulations of trabecular bone adaptation to loading and treatment. Clinical Biomechanics. 2014; 
29(4):355–62. [PubMed: 24467970] [• This paper provides an extensive validation of organ 

Paul et al. Page 13

Curr Osteoporos Rep. Author manuscript; available in PMC 2019 August 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



and tissue scale models, showing their effectiveness for predictive static parameters and 
indicating the opportunity for better prediction of dynamic parameters.]

68. Manda K, Wallace RJ, Xie SQ, Levrero-Florencio F, Pankaj P. Nonlinear viscoelastic 
characterization of bovine trabecular bone. Biomechanics and modeling in mechanobiology. 2017; 
16(1):173–89. [PubMed: 27440127] 

69. Xie SQ, Manda K, Wallace RJ, Levrero-Florencio F, Simpson AHRW, Pankaj P. Time dependent 
behaviour of trabecular bone at multiple load levels. Annals of biomedical engineering. 2017; 
45(5):1219–26. [PubMed: 28130701] 

70. Fan Z, Swadener JG, Rho JY, Roy ME, Pharr GM. Anisotropic properties of human tibial cortical 
bone as measured by nanoindentation. Journal of Orthopaedic Research. 2002; 20(4):806–10. 
[PubMed: 12168671] 

71. Metzger TA, Schwaner SA, LaNeve AJ, Kreipke TC, Niebur GL. Pressure and shear stress in 
trabecular bone marrow during whole bone loading. Journal of Biomechanics. 2015; 48(12):3035–
43. [PubMed: 26283413] 

Paul et al. Page 14

Curr Osteoporos Rep. Author manuscript; available in PMC 2019 August 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. Capturing the mechanical environment over different scales has been performed using 
many approaches.
(a) Organ scale, (b) Tissue scale, (c) Cell scale, and (d) Molecular scale (69) have been 

captured by (a1 – c2). Micro-FE models such as (a1) Schulte et al. (63) and (b1) Lambers et 

al. (61) have been applied at organ level to calculate the tissue level mechanical 

environment. Within the tissue level, localised tissue boundary conditions can be used to 

calculate a reduced tissue scale bone marrow environment, such as (b2) investigated by 

Metzger et al. (71). The RVE (c1) concept can be applied to link organ-scale loads to a BMU 

type environment such as that by Lerebours et al. (52) Boundary conditions from the lower 
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end of the tissue scale can be applied to determine fluid flow stresses on the cell, as seen by 

Vaughan et al. (43) in (c2). In the molecular scale, stretch, primary cilia deformation and 

signalling between osteocytes and other mechanosensitive cells can be simulated; an 

example of this is the model by Jahani et al. (80) studying the osteocyte – bone lining cell 

signalling pathways (d1). a1 reproduced in adherence with the CC BY licence applied by 

PLOS One, b1, b2, d1 reproduced with permission from Elsevier and c1,c2, d reproduced 

with permission from Springer.
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