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Abstract

Background: Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms
(SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is
a powerful tool to identify networks of susceptibility genes.
Methods: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank
truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in
9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of
the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided.
Results: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni
correction (P � 1.3 � 10�5), the strongest associations were detected in five pathways and gene sets, including maturity-onset
diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G
protein–coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana
ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs
(PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets.
Conclusion: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides
insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.
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Although pancreatic ductal adenocarcinoma (PDAC) only
accounts for about 3% of all cancer, it’s the third leading cause
of cancer-related death in the United States and its incidence is
increasing (1). PDAC is among the most fatal cancers worldwide,
and there are few established preventable risk factors beyond
cigarette smoking, diabetes, overweight, and obesity (2). There
are no effective screening methods for the detection of PDAC;
therefore, most people are diagnosed with advanced disease,
which contributes to the dismal 5-year survival of 8.2% (1).
Understanding the biology underlying the development of
PDAC could be useful in developing new treatments or to iden-
tify those at high risk for surveillance or targeted intervention

Over the past decade, genome-wide association studies
(GWAS) have identified 20 genomic loci associated with PDAC
susceptibility in European populations (3–8). Although GWAS
have provided valuable insights into the genetic basis of PDAC,
the susceptibility loci identified do not fully account for the ge-
netic heritability of this disease because of the relative small ef-
fect sizes associated with individual single-nucleotide
polymorphisms (SNPs) and the multiple testing correction re-
quired for GWAS. Thus, many important susceptibility genes
may well remain unidentified. Pathway-based analyses applied
to GWAS have the potential to detect associations that may be
overlooked by standard single-marker approaches and can be a
complementary method to identify groups of genes or biological
pathways enriched with disease-associated SNPs (9,10).
Pathway analysis, which jointly considers multiple variants in
interacting genes and multiple genes in a pathway, may also al-
low more meaningful biologic interpretation.

We previously conducted a pathway analysis of genes in 23
candidate biological pathways hypothesized a priori to be associ-
ated with PDAC (10). PDAC-associated pathways identified in-
cluded pancreatic development, Helicobacter pylori lacto/neolacto,
hedgehog, Th1/Th2 immune response, and apoptosis. This study
was limited by the number of participants and pathways/genes
examined, suggesting a larger study with a more comprehensive
approach may detect associations not previously considered
in PDAC. Consequently, in the present study, we included 3795
human canonical pathways and gene sets from the Broad
Institute Molecular Signatures Database (MSigDB) using an ag-
nostic data-driven approach to identify genes and pathways
associated with PDAC susceptibility within the Pancreatic
Cancer Cohort Consortium (PanScan I, II, III) and the
Pancreatic Cancer Case Control Consortium (PanC4) GWAS.

Methods

Study Population and Data

Methods for GWAS studies have previously been described
(3–6,8). The study sample included 9040 primary pancreatic ade-
nocarcinoma cases (ICD-O-3 code C250-C259) and 12 496 control
participants of European genetic ancestry from summary data
from previous PanScan and PanC4 GWAS (3–8). All participants
gave informed consent and all studies were approved by the in-
stitutional review board of each participating institution and
the National Cancer Institute.

Pathway and Gene Set–Based Analyses Using GWAS
Summary Data

A total of 3795 human-derived gene sets and canonical path-
ways from The Broad Institute MSigDB v5.0 database (http://

software.broadinstitute.org/gsea/msigdb/collections.jsp) were
used for the analysis. Canonical pathways (n¼ 1369) included
BioCarta; Hallmark; Kyoto Encyclopedia of Genes and
Genomes (KEGG); Pathway Interaction Database (National
Cancer Institute and Nature Publishing Group); Reactome;
Signaling Gateway (SIG); Signaling Transduction KE, and
Sigma Aldrich. Gene sets (n¼ 2426) included studies with ex-
pression signatures (or changes in expression levels) following
genetic and chemical perturbations. Gene sets represented
genes induced (upregulated) and repressed (downregulated)
by the perturbation. The size of gene sets and pathways
ranged from 2 to 1668 genes. SNPs were mapped within a ge-
nomic region encompassing 20 kb upstream and downstream
of each gene.

We conducted a meta-analysis using summary statistics
from the four GWAS using an inverse variance fixed-effects
model (k¼ 1.07). An initial analysis on all of the SNPs resulted in
112 pathways or genes sets associated with PDAC below the
Bonferroni statistical significance threshold (P¼ 1.3� 10�5,
0.05/3795) (data not shown). Most were driven by one or more
previously identified GWAS variants, not a pathway association.
Therefore, to identify pathway or gene set associations that
were jointly driven by novel SNPs, we excluded previously
published GWAS PDAC cancer risk signals at 1q32.1 (NR5A2),
2p13.3 (ETAA1), 3q29 (TP63), 5p15.33 (CLPTM1L-TERT), 7p13
(SUGCT), chr8q24.21 (MYC), 7q32.2 (LINC-PINT), 9q34.2 (ABO),
13q12.2 (PDX1), 13q22.1 (KLF5/KLF12), 16q23.1 (BCAR1), 17q25.1
(LINC00673), and 22q12.1 (ZNRF3) (3–7) and SNPs with meta-
analysis at GWAS threshold P value less than 5 � 10�8 (signal at
7p12 [TNS3]) from our analysis plus corresponding genomic
regions within roughly 500 kb to eliminate association signals
that could be caused by linkage disequilibrium (LD) (11). In total,
207 genes were excluded using these criteria. We excluded SNPs
with minor allele frequency less than 1% and applied LD filter-
ing to highly correlated SNP pairs (r2 > .81).

We conducted gene and pathway meta-analyses using the
summary-based adaptive rank truncated product (sARTP)
method, which combines SNP-level associations across SNPs in
a gene or a pathway (11). The signals from up to two of the most
associated SNPs in a gene were accumulated. The sARTP
method adjusted for the size of genes and pathways (ie, number
of SNPs in a gene and number of genes in a pathway) through a
resampling procedure to control for false positives. The P values
of gene- and pathway-level associations were estimated from
the resampled null distribution generated from 100 million
resampling steps. A panel of 503 European subjects (population
codes: CEU, TSI, FIN, GBR, IBS) in the 1000 Genomes Project
(phase 3, v5, 2013/05/024) was used in sARTP to estimate the
LDs between SNPs. To eliminate the impact of population strati-
fication, the genomic control inflation factor was adjusted by
using

ffiffiffiffiffiffiffiffiffiffi

1:07
p

to rescale the standard error of the estimated log
odds ratio at each SNP. We considered a false discovery rate
(FDR) adjusted pathway-level P value less than or equal to .05 to
be statistically significant; however we discuss pathways and
gene sets below the Bonferroni adjusted a-level (P¼ 1.3 � 10�5

[.05/3795]). All statistical tests are two-sided.

Functional Annotation and eQTL Analysis

Experimental data from ENCODE (12) custom tracks on the UCSC
Genome Browser and Roadmap (13) and information from
Ensembl (14), RegulomeDB v1.1 (15), LDlink (16), and HaploReg
v4.1 (17) were used to evaluate the regulatory relevance of SNPs
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(and SNPs in LD) of interest in pancreatic and other tissue types.
eQTL was performed to evaluate effects on expression and tissue
specificity for the most statistically significant SNPs using pub-
licly available data from the National Institutes of Health
Genotype-Tissue Expression (GTEx) v7 (18) in pancreas tissue
samples (n¼ 220). Potential eQTLs from this analysis (P< .05)
were then taken forward for further analysis. eQTL analysis of se-
lected SNPs (n¼ 53 SNPs mapped to 69 genes) (identified by one
or more features including SNP P value, RegulomeDB score, and
GTEx eQTL result) were validated using data from histologically
normal pancreas tissue samples (n¼ 95) from the Laboratory of
Translational Genetics (LTG) as previously described (19). P values
for SNP-gene tests were adjusted for multiple comparisons using
Bonferroni correction (P¼ .05/69¼ 7.25� 10�4).

Results

Pathway and Gene Set–Based Analyses

Fourteen pathways and gene sets were associated with PDAC
(at FDR < 0.05), of which two gene sets and three pathways
remaining statistically significant after the Bonferroni correc-
tion (Table 1); including maturity-onset diabetes of the young
(MODY) (P¼ 5.10 � 10�7), regulation of beta-cell development
(P¼ 1.92 � 10�6), Nikolsky breast cancer 17q11-q21 amplicon
(P¼ 2.00 � 10�6), role of EGF receptor transactivation by G
protein–coupled receptors (GPCRs) in cardiac hypertrophy
(P¼ 3.79 � 10�6) and Pujana ATM PCC network (P¼ 1.25 � 10�5).

The MODY pathway that contained 1448 SNPs across 23
genes was the most statistically significant pathway. The genes
with the strongest association in this pathway and the corre-
sponding top SNP(s) were HNF1A (rs1169296, rs2244608), HNF1B
(rs12951345, rs7223387), HNF4A (rs1853150), HNF4G (rs1913641,
rs2943547), and PAX4 (rs118117270, rs62483175) (Figure 1,
Supplementary Table 1, available online). Four of 28 genes (2057
SNPs) contributing to the regulation of beta-cell development
pathway, HNF1A, HNF1B, HNF4A, and HNF4G, had the same cor-
responding SNPs selected by sARTP as in the MODY pathway
(Figure 1, Supplementary Table 1, available online). This sug-
gests an overlap in signals between these two pathways; how-
ever, the PAX4 gene was only present in the MODY pathway.

The role of EGF receptor transactivation by GPCRs in the car-
diac hypertrophy pathway included 2133 SNPs across 17 genes.
EDNRA (rs35232409, rs6537481) and AGT (rs1326889) were the
top genes (P¼ 5.47 � 10�6 and 9.21 � 10�5, respectively)
(Figure 2, Supplementary Table 2, available online).

The Nikolsky breast cancer 17q11-q21 amplicon gene set in-
cluded 131 genes (3320 SNPs) and the association was driven by
36 genes (Figure 3, Supplementary Table 3, available online).
The top five genes were PGAP3, PNMT, TCAP, ERBB2, and STARD3
(gene P values < 3.00 � 10�5), all corresponding to two SNPs,
rs876493 (P¼ 1.27 � 10�6) and rs3764351 (P¼ 1.27 � 10�5) .
Additional genes contributing to this pathway included HNF1B
(rs12951345, rs7223387), IGFBP4 (rs7225411, rs76592685), TNS4
(rs7225411, rs113557550), MED24/THRA (rs8078692, rs113520394),
and FBXL20 (rs62074998, rs12453796) (gene P values < .001). The
SNPs selected by the sARTP method in the top 36 genes (gene
P < .04) were not all in high LD with each other (r2 range ¼
0.002–0.6), suggesting multiple signals in this region may be as-
sociated with PDAC.

In the Pujana ATM PCC network, 67 of 1350 genes were se-
lected by sARTP as contributing the most to the PDAC associa-
tion (Figure 4, Supplementary Table 4, available online). The

three top genes (gene P < 7.55 � 10�5) were SMC2 (rs7859034),
PNMT (rs876493, rs3764351), and HNF1B (rs12951345, rs7223387).
Other notable genes (gene P < 0.01) in this gene set included
HNF1A (rs1169291, rs1169297), GRP (rs57791062), ACTR2
(rs2160263, rs7579797), THRA (rs8078692, rs113520394), HNF4G
(rs1913641, rs2943547), HEXA (rs11636684, rs201611588), TAB1
(rs34825318), MED1 (rs113897737, rs7212868), and CASP7
(rs3124737). The full list of genes and sARTP-selected SNPs that
contributed to the Bonferroni statistically significant pathways/
gene sets are summarized in Supplementary Table 5 (available
online).

Some of our findings were supported by recent consortia
efforts in conducting GWAS meta-analysis on PDAC risk (8). By
combing the four GWAS used in our study with an additional rep-
lication data of selected SNPs (2737 cases; 4752 controls), four new
GWAS signals were identified (8). As our analysis was conducted
before this, we further excluded these GWAS signal regions at
1p36.33 (NOC2L), 8q21.11 (HNF4G), 17q12 (HNF1B), and 18q21.32
(GRP) (8). Eight of the 14 FDR statistically significant pathways or
gene sets included these regions and were attenuated after their
exclusion (Supplementary Table 6, available online, P values <

.01); however, the Nikolsky breast cancer chr17q11-q21 amplicon
gene set remained statistically significant (P ¼ 5.71 � 10�6) after
Bonferroni correction. The ATM PCC network, MODY, and regula-
tion of beta-cell development had P values of 3.59 � 10�4, 5.49 �
10�4, and .001, respectively. The other six pathways/gene sets did
not include these regions and were unaffected.

eQTL and Functional Annotation

We present the functional annotations and eQTL results from
GTEx tissues and replication in an independent eQTL histologi-
cally normal pancreas dataset (LTG) (19) for the five Bonferroni
statistically significant pathways and gene sets (Table 2 and
Supplementary Tables 7 and 8, available online). Top SNP
rs876493-A was present in both the Nikolsky breast cancer
chr17q11-q21 amplicon and Pujana ATM network gene sets, and
was associated with lower PGAP3 expression in normal pancre-
atic tissue in GTEx (P¼3.90 � 10�7, b ¼ �.24) and in the LTG
(P¼1.16 � 10�5, b ¼ �.43). In addition, we identified and vali-
dated three additional SNPs—rs3764351-A, rs4795393-T, and
rs12453507-G in LD with rs876493-A—that also act as eQTLs for
PGAP3 in both datasets (Table 2). These SNPs were also associ-
ated with lower PGAP3 expression in other tissues
(Supplementary Table 7, available online). The LD between
these four SNPs on chr17 may indicate the same signal is con-
tributing to the associations.

In the Pujana ATM PCC network, we observed that the risk
allele rs3124737-G (CASP7) was associated with higher expres-
sion of the CASP7 gene in normal pancreatic tissue using GTEx
(P¼ 2.50 � 10�8; b ¼ .48) and LTG (P¼ 0.02; b ¼ .28) (Table 2). We
also observed this eQTL effect in multiple tissues from GTEx in-
cluding thyroid, subcutaneous adipose, and whole blood
(Supplementary Table 7, available online). The two SNPs
(rs876493-A [PGAP3] and rs3124737-G [CASP7]) supported by
eQTL were not identified or in LD with signals from the recent
GWAS meta-analysis and remained statistically significant after
exclusion of the new GWAS regions (8).

Discussion

We identified 14 pathways and gene sets associated with PDAC,
five of which met the Bonferroni correction for multiple
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testing. The strongest pathways associated with PDAC included
genes involved in susceptibility to MODY, pancreatic beta-cell de-
velopment, cardiac hypertrophy, breast cancer chr17q11-q21 ampli-
con, and a network of genes correlated with ATM gene expression.

Our PDAC associations for the MODY and pancreatic beta-cell
development pathways add evidence and reinforce previous epi-
demiologic findings based on candidate genes, pleiotropy, and
GWAS approaches (5,7,8,10,20–22). The genes in these pathways

are important components for transcriptional networks governing
embryonic pancreatic development, differentiation, and pancre-
atic homeostasis (23,24). MODY accounts for 2% of all diabetes
and is caused by genetic mutations that affect islet beta-cell func-
tion (25). We found no evidence that the variants linked to the
genes in these pathways act as eQTLs in normal adult pancreas
tissues. However, functional annotation showed that rs2244608-G
(HNF1A) maps to an active transcription start site in normal
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Figure 1. Genes associated with PDAC in the KEGG maturity-onset diabetes of the young (MODY; small circles, P¼5.10 � 10�7) and Reactome regulation of beta-cell de-

velopment (large circles, P¼1.92 � 10�6). Red highlighted circles are genes selected by sARTP as contributing the most to each pathway–PDAC association. HNF1A,

HNF1B, HNF4G, and HNF4A contributed to both pathways (gene P < .006) and PAX4 (gene P¼ .02) contributed to the MODY pathway. All statistical tests were two-sided.
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pancreas and islet cell tissue. PAX4 identified in the MODY
pathway has not previously been implicated in PDAC. PAX4 is es-
sential for islet development and adult beta-cell survival and ex-
pansion (24). Mutations and germline polymorphisms in PAX4 are
associated with type 1 and type 2 diabetes and MODY type 9 (25).

The EDNRA (endothelin receptor type A) and AGT (angioten-
sinogen) genes were the top genes in the EGF cardiac pathway,
a pathway which has not previously been implicated in PDAC
susceptibility. This pathway describes cardiac hypertrophy
(thickening of the heart muscle) through activation of the EGFR

(epidermal growth factor receptor) by GPCRs, which transacti-
vate EGFR in numerous cell types and cancers, resulting in
downstream activation of biological processes (26,27). EDNRA is
a GPCR for endothelin (ET-1), a potent vasoconstrictor that may
play a role in obesity and insulin resistance (28). Overexpression
of EDNRA has been associated with many cancers (29–32).
Inhibition of EDNRA demonstrated antiangiogenic and antipro-
liferative activity in pancreatic cancer cell lines (33). AGT enco-
des an angiotensin precursor, a potent vasoconstrictor involved
in blood pressure regulation and a potential cell growth
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stimulator (34,35). Variant rs1326889 in AGT (SNP P¼ 4.21 �
10�7) is associated with renal cell carcinoma, with stronger
associations observed for overweight/obese or hypertensive
participants (34).

The Nikolsky breast cancer chr17q11-q21 amplicon gene set
represents genes that exhibit copy number alterations in 191
breast carcinomas (36). The strongest associated SNP rs876493
(P¼ 1.27 � 10�6) and three additional correlated SNPs (r2 range ¼
.3–.6), rs3764351, rs4795393, and rs12453507, were associated
with decreased PGAP3 (post-GPI attachment to proteins 3) ex-
pression in both the GTEx and LTG pancreas tissue datasets and
all four variants may represent the same signal (Table 2).
PGAP3, also known as PERLD1, is an oncogene in breast and gas-
tric cancer, and is frequently coamplified with ERBB2 and CDK12
(37). Cosilencing of STARD3, GRB7, PSMD3, and PGAP3 together
with ERBB2 led to an additive inhibition of cell viability and apo-
ptosis in vitro (38). The SNPs rs876493 and rs3764351 were also
present in the Pujana ATM PCC network gene set. Our observed
PDAC association for this breast cancer–derived gene set may
suggest common genetic susceptibility for both cancers.

The Pujana ATM PCC network gene set is based on gene ex-
pression integrated with functional genomic and proteomic
data from human tissues and cell lines to classify networks as-
sociated with ATM (39). Numerous genes across multiple chro-
mosomes contributed to the statistical significance of this gene
set with PDAC, including but not limited to the MODY genes
HNF1A, HNF1B, HNF4G, and PAX4. The ATM protein is a seri-
ne/threonine kinase involved in repair of DNA double-strand
breaks (40). Mutations in ATM are responsible for ataxia
telangiectasia (40). Germline mutations in ATM are known to
be associated with 2%–3% of familial PDAC (41–43) and
have recently been found in a case series of sporadic PDAC
patients (44). Our analysis identified rs7859034 (SMC2)
(SNP P¼ 3.07 � 10�7) as top signal in this gene set. SMC2 is a
central component of the condensin complex required for
converting interphase chromatin into mitotic-like condense
chromosomes. SMC2 in cooperation with MYCN can transcrip-
tionally regulate DNA damage response genes (45). In this
gene set, we additionally identified eQTL and functional
annotation evidence for variants in the CASP7 gene (rs3124737,
SNP P¼ 3.29 � 10�5) in pancreas tissue. CASP7 is critical in apo-
ptosis induction, acting as a candidate for susceptibility to
insulin-dependent diabetes; inactivating mutations in CASP7
have been reported to contribute to the pathogenesis of some

human solid cancers (46). This gene set represents a biologic
network not previously considered for sporadic PDAC that
should be further researched and could have clinical applica-
tion for classifying those at high risk.

Four of the five Bonferroni statistically significant pathways
or gene sets that we observed contained recently published
GWAS signal regions (8). When we excluded these regions, the
Nikolsky chr17q11-q21 gene set remained Bonferroni statistically
significant and the others had P values less than 0.001. Although
we do not have a replication study for our analysis, the replica-
tion of the four SNPS in these regions in the meta-analysis GWAS
study (8) adds to the validity of our pathway findings. Klein et al.
(8) also identified four suggestive variants— rs6537481 (EDNRA),
rs2417487 (SMC2), rs1182933 (HNF1A), and rs6073450 (HNF4A)—
that did not reach genome-wide statistical significance; however,
they were in LD with signals (or the same SNP [EDNRA]) that con-
tributed to the biologically relevant pathways and gene sets of
multiple smaller association signals observed in our study.

Strengths of our study are its large sample size for PDAC and
agnostic pathway and gene set–based statistical approach using
GWAS data. Combined with a sophisticated statistical method,
sARTP maximized our ability to detect genetic associations that
would not be discovered by the single-marker analysis conducted
in conventional GWAS. The sARTP method also uses GWAS sum-
mary data, which facilitates consortia collaboration in sharing
data for large-scale pathway analyses. We excluded reported
GWAS SNPs, signals with a P-value threshold less than 5 � 10�8

and regions within roughly 500 kb to identify genetic contribu-
tions to PDAC susceptibility beyond the traditional GWAS thresh-
old. The strongest contributing genes and selected SNPs observed
within the statistically significant pathways and gene sets in our
study may be identified in future GWAS with larger sample sizes.

Limitations of our study include the LD filtering threshold
(r2 > .81) used to exclude highly correlated SNPs, meaning po-
tential variants in LD (r2 < .81) could be selected for a gene that
represents one signal. However, the sARTP method identifies
SNPs and genes contributing the most to the overall pathway
associations in a data-driven manner that may help with bio-
logically meaningful result interpretation and has proven to be
a powerful and effective strategy to analyze pathways (11). An
additional limitation may be the distance (kb) used to map SNPs
to genes. Although, there is no agreed exact distance to assign
SNPs to their relevant genes (47), we know that some genetic
variants can affect RNA expression through cis or trans

Table 2. Expression quantitative trait loci (eQTL) for pathway single-nucleotide polymorphisms (SNPs) in normal pancreatic tissue from GTEx
and an independent replication set

Pathway gene Chr
r2 with

rs876493* SNP eQTL gene

GTEx pancreas (n¼ 220)
Independent LTG
pancreas (n¼ 95)

P† Effect size (b)‡ P† Effect size (b)‡

ERBB2, PGAP3 17 N/A rs876493 §,k PGAP3 3.90 � 10�7 �0.24 1.16 � 10�5 �.43
TCAP, STARD3, PNMT 17 .636 rs3764351 §,k PGAP3 5.70 � 10�9 �.30 9.70 � 10�5 �.47
GRB7, MIEN1 17 .3508 rs4795393§ PGAP3 4.00 � 10�10 �.30 3.83 � 10�5 �.45
GSDMB, ZPBP2 17 .3046 rs12453507§ PGAP3 2.70 � 10�7 �.22 2.80 � 10�5 �.45
CASP7 10 – rs3124737k CASP7 2.50 � 10�8 .42 .02 .28

*Linkage disequilibrium r2 values are derived from LDLink EUR population data. Chr ¼ chromosome; eQTL ¼ expression quantitative trait loci; FDR ¼ false discovery

rate; LTG ¼ Laboratory of Translational Genomics; TSS ¼ transcription start site.

†eQTL in pancreas FDR (� 0.05) using roughly 1 Mb cis-window around TSS. Statistical test was two-sided.

‡Beta (b) eQTL directional effect for risk allele.

§SNP in the Nikolsky breast cancer chr17 amplicon gene set.

kSNP in the Pujana ATM PCC network gene set.
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mechanisms (48). In our study, we mapped SNPs 20 kb upstream
and downstream of each gene to identify candidate SNPs that
may play a regulatory role in gene expression. We and others
have previously used this distance in annotating SNPs/genes in
pathway analysis (11), as studies have shown functional variants
are located approximately 16–20 kb within transcription start sites
(47–49). Ultimately, approaches using causal SNPs based on chro-
matin interactions, cis- or trans-eQTL functional data for assigning
SNPs to genes, will increase the precision of the associations and
understanding of the biology beyond the functional annotations
we performed using publicly available data and eQTL analyses in
two normal pancreas tissue independent datasets.

In conclusion, translating GWAS data into biologically rele-
vant pathways and gene sets expands our knowledge of the po-
tential mechanisms underlying PDAC carcinogenesis, as well as
providing evidence for the future development of clinically rele-
vant multigenic predictors for identifying individuals at high
risk. Further population, clinical, and laboratory research is
needed to confirm our findings. Strategies to accelerate func-
tional biological follow-up may include replication, fine map-
ping, experimental studies such as whole transcriptomic
sequencing, reporter assays, and DNA methylation/epigenetic
regulations on gene expression (50) to fully understand the biol-
ogy and functional nature of the loci contributing to the path-
ways and gene sets associated with PDAC.
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