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Abstract

Background: Oncologists use patients’ life expectancy to guide decisions and may benefit from a tool that accurately predicts
prognosis. Existing prognostic models generally use only a few predictor variables. We used an electronic medical record
dataset to train a prognostic model for patients with metastatic cancer.

Methods: The model was trained and tested using 12 588 patients treated for metastatic cancer in the Stanford Health Care
system from 2008 to 2017. Data sources included provider note text, labs, vital signs, procedures, medication orders, and
diagnosis codes. Patients were divided randomly into a training set used to fit the model coefficients and a test set used to
evaluate model performance (80%/20% split). A regularized Cox model with 4126 predictor variables was used. A landmarking
approach was used due to the multiple observations per patient, with to set to the time of metastatic cancer diagnosis.
Performance was also evaluated using 399 palliative radiation courses in test set patients.

Results: The C-index for overall survival was 0.786 in the test set (averaged across landmark times). For palliative radiation
courses, the C-index was 0.745 (95% confidence interval [CI] = 0.715 to 0.775) compared with 0.635 (95% CI = 0.601 to 0.669) for
a published model using performance status, primary tumor site, and treated site (two-sided P <.001). Our model’s

predictions were well-calibrated.

Conclusions: The model showed high predictive performance, which will need to be validated using external data. Because it
is fully automated, the model can be used to examine providers’ practice patterns and could be deployed in a decision

support tool to help improve quality of care.

Most patients with metastatic solid tumors cannot be cured of
their disease. Instead, treatments aim to improve quality and
quantity of life. At the end of life, quality of life decreases
along with the benefit-to-risk ratio of treatments like systemic
therapy (1,2). Oncologists use life expectancy to guide treat-
ment decisions but can be overly optimistic when predicting
survival (3-6). Interventions such as intensive care unit stays
and systemic therapy administration are commonly per-
formed close to death (7,8). Conversely, palliative care and
transition from active treatment are not always discussed
early enough (9).
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Several research groups have worked to develop prognostic
models for patients with metastatic cancer (6,10-16). Deploying
a prognostic model in the clinic could help doctors discuss goals
of care with their patients at the appropriate time (9). Existing
prognostic models have limited accuracy and generally require
manual entry of variables such as performance status, which
may hinder use.

There has recently been interest in using electronic medical
record (EMR) data to create predictive models in oncology
(17,18). We propose to use EMR data to train a prognostic model
for patients with metastatic cancer. By including provider note
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text, important features such as performance status and symp-
tom burden can be captured (11). By including thousands of
patients, it is feasible to fit high-dimensional models with thou-
sands of predictor variables; the most important variables can
be found automatically. The model can be deployed in the clinic
in an automated fashion (17).

In this article, we describe the methods used to train the
prognostic model and then evaluate its performance in the gen-
eral setting of metastatic cancer and the specific setting of palli-
ative radiotherapy.

Methods

Patients

The prognostic model was trained on a database of adult
patients seen in the Stanford Health Care system from 2008 to
2017. Clinical sites included one hospital, one freestanding can-
cer center, and several outpatient clinics. The database included
data from the EMR (EPIC, Verona, WI), inpatient billing system,
and institutional cancer registry. We identified patients with
metastatic solid tumors. Visits from date of metastatic cancer
diagnosis to death were analyzed. Date of last follow-up or
death was determined using the EMR, Social Security Death
Index, and cancer registry. For details of database construction
and data quality validation, see the Supplementary Methods
(available online). This study was approved by the Stanford
University Institutional Review Board.

Prognostic Model

We developed a Cox proportional hazards model that takes as
input structured and unstructured EMR data and outputs a pre-
dicted overall survival curve from the time of a visit. There were
4126 predictor variables, including laboratory values, vital signs,
ICD-9 diagnosis codes, CPT procedure codes, medication admin-
istrations and prescriptions, and the text of inpatient and out-
patient provider notes. Note text was represented using a bag-
of-words approach, in which high-level document structure is
discarded and the counts of many 1- to 2-word phrases are tal-
lied for each note. This approach was shown to work well for
clinical predictive modeling (19).

To predict survival time from a visit, all past data were used,
with more recent information weighted more heavily. For
details of predictor construction and a list of all predictors, see
the Supplementary Information (available online). Each variable
was standardized to a mean of 0 and standard deviation of 1. If
a patient had no past data for a numeric variable (laboratory
value or vital sign), the value was set to 0 (ie, the sample mean).

Patients were divided randomly with an 80%/20% split into a
training set used to fit the model coefficients and a test set used
to evaluate the model’s performance. A standard Cox model
enables prediction of survival time from a single baseline time
point, for instance, the time of metastatic cancer diagnosis.
Instead, we used a dynamic prediction/landmarking approach
to train and evaluate the model (20,21). This approach enables
prediction of survival from baseline, but also from later time
points using updated data, conditional on the patient having
survived up to the later time. The date of the first visit after
metastatic cancer diagnosis was designated as time to.
Landmark time points were set at times [to, to + 0.5years, ..., to
+ 5years]. For each landmark time point t;, a dataset was con-
structed using all patients still in view at time t;); (not deceased
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or lost to follow-up) and their updated predictor data up to time
tum. These datasets were then “stacked” into a combined data-
set. A Cox proportional hazards model was fit to the combined
dataset. Landmark time point was included as a predictor so the
baseline hazard function could vary smoothly with landmark
time. Administrative censoring was enforced at tpo=tiy +
5years. In some versions of the landmarking method (21), sur-
vival predictions are made only at ty,,, but we found that predic-
tions were well calibrated from times ty to tyer, SO We generated
predicted survival curves spanning this time frame. We investi-
gated allowing the f coefficients to vary depending on t;y but
saw no improvement in model performance with this approach
so therefore used time-fixed g in the final model. Because of the
large number of predictors, L2 regularization was used to avoid
overfitting, using the glmnet R package (22). The regularization
strength (1 parameter) was chosen using 10-fold cross-
validation on the training set. The / value that maximized
mean likelihood for the held-out folds was chosen. Because
there were multiple observations per patient, the sandwich esti-
mator could be used to calculate standard errors, but these were
not needed in this study. Source code and simulated data are
available at https://github.com/MGensheimer/prognosis-model.

Comparison With Existing Models Using Palliative
Radiotherapy Courses

For test set patients receiving palliative radiotherapy, we com-
pared the model’s performance with that of two existing prog-
nostic models published by Chow et al. and Jang et al. (10,11)
Radiation courses were identified using two databases that con-
tained information including radiation-treated site and
provider-rated performance status. Database 1 included 963
courses from 2008 to 2014 with specific fractionation schedules
(8 Gy/1 fraction, 20 Gy/S fractions, 30 Gy/10 fractions, 37.5Gy/15
fractions) and excluded stereotactic techniques. Database 2 in-
cluded 1173 courses from 2015 to 2016 and included a variety of
fractionation schedules and both conventional and stereotactic
techniques.

The two existing prognostic models both used the Cox pro-
portional hazards model, similar to our approach, but both used
hand-collected data and evaluated many fewer candidate pre-
dictors than we did. The model of Chow et al. (10) uses three
predictors: Karnofsky performance status (KPS; >60 vs <60), pri-
mary tumor site (breast, prostate, lung, or other), and treated
site (bone only vs others). In their article, patients were binned
into three risk groups, but to create a fair comparison with our
model, we used the exact model coefficients listed in their
Table 2 to construct a linear predictor. Patients in our database
1 had Eastern Cooperative Oncology Group (ECOG) performance
status recorded but not KPS, so we converted from ECOG to KPS
using Table 1 in the Chow paper (10). The prognostic model of
Jang et al. uses a single predictor: ECOG performance status (11).
A few patients in our database 2 had KPS recorded but not ECOG
performance status, so for these patients KPS was converted to
ECOG performance status using a validated method (23).

Statistical Analysis

Our model’s performance was evaluated using Harrell’s C-index
and calibration plots, as described in Royston et al., 2013 (24). To
calculate C-index for a landmark time point, for each test set
patient still at risk at that time point, the Cox model linear pre-
dictor was calculated using data from visits prior to the time
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point. To generate predicted survival curves, the baseline haz-
ard function was estimated using the training set. We also used
the model to predict survival from the time of specific radiation
treatments. Because the model requires landmark time point to
be specified, the landmark time closest to the treatment date
was used.

For radiotherapy courses, we compared the model’s perfor-
mance to two existing prognostic models. To measure differ-
ence in discrimination between models and obtain a P value,
the rcorrp.cens function in R’s rms package was used. All statis-
tical tests were two-sided and a P value of less than .05 was con-
sidered statistically significant. These data were not fully
statistically independent because some patients had multiple
radiation courses. However, because 224 of 296 patients had a
single course, the effect of clustering was expected to be small
and we assumed independence. To generate receiver operating
characteristic curves at specific follow-up times, the
survivalROC R package was used. To calculate 95% confidence
intervals for the area under the receiver operating curve, we
used bootstrapping with 10000 samples.

Results

Patient Characteristics

We identified 13523 adult patients with metastatic cancer seen
at Stanford from 2008 to 2017. A total of 935 patients were ex-
cluded because of having no follow-up or death information or
having died on the day of their only visit. The prognostic model
was trained and evaluated using the remaining 12 588 patients.
Table 1 lists patient characteristics.

Of the 12588 analyzed patients, 7629 (60.6%) have died. From
the first visit after metastatic cancer diagnosis, median follow-
up was 14.5months and median overall survival was
20.9months (data not shown). Patients were seen for 384402
daily visits after metastatic cancer diagnosis. Patients were hos-
pitalized for 94 826 visits (24.7%). There were 1390032 provider
notes, 12876137 lab values (200 most common labs), 1451740
vital signs, 357981 diagnoses (500 most common codes),
1162164 procedures (500 most common codes), and 1834477
medication orders (500 most common medications).

Model Performance

There were 10070 patients in the training set and 2518 in the
test set. Characteristics were well balanced between the two
groups; see Supplementary Table 1 (available online). Because
the test set patients were not used in model training, they were
used to evaluate model performance. For each landmark time
point (0-5years after metastatic cancer diagnosis), the test set
patients still in view at that time were ranked by predicted
overall survival time using updated predictor data. Then, for
each time point, predicted survival was compared with actual
survival, with concordance measured using the C-index
(0.5=no better than random chance, 1.0 =perfect prediction).
The model had good performance, with C-index ranging from
0.757 to 0.812 (mean 0.786) at various landmark time points
(Figure 1). The predicted survival curves were fairly well cali-
brated (no systematic over- or underestimation of survival), as
seen in Figure 2; Supplementary Figures 1 and 2; and
Supplementary Table 2 (available online). For visual clarity, the
model’s predictions were grouped into four clinically relevant
bins, with median predicted survival of 0 to 3months, 3.1 to

Table 1. Patient characteristics

Characteristic Patients, n (%)
Total 12588 (100.0)
Median age, y (IQR)* 63.5(53.2-72.1)
Sex
Female 6384 (50.7)
Male 6204 (49.3)
Primary site
Breast 1362 (10.8)
Endocrine 209 (1.7)
Gastrointestinal 3404 (27.0)
Genitourinary 1407 (11.2)
Gynecologic 799 (6.3)
Head and neck 496 (3.9)
Skin 425 (3.4)
Thorax 2063 (16.4)
Other/multiple/unknown 2449 (19.5)

*Age at diagnosis of metastatic disease.

Table 2. Survival model coefficients for selected note text terms

Term Coefficient*
Symptoms/appearance
Cachectic 0.020
Fatigued 0.0059
Ascites 0.0085
Completely asymptomatic —0.0054
Anxious —0.0031
Feel well —0.0073
Cancer location/response
Disease progression 0.012
Leptomeningeal 0.0067
Mixed response 0.014
Innumerable pulmonary 0.0046
Minimal progression —0.0012
Oligometastatic —0.0066
Systemic therapy agents
Nivolumab —0.00065
Liposomal doxorubicint 0.011
Anastrozolet —0.00051
Leuprolidet —0.0037
Tamoxifen —0.0034

*A positive coefficient indicates shorter survival.
1Brand name converted to generic name for display.

6 months, 6.1 to 12 months, and longer than 12 months. When
binned in this way, model predictions were well calibrated. For
instance, for test set patients at landmark time 0, the actual
median survival for visits in these bins was (95% CI) = 1.3 (0.9 to
2.0),3.7 (2.5 10 5.2), 6.7 (5.6 to 7.9), and 35.7 (31.8 to 39.1) months,
respectively (Figure 2). Discrimination performance was similar
when patients were compared only with other patients with
the same primary tumor site (mean C-index across landmark
time points of 0.729 to 0.866; Supplementary Figure 3, available
online).

We examined which data source was most important to the
model’s performance by re-fitting models using different sub-
sets of predictors. As seen in Figure 3, note text was the most
useful data source. We examined model coefficients for various
note text terms and found that they aligned well with clinical
intuition and established prognostic factors (Table 2).
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Supplementary Table 3 (available online) lists all predictors and
their model coefficients.

Comparison With Existing Models

For patients receiving palliative radiotherapy, we compared the
model’s performance with that of existing prognostic models.
An accurate prognostic model could be useful in this scenario,
because providers are known to overestimate survival for such
patients and could use life expectancy to tailor factors such as
number of radiation fractions (5,10). We used a database of
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Figure 1. Prognostic model performance at various landmark time points. The
number of test set patients still at risk at each time point is listed below the fig-
ure. Error bars represent 95% confidence intervals.
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palliative radiotherapy that had details recorded such as
provider-rated performance status. Of 2136 radiation courses,
399 were in 296 test set patients and were analyzed.
Characteristics of radiation courses are listed in Table 3. Median
overall survival from the first day of radiation was 11.3 months.
When comparing predicted vs actual survival, our model’s C-in-
dex was 0.745 (95% CI = 0.715 to 0.775). The C-index for the vali-
dated model of Chow et al. (10) using performance status,
primary tumor site, and radiation-treated site was lower at
0.635 (95% CI = 0.601 to 0.669). The difference in discrimination
performance between the two models was statistically signifi-
cant (P <.001). The simple model of Jang et al. (11) using ECOG
performance status alone also had inferior performance to our
model, with C-index of 0.647 (95% CI = 0.615 to 0.678) (P <.001).
Our model had superior discrimination at both short (3 months)
and intermediate (12 months) time horizons (Figure 4). For pre-
diction of 3-month survival, area under the receiver operating
characteristic curve for our model, the model of Chow et al., and
the model of Jang et al. was 0.826 (95% CI = 0.776 to 0.874), 0.685
(95% CI 0.625 to 0.745), and 0.718 (95% CI = 0.662 to 0.773), re-
spectively. For prediction of 12-month survival, the correspond-
ing values were 0.812 (95% CI = 0.767 to 0.855), 0.666 (95% CI =
0.611 to 0.721), and 0.681 (95% CI = 0.632 to 0.730), respectively.

Our model’s predictions for the palliative radiotherapy
patients were well calibrated: for the four predicted survival
bins (0-3months, 3.1-6 months, 6.1-12months, >12months),
actual median survival (95% CI) was 1.5 (1.0 to 2.5), 3.5 (2.6 to
4.9), 7.5 (5.4 to 10.4), and 32.1 (26.0 to 48.0) months, respectively
(Figure 5). Of the 26 radiation courses with model-predicted sur-
vival of 0 to 3months, 18 (69.2%) had 10 or more fractions. Of
the 73 courses with predicted survival of 3.1 to 6 months, 40
(54.8%) had 10 or more fractions.

Discussion

We used a large sample of patients with metastatic cancer to
train a prognostic model with EMR data. The model bridges the
gap between simpler models using provider-entered variables,
which limits dataset size, and models using population-based

12
MNo. at Risk
red. sury 1858 1531 1272
382 187 100

red ] 172 58 29
Pred. surv. 0-3 months 106 17 6

1024
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14
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24 36 48 60
Follow-up (months)

825 671 537 448 371 304 256
42 29 21 17 16 14 9

9 8 7 6 6 4 2
1 1 0 0 0 0 0

Figure 2. Predicted vs actual survival for 2518 test set patients at landmark time t, (first visit after diagnosis of metastatic cancer). Patients were grouped into four clini-

cally relevant bins by median predicted survival.
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Note text (n=2,419)

0.9 Diagnoses, procedures,
medications (n=1,500)

== Labs, vital signs (n=205)
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Figure 3. Test set performance of models that incorporate different subsets of
the available predictor variables. The model using all variables had the highest
performance, followed by the model using only note text. All models included
two demographic variables (age and sex).

Table 3. Characteristics of 399 palliative radiation courses in test set
patients*

Characteristic Patients, n (%)
Primary site
Breast 78 (19.5)
Prostate 34 (8.5)
Lung 125 (31.3)
Other 162 (40.6)
Treated site
Bone only 210 (52.6)
Other 189 (47.4)
ECOG performance status
0 22 (5.5)
1 194 (48.6)
2 146 (36.6)
3 36 (9.0)
4 1(0.3)
Fractions
1 95 (23.8)
2-5 98 (24.6)
6-10 151 (37.8)
>10 55 (13.8)
Technique
Conventional 296 (74.2)
Stereotactic 103 (25.8)

*ECOG = Eastern Cooperative Oncology Group.

data, which lack important information such as patients’ per-
formance status (25). It is notable that the most useful data
source was free text provider notes, because most existing
prognostic models using large datasets use billing codes instead
(25-27), which are often inaccurate (28). The usefulness of note
text for predictive modelling has been seen in other recent stud-
ies (29-31), though this may be the first example in oncology.
The note text features that influenced survival predictions were

sensible. For instance, when notes mentioned systemic thera-
pies used as first-line treatment of metastatic breast cancer
(anastrozole, tamoxifen), survival was longer than when notes
mentioned drugs used as later-line treatment for poorer prog-
nosis cancers (pegylated doxorubicin, nivolumab).

The model showed a statistically significant increase in ac-
curacy compared with prior prognostic models for metastatic
cancer patients. C-index on the test set was 0.786 (averaged
over landmark time points), and calibration was good. For
patients receiving palliative radiotherapy, C-index was higher
than that of two highly cited models used for patients receiving
palliative treatments: 0.745 vs 0.635 to 0.647. Papers describing
other prognostic models have also shown lower discrimination
performance than ours. Three models for patients receiving pal-
liative radiotherapy had validation set C-index of 0.59 to 0.72
(10,12,15). Two studies in patients referred to either a palliative
care or hospice service showed C-index of 0.62 to 0.73 (11,14). It
is impossible to make definitive comparisons between studies,
since different groups of patients were used to evaluate the
models. Also, we were unable to compare our model with less
parsimonious models than those of Chow and Jang (10,11), such
as one developed in the multicenter PiPS study (32), because we
lacked data such as mental test scores.

The use of EMR data allows the model to be automated and
enables several novel applications. The model can be used to ex-
amine practice patterns and identify areas of potential improve-
ment. For patients receiving palliative radiotherapy who had
model-predicted survival 6 months or less, 59% had at least 10 ra-
diation fractions. Many of these patients could be treated with a
single fraction, which provides equivalent results to longer
schedules for poor-prognosis patients and has fewer side effects
(33). Other areas of care that could be examined include timing of
palliative care referral and use of systemic therapy at the end of
life (7-9). It can be misleading to identify a group of deceased
patients and examine practice patterns during a time period prior
to death (34). This ignores the unpredictability of survival, with
some healthier patients dying unexpectedly and some sicker
patients surviving for years. Because our model enables estima-
tion of the patient’s prognosis using information that was avail-
able to the providers at that time, the relationship of practice
patterns to prognosis can be examined in a more rigorous way.

The model could also be used as part of a decision support
tool, with predictions displayed to providers (17). This could help
remind providers to discuss goals of care with their patients and
refer to appropriate resources. It is straightforward to understand
the reasons for each prediction (in contrast to nonlinear models
like neural networks). As each predictor variable was centered be-
fore the model was fit, the element-wise product of the model
coefficients and a visit’s variables can be interpreted as the influ-
ence of each variable on predicted survival. The variables with the
most extreme influence values could be displayed to the provider.

This work has several limitations. First, the model was
trained using patients seen in one health system, so it likely
contains biases due to idiosyncrasies of our patient population
and treatment algorithms. Although a mix of patient ages, sex,
and cancer type was represented in the training data, the model
may generalize poorly to different practice settings such as a ru-
ral private practice. Because only care given at Stanford was
captured in the structured data, the model performance could
drop for patients who mostly received care at other centers.
Techniques such as multiple imputation could be used to re-
duce the effect of such missing data; for example, note text data
could be used to impute missing laboratory values (35). It will be
important to perform external validation using data from other
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centers. Better infrastructure for sharing data in common for- cancer patients. We plan to deploy the model in clinical trials as
mats between institutions is needed. part of a decision support tool to help physicians and patients
Second, patients were identified by a mix of manual and au- choose treatments and decide on goals of care.

tomated methods. Patients who have initially localized disease,
then develop metastatic disease and are too frail to receive any
cancer treatment, may not be captured well (36). This may

cause the model to perform poorly for older patients who do not This work was supported in part by the National Cancer
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have initially metastatic disease. Institute (Cancer Center Support Grant no. 5P30CA124435);
Finally, the model ignores interactions between variables. and National Institutes of Health/National Center for

For instance, the current method of note text analysis discards Research Resources (CTSA award no. UL1 RR025744).

sentence- and document-level structure. Therefore, sequencing

of therapies and changes in patient condition are poorly repre-

sented. Neural networks can capture more complicated struc- Notes

ture and may improve performance (30,37-39).
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