
New Deep Learning Methods for Protein Loop Modeling

Son P. Nguyen and Zhaoyu Li
Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, 
MO 65211.

Dong Xu [Member, IEEE]
Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, 
MO 65211., Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 
65211.

Yi Shang [Senior Member, IEEE]
Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, 
MO 65211.

Abstract

Computational protein structure prediction is a long-standing challenge in bioinformatics. In the 

process of predicting protein 3D structures, it is common that parts of an experimental structure 

are missing or parts of a predicted structure need to be remodeled. The process of predicting local 

protein structures of particular regions is called loop modeling. In this paper, five new loop 

modeling methods based on machine learning techniques, called NearLooper, ConLooper, 

ResLooper, HyLooper1 and HyLooper2 are proposed. NearLooper is based on the nearest 

neighbor technique; ConLooper applies deep convolutional neural networks to predict Ca atoms 

distance matrix as an orientation-independent representation of protein structure; ResLooper uses 

residual neural networks instead of deep convolutional neural networks; HyLooper1 combines the 

results of NearLooper and ConLooper while HyLooper2 combines NearLooper and ResLooper. 

Three commonly used benchmarks for loop modeling are used to compare the performance 

between these methods and existing state-of-the-art methods. The experiment results show 

promising performance in which our best method improves existing state-of-the-art methods by 

28% and 54% of average RMSD on two datasets while being comparable on the other one.
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1 INTRODUCTION

KNOWLEDGE of three-dimensional (3D) structure of a protein is critical for understanding 

its function, mutagenesis experiments and drug development. Some experimental methods 

such as the X-ray crystolography or Nuclear Magnetic Resonance (NMR) can determine a 

good 3D structure but they are very time consuming and expensive [1]. To address those 

limitations, many protein structure prediction methods have been developed. Due to its 

ability to predict protein structure fast and accurately, template-based protein structure 

prediction is being used in many biological applications [2–5]. This approach is mainly 

based on the idea of finding good template in the Protein Data Bank (PDB) [6] with a high 

level of sequence similarity of a query protein [7]. In many cases, parts of the protein 

structure cannot be predicted due to no alignment to known structures for these parts. Thus, 

it is necessary to predict the structure of these missing parts to complete the final protein 

structure prediction. This is called the loop modeling problem. In some experimental 

structures, loop modeling is also needed due to lack of structural information in certain parts 

of the protein.

Loop modeling methods can be divided into two main approaches: ab initio and template-

based approaches. The ab initio approach is based on the idea of using biological and 

physical properties of the loop region in the protein to determine the best loop conformation. 

Some ab initio methods such as LOOPY [8], PLOP [9], and MODELLER [10] can predict 

the loops with short length (below seven) quite well [5]. On the other hand, the template-

based approaches, such as LIP [11], NGK [12], Galaxy PS1 [13], or Galaxy PS2 [14] tries to 

derive some the loop structure candidates and possibly combine with some energy functions 

or selection methods to finish the loop modeling task.

The methods mentioned above are different from one another in details, but most of them 

still share a general framework that starts with sampling a large number of feasible 

conformations.

Ab initio methods mainly depend on the performance of two factors: the conformational 

search algorithm and the energy (scoring) function [45]. There are many computational 

search algorithms that have been proposed such as simulated annealing [46,47], genetic 

algorithm [48,49], random tweak [50,51] and many others [45]. Similarly, many energy 

functions have been used for loop modeling including OPLS [52], CHARMM [53], AMBER 

[54], etc.

Among ab initio methods, the LOOPY algorithm is based on the random tweak algorithm 

[15] and carries out loop closure while avoiding steric clashes. MODELLER constructs and 

samples loop conformations with a bond-scaling and relaxation method. Basically, it 

combines conjugate gradient minimization and molecular dynamics with simulated 

annealing [5]. On the other hand, PLOP uses a systematic dihedral angle based build-up 

process to sample conformation space.

Basically, the template-based methods try to extract loop structures from experimental 

structural databases such as the Protein Data Bank (PDB) first. Then, further sampling and 

optimization methods are applied on the extracted loop structures to come up with a good set 
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of candidate structures. Finally, a ranking method such as energy or scoring function is 

employed to get the best loop structure [7].

Among template-based methods, NGK performs sampling for loop conformation based on 

the idea of combining intensification of torsion and parameter annealing strategies. Both 

Galaxy PS1 and Galaxy PS2 are loop refinement methods that starts with an inaccurate loop 

structure. The energy of Galaxy PS1 is optimized for application to the refinement of 

template-based models, while Galaxy PS2 is developed for higher performance for the 

nearnative models as well [13].

In this paper, five novel methods are proposed for loop modeling, called NearLooper, 

ConLooper, HyLooper1, ResLooper and HyLooper2. The NearLooper method is based on 

the idea of selecting loop templates with a similar structure of surrounding environment. 

ConLooper uses Convolutional Neural Networks (CNN) [29–33] to predict candidate loop 

template. By combining the results of NearLooper and ConLooper, the HyLooper1 method 

takes advantages of both methods. ResLooper uses Residual Networks to predict candidate 

loop template. And Hy-Looper2 method is the combination of NearLooper and ResLooper. 

ConLooper and ResLooper use distance matrix that contains pairwise distances between two 

residues’ Ca atoms in the model as an orientation-independent representation of protein 3D 

structure. Experiment results show that these methods achieve comparable results to other 

state-of-the-art methods and outperform them in some cases.

This paper is organized as follows. Section II introduces major techniques and methods that 

we used for loop modeling. Section III presents experimental results and discussion on 

experimented datasets. Finally, Section IV concludes the paper.

2 METHODS

The loop modeling problem is formulated as a partial protein structure construction in this 

paper: given an incomplete protein structure that has a gap region (also called loop) with 

unknown structure coordinates inside, predict the conformation (structure coordinates) of the 

gap region. It is indeed the missing value problem in machine learning which can be defined 

as: given an input N-dimensional matrix with some areas of missing values, predict an ouput 

N-dimensional matrix so that the areas of missing values are filled in. Chao et. al. [41] is a 

good example of this. As an example, Figure 2(a) shows a protein structure with a gap in the 

middle and 2(b) shows the result of a complete structure with the gap region predicted.

Let S = {si, 1≤ i ≤ n} be the amino acid sequence of a target protein of length n, and A = {ai, 
1 ≤ i ≤ n} be its incomplete 3D structure, where ai represents the 3-D coordinates of the ith 

amino acid, that contains a gap region between two indices u and v, 1 < u ≤ i ≤ v < n. 
Suppose a predicted model of the gap region is M = {mi, u ≤ i ≤ v} and the truth structure of 

the gap region is D= {di, u ≤ i ≤ v}, the goal is to find an M given A so that the root-mean-

square deviation (RMSD) between M and D is minimized.

To calculate RMSD between M and D, which measures the structural similarity between two 

3-D structures of the same length, M is first optimally superimposed over D. Then, the root-
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mean-square deviation (RMSD) is calculated using the coordinates of the corresponding 

main chain atoms (N, Cα, C and O) in the two structures as follows:

RMSD = 1
k ∑i = 1

k mi − di
2 (1)

where k is the number of pairs of corresponding atoms.

In this section, five new methods are presented for loop modeling, i.e., finding M. They are 

NearLooper, ConLooper, ResLooper, Hylooper1 and HyLooper2. Figure 1 shows the 

framework of the five methods that share the following common pre-processing and post-

processing steps:

1. Generate subsequence. A subsequence of the target protein with a gap region is 

extracted from the original sequence. This subsequence is selected so that it is 

longer than the gap region and contains the gap region at the center. As an 

example, Figure 2(c) shows an input sequence with a gap region LVKEQWIL 

and 2(d) shows the selected subsequence of length 50 that contains the gap 

region in the middle.

2. Generate candidate template bank. Here, the term “template” is defined as a 

protein with complete 3D structure (including the loop region) that was found 

from alignment tools. A pool of templates (candidate 3D structures) for the 

selected subsequence are generated using sequence-based alignment tools on a 

protein structure database (e.g. PDB), such as PSI-BLAST [16] and HHSearch 

[17]. This pool of templates will be used later to train models.

3. Loop modeling. The five different methods generate loop models using the pool 

of templates in different ways.

4. Superimpose the generated loop model over the target protein structure based on 

their overlapping regions.

5. The gap region in the target protein structure is filled in with coordinates from 

the superimposed loop model. As an example, Figure 2(b) shows the result for 

input 2(a).

2.1 NearLooper, a nearest neighbor algorithm for loop modeling

NearLooper first finds a pool of templates for an extended loop region (the loop region 

extended on both sides) using sequence-based search from a protein structure database, and 

select from them a template whose structure optimally matches with the target structure (A) 
in their overlapping region. Then, the selected template is superimposed over the original 

incomplete structure A based on their overlapping region (on both sides of the gap region) 

and the coordinates of the template in the gap region is outputted as the predicted loop 

model M, which can be inserted into A to make A complete.

Following the framework in Figure 1, NearLooper uses the nearest neighbor idea to select 

one template from the template pool in step (3). To determine the similarity between 
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different templates and the target structure, the RMSD value of the overlapping region 

between a template and the target protein is used as the selection metric: the template with 

the lowest RMSD is selected.

2.2 ConLooper, a novel deep learning method for loop modeling

In this method, a novel idea of applying CNN on the distance matrix representation of 3-D 

structures is employed for predicting loop conformation instead of using the 3-D coordinates 

of protein directly. A protein that is rotated in space will have many different sets of values 

of coordinates. That leads to difficulty for machine learning methods to “learn” the data. On 

the other hand, distance matrix is an orientation-independent representation of protein 

structure that eliminates the problems of rotated proteins.

To create the distance matrix of a protein structure, only coordinates of Cα atoms are kept. 

A 3D model with n Cα atoms can be converted into an n by n distance matrix B with the 

Euclidean distance of two points in a 3D space:

Bi j = Ux
i − Ux

j 2 + Uy
i − Uy

j 2 + Uz
i − Uz

j 2
(2)

whereUx, y, z
i , Ux, y, z

j  are the 3D coordinates of points i and j, respectively.

Given a distance matrix, a 3D model can be derived using multidimensional scaling [18]. 

Figure 3 shows an example of conversion between a 3D model and its distance matrix. The 

distance matrix is an orientation and translation independent representation of a 3D structure 

of protein structure. Since it is derived from protein structure which has constraints between 

one residue to other local surrounding residues, this type of distance matrix data does 

contain local relations information, which is suitable for applying the current CNN 

techniques to predict loop models [19].

In recently years, deep learning based on deep neural networks (DNN) has had a huge 

impact on computer science and achieved unprecedented performance on many machine 

learning problems. Deep-learning methods take raw data to automatically discover the 

multiple layers of representations needed for detection or classification. These layers of 

representation in deep learning are learned from input data. Deep convolutional neural 

networks (DCNN) have made breakthroughs in processing audio, image, video, and playing 

games. DCNNs are made up of neurons that have learnable weights and biases. Each neuron 

takes some inputs, perform some calculations and produce an output. DCNNs typically have 

layered structures including convolutional (CONV) layer, rectify linear units (RELU) layer 

[28], pooling (POOL) layer and fully connected (FC) layer [20,21].

The DCNN architecture of the ConLooper method is shown in Figure 4: taking the input of a 

distance matrix representation of a 3-D structure, the network applies several convolutional 

layers followed by RELU layer alternatively and finally generates a predicted distance 

matrix as the output. The DCNN is trained to learn a network that can predict an output 

distance matrix from an input distance matrix.
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In this network architecture, there are no pooling or dense layers used since the network is 

trying to do a regression task to map input distance matrix to output distance matrix instead 

of trying to do a classification prediction as in other classical DCNN models. If dense layers 

are used at the end of DCNN network, the output would be a vector of features instead of a 

2D matrix as the expected output. Thus, the final layer of DCNN should be just a 

convolutional layer which represented by a 2D matrix as the expected output. The key 

operation of our DCNN model is Convolutional layers where it convolutes the input distance 

matrix to map it to another output distance matrix. This type of DCNN model has been 

shown that it can perform the regression task efficiently given the condition of input and 

output are 2D matrix. A reference of this can be found from the work of Oxford Visual 

Geometry Group [26].

First, ConLooper trains a DCNN using the pool of templates and then predict a loop model 

using the trained DCNN based on the partial structure of the target protein structure, as 

shown in Figure 1. As an example, Figure 5 shows the input, a distance matrix with a gap 

region, for a DCNN to predict the gap region’s 3-D structure.

Figure 6 shows a training example of the DCNN. Given a template found by some 3rd party 

alignment tools, the input and output of the DCNN, both distance matrices, are derived from 

the template’s distance matrix. The goal is to learn the mapping from the context structure of 

the gap region to the structure of the gap region.

Details of ConLooper are as follow:

1. In training, the candidate templates are first converted into distance matrices 

using Equation (2) and normalized with zero mean and unit variance based on 

the training data. Then, each distance matrix generates a training example, a pair 

of input and output sub-distance matrix, in the way illustrated in Figure 6. 

Finally, a DCNN is trained using the train examples, i.e., learning its paramaters.

2. In prediction, coordinates of Cα atoms in the original target protein structure are 

extracted. Then, its sub-structure corresponding to the templates is cropped out. 

Note that just like the templates, this sub-structure contains the gap region, but 

are bigger. Next, the distance matrix of the sub-structure is calculated and 

normalized using the normalization parameter calculated in the training phase, 

while any distance involving an atom in the gap region is set to 0. Figure 5 shows 

an example.

The area of non-gap region is used as the input to the trained DCNN. The output 

of the DCNN is a distance matrix for the extended gap region (the gap region 

with some extra amino acid on both sides), similar to the one in Figure 6(c). The 

output distance matrix is unnormalized and converted into a 3-D structure (Cα 
atoms only) using the multidimensional scaling method. Finally, Pulchra [27] is 

used to generate the full atom model from the predicted Cα model.

The full atom model of the extended gap region predicted by the DCNN will be used in the 

step 4 of the framework in Figure 1. The model is superimposed over the target protein 

structure based on their overlapping region.
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2.3 Res Looper, another deep learning method for loop modeling

ResLooper uses the same idea as ConLooper to apply deep learning method for predicting 

loop conformation. Specifically, ResLooper uses Residualdue Neural Networks [35] to 

predict loop conformation instead of CNN as in ConLooper.

The Residual Neural Network (ResNet) was introduced recently in the ImageNet 

competition and the results were quite impressive. The basic structure of this network 

architecture is the building block, in which there are stacked activation layers and 

convolutional layers. If the input of a building block is Xl, then the output of this block is Xl 

+ Xl+1 , in which Xl+1 is the non-linear transformation of Xl. We define a function ℱ
indicating the difference between the input and output of the building block, then ℱ is called 

residual function. This feature of the network gives it the ability to learn something different 

from what the input has already encoded. Also, this network handles the vanishing gradient 

problem well.

In our network, the pre-activation [36] configuration of the building block was used, as 

shown in Figure 8. We have two activation layers and two convolutional layers together with 

ReLU as the activation function. In Figure 8, BN stands for Batch Normalization. BN is first 

proposed in the work of Ioffe et al. [44]. It can normalize the training mini-batch features in 

a layer in the neural network to zero mean and unit variance.

The ResLooper network architecture is shown in Figure 7. The input and output format of 

the ResLooper is the same as ConLooper, with the input as a 42 by 42 distance matrix and 

output as an 18 by 18 distance matrix. The network contains 9 residual blocks, plus the first 

initial convolutional layer and the last fully connected layer. There are 20 weighted layers 

totally in our network. The first initial convolutional layer has a kernel size of 3 and the 

number of filters is 16. Then there are 9 residual blocks and we divided them into 3 parts, 

each part has 3 residual blocks. Between each part, we use stride 2 to perform 

downsampling, wich results in the feature map sizes {42, 21, 11}, respectively. Then number 

of filters are {16, 32, 64}, respectively for each part. The kernel size is 3 for all 

convolutions. After the final fully connected layer, we reshape the output vector to a distance 

matrix.

In the building block, for the shortcut connection, there are two cases. For the case that the 

depth dimension changes, we use 1 by 1 convolution to match the dimension. For the case 

that the depth dimension does not change, we use identity connection.

2.4 HyLooper1 and HyLooper2, hybrid methods for loop modeling

The HyLooper1 method combines the results of NearLooper and ConLooper as follows:

1. Run NearLooper to output one candidate model, T1.

2. Run ConLooper to output another candidate model, T2.

3. Select between T1 and T2 based on the RMSD value of the overlapping region 

between each and the target protein structure. The one with smaller RMSD is 

selected as the model for the extended gap region.
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4. Continue steps 4 and 5 of the framework in Figure 1. Basically, HyLooper1 is a 

hybrid method, aiming to improve over the two individual methods NearLooper 

and ConLooper.

The HyLooper2 method is very similar to HyLooper1 method but it uses ResLooper instead 

of ConLooper together with NearLooper to solve the loop modeling problem. HyLooper2 

also follows the 4 steps as HyLooper1 but the method ConLooper in step 2 is replaced by 

ResLooper.

3 RESULTS AND DISCUSSION

3.1 Dataset and experimental settings

Four datasets were used in our experiments: The first dataset, called Set CASP, is chosen 

from The Critical Assessment of protein Structure Prediction experiments year 2014 

(CASP11) [34]. This is a biennial world-wide event in the protein structure prediction 

community to assess state-of-the-art protein structure prediction methods. More specifically, 

the protein sequence search program (HHSearch) is used to search for possible candidate 

templates of target protein sequences in CASP11. The tool is configured to remove native-

like protein from its results. The top template with its known 3D structure from the Protein 

Data Bank (PDB) dataset will be added to the Set CASP dataset if it satisfies the following 

criteria: (1) has a gap of length between 5 and 12; and (2) both sides of the gap can be 

extended to have a total length of 50 residues. In total, 9 proteins were selected for this 

training dataset.

The two other datasets from public data of Park et al. [14] are common benchmark sets used 

in the loop modeling community for testing performance of loop modeling methods. It 

composed of two subsets of 20 8-residues loops and 20 12-residues, called Set 8Res and Set 

12Res, respectively. To create these sets, the first 2-ns molecular dynamics (MD) 

simulations at 300 K was performed, starting from the energy-minimized crystal structures 

using the AMER12 package [22]. Then, the Generalized Born/Surface Area (GB/SA) 

implicit solvation model [24, 25] and the AMBER99SB force field [23] were used [14].

The last dataset is called TBM set. It is comprised of 22 proteins with loops in more 

inaccurate environment of template-based models with the loop length varies from 6–11 

residues. This dataset is also derived directly from the publication of Park et. al. [14] which 

is the template-based model set with 23 proteins. One exception is that the protein 1DF6A is 

removed from this set since its length is shorter than 50 residues. It was created by running 

MODELLER 9.6 [37] with the templates and multiple sequence alignments taken from the 

SALIGN benchmark study [38,39] on the HOMSTRAD set [40]. All targets for which the 

template-based models have GDTTS smaller than 70 or greater than 90 are excluded. The 

model consensus method for detecting unreliable modeled regions were used to select the 

target loop regions [14].

Totally, there are 71 proteins from 4 sets of data that have been used in our experiments. The 

loop length varies from 6 to 12 residues. The first dataset CASP is used for model selection 

while the other 3 datasets including set 8Res, 12Res and TBM are used for testing.
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The training and validation are done for each protein of loop modeling. That means given a 

protein that is needed to do loop modeling, first a set of candidate templates will be created 

from Protein Data Bank by using 2 alignment tools PSI-BLAST [11] and HHSearch [12] on 

the sequence of given protein. All native-like templates in this set of templates are removed 

to make sure that there is no ground-truth data included in the training phase. The number of 

templates varies from 250 minimum to 617 maximum and 415 on average. Each template 

could be seen as a candidate to fill in the loop region of the protein. Then a deep learning 

method will be applied to train on the template set. The training/validation ratio is 75/25 on 

DCNN model and 90/10 on ResNet model.

Root-mean-square deviation (RMSD) of the main chain atoms N, Cα , C and O is used as 

the metric to compare performances between different loop modeling methods. These atoms 

are used since they can be seen as the representative atoms of the protein and can be used to 

recover to full atom model. In our experiments, our methods are compared with existing 

state-of-the-art methods with the results published on Park et. al [14]. These results use N, 

alpha, C and O atoms for RMSD measurement. Hence, we use the same set of atoms to 

make it comparable between our methods and other existing methods. This set of atoms has 

been used widely in different publications [12,13,14] for loop modeling problems. Its 

formula is defined in Eq. (1).

There are 3 current state-of-the-art methods including NGK [12], Galaxy PS1 [13] and 

Galaxy PS2 [14] that have been used as the baseline to compare with our newly developed 

methods for loop modeling problem. Experimental results of NGK, Galaxy PS1 and Galaxy 

PS2 are acquired directly from the published results of Park et. al. [14].

The average computation time of ConLooper on each loop modeling task is 1 CPU hours on 

a desktop computer with Intel Core i7, memory 16GB, graphics card NVID-IA GeForce 

GTX 980. NearLooper takes 0.5 CPU hour while ResLooper takes 1.5 CPU hours. 

HyLooper1 and HyLooper2 take 1.75 CPU hours and 2 CPU hours respectively.

MatConvNet toolbox version 1.0-beta20 is used as the DCNN implementation [26]. ResNet 

is implemented based on Keras [42] with Tensorflow [43] backend. The length of 

subsequence that is used for alignment is set to 50 while the size of overlapping region is set 

to 5.

3.2 Determining the best configuration for ConLooper

In this experiment, Set CASP is used to find the best configuration for ConLooper method 

so that it can be used later on the other datasets. Specifically, ConLooper method is applied 

on Set CASP with different number of hidden layers and different number of epochs. For 

each setting of hidden layers and epochs, ConLooper ran 10 times with different random 

initizlization and the average RMSD and standard deviation on each of 9 proteins in Set 

CASP are reported.

Table 1 shows performance of ConLooper method on different number of hidden layers. 

Four different settings are tested including 2 layers, 6 layers, 10 layers and 14 layers. The 

result shows that the setting of 10 layers is the best, with average RMSD of the main chain 
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atoms 2.87 and standard deviation 0.92. In this experiment, the number of epochs in training 

is set to 500.

Table 2 shows performance of ConLooper on different number of epochs with the number of 

hidden layers set as 10. Four different settings are tested, including 100 epochs, 500 epochs, 

1000 epochs, 1500 epochs and 200 epochs. The result shows that the setting of 500 epochs is 

the best, with-average RMSD of the main chain atoms 2.87 and standard deviation 0.92. 

Other settings either underfit or overfit the training data. Increasing from 1500 epochs to 

2000 epochs seems to improve the RMSD and further increasing number of epoch could 

help. But due to resource limitatin, the max number of epochs is set to 2000.

Table 3 shows the final configuration of CNN in ConLooper derived from the Set CASP 

with 9 proteins. The number of epochs is 500 while the number of hidden layers is 10. This 

configuration is used by ConLooper when compared with other loop modeling methods on 

other datasets.

3.3 Determining the best configuration for ResLooper

In this experiment, Set CASP is used to find the best configuration for ResLooper method so 

that it can be used later on the other test datasets. Specifically, ResLooper method is applied 

on Set CASP with different number of hidden layers and different number of epochs. For 

each setting of hidden layers and epochs, ResLooper ran 10 times with different random 

initizlization and the average RMSD and standard deviation on each of 9 proteins in Set 

CASP are reported.

Table 4 shows the performance of ResLooper method on different number of hidden layers. 

Four different settings are tested including 8 layers, 20 layers, 32 layers and 44 layers. The 

result shows that the setting of 20 layers is the best, with average RMSD of the main chain 

atoms 3.04 and standard deviation 1.27. In this experiment, the number of epochs in training 

is set to 500.

Table 5 shows performance of ResLooper on different number of epochs with the number of 

hidden layers set as 20. Four different settings are tested, including 100 epochs, 300 epochs, 

500 epochs and 700 epochs. The result shows that the setting of 500 epochs is the best, 

withaverage RMSD of the main chain atoms 3.04 Å and standard deviation 1.27. Other 

settings either underfit or overfit the training data.

Table 6 shows the final configuration of ResNet in ResLooper derived from the Set CASP 

with 9 proteins. The number of epochs is 500 while the number of hidden layers is 20. This 

configuration is used by ResLooper when compared with other loop modeling methods on 

other test datasets.

3.4 Performance comparison of loop modeling methods

In this section, the new methods are compared with 3 state-of-the-art loop modeling 

methods, including Nextgeneration KIC (NGK), GalaxyLoop-PS1 (Galaxy PS1) and 

GalaxyLoop-PS2 (Galaxy PS2) on the Set 8Res, Set 12Res and Set TBM datasets. For each 

Nguyen et al. Page 10

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protein in those datasets, ConLooper and ResLooper runs 10 times to derive the average 

RMSD of the main chain atoms and standard deviation.

Table 7 shows the performances of the methods on 20 proteins in Set 8Res. Among the 3 

existing methods, Galaxy PS2 achieves the best performance of average RMSD 2.02 Å and 

standard deviation 1.87. All five new methods achieve better results than the existing 

methods. HyLooper2 achieves the best performance with average RMSD 1.45 Å (28% 

improvement) and standard deviation 1.4. Individually, it outeperforms Galaxy PS2 in 65% 

(13/20 proteins) cases in this dataset.

Table 8 shows the performance of the methods on 20 proteins in Set 12Res. Similar to Table 

7, among the 3 existing methods, Galaxy PS2 achieves the best performance of average 

RMSD 2.15 Å and standard deviation 1.4. It is also the best among all methods. Among the 

new methods, HyLooper1 is the best. Comparing with Galaxy PS2, HyLooper1 is 

comparable and outperforms Galaxy PS2 in 45% (9/20 proteins) cases in this dataset. Even 

though Galaxy PS2 achieves the best performance on Set 12Res, it has the disadvantage of 

needing initial loop information to do refinement while our methods can predict loop region 

directly without initial loop conformation.

Finally, Table 9 shows the results of loop modeling between different loop modeling 

methods. All five newly developed methods show good performance on this dataset over the 

best existing method Galaxy PS2 with average RMSD 3.73 Å and standard deviation 1.46. 

HyLooper2 achieves the best results with average RMSD 1.69 Å (54% improvement) and 

standard deviation 1.07. Individually, it outeperforms Galaxy PS2 in 77% (17/22 proteins) 

cases in this dataset.

Comparing performance on the loop modeling task between our five newly developed 

methods on test datasets, HyLooper2 is the best one in general. Between two deep learning 

methods, ResLooper is better than ConLooper which implies the better performance of 

ResNet over DCNN.

4 CONCLUSION

This paper presents five new loop modeling methods, in particular a new approach based on 

deep learning (DCNN, ResNet) and distance matrix representation of 3-D structures. From 

the rotation and translation independent representation of distance matrix, DCNN and 

ResNet are able to learn a mapping function to predict a loop model. To the best of our 

knowledge, this is the first attempt to combine deep learning and geometric information of 

distance matrix for loop modeling task.

Experiments using selected CASP models and common benchmark datasets have shown 

promising results. Compared to state-of-the-art loop modeling methods, our HyLooper2 

achieves the best result on two test datasets and being comparable on the other test dataset. 

The ResNet in ResLooper is able to generate good loop candidates in many cases. The 

HyLooper2 method, which is the combination of ResLooper and NearLooper achieves good 

performance because both methods are complementary and have their own strengths.
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Due to the limitation of computing power, experiments have been done on a limited sets of 

different network configurations. Exploring more network configurations can help improve 

the overall performance of loop modeling. This would be a good direction for future work.
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Fig. 1. 
The framework of the five proposed loop modeling methods, NearLooper, ConLooper, 

HyLooper1, ResLooper and HyLooper2.
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Fig. 2. 
An example of the loop modeling problem. a) A protein 3D structure with a gap region in 

the middle; b) The protein 3D structure with the gap region filled in; c) The original protein 

sequence with the gap region in the middle marked as bold and italic text; d) An extracted 

subsequence of length 50 from the original sequence that contains the gap region.
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Fig. 3. 
The 3D structure and its corresponding distance matrix of a protein model.

Nguyen et al. Page 18

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
DCNN architecture of the ConLooper method.
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Fig. 5. 
An example of the distance matrix of a protein structure containing a gap region in the 

middle (the blue bands), the Con-Looper method is used to predict the gap region’s 3-D 

structure.
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Fig. 6. 
A training example of the DCNN in ConLooper. a) The distance matrix of a template found 

by a 3rd party alignment tool. b) Input distance matrix for DCNN. It is a combination of 4 

corner squares marked as black boxes in a). The boundaries of these black boxes are derived 

from the gap position in the structure. c) Output distance matrix for CNN. It is created from 

the white box in a).
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Fig. 7. 
ResNet architecture of the ResLooper method.
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Fig. 8. 
Configuration of the pre-activation building block in our residual neural network.
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TABLE 1

CONLOOPER WITH DIFFERENT NUMBER OF HIDDEN LAYERS ON SET CASP

2 Layers 6 Layers 10 Layers 14 Layers

Average
RMSD 3.03 3.09 2.87 3.17

Std. dev. 1.18 0.85 0.92 1.14

Average RMSD and standard deviation are calculated on set CASP with different configurations.

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2020 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nguyen et al. Page 25

TABLE 2

CONLOOPER WITH DIFFERENT NUMBER OF EPOCHS ON SET CASP

100 Epochs 500 Epochs 1000 Epochs 1500 Epochs 2000 Epochs

Average
RMSD 3.16 2.87 3.12 3.22 3.04

Std. dev. 1.05 0.92 0.83 1.06 1.06

Average RMSD and standard deviation are calculated on set CASP with different configurations.
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TABLE 3

CONFIGURATION OF CNN IN CONLOOPER METHOD AFTER TRAINING ON SET CASP

Configuration Value

Learning rate 0.002

Number of epochs 500

Number of hidden layers 10

Batch size 10

Training / Validation ratio 75% / 25%
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TABLE 4

RESLOOPER WITH DIFFERENT NUMBER OF HIDDEN LAYERS ON SET CASP

8 Layers 20 Layers 32 Layers 44 Layers

Average
RMSD 3.13 3.04 3.11 3.07

Std. dev. 1.29 1.27 1.18 1.22

Average RMSD and standard deviation are calculated on set CASP with different configurations.
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TABLE 5

RESLOOPER WITH DIFFERENT NUMBER OF EPOCHS ON SET CASP

100 Epochs 300 Epochs 500 Epochs 700 Epochs

Average
RMSD 3.13 3.09 3.04 3.1

Std. dev. 1.21 1.21 1.27 1.2

Average RMSD and standard deviation are calculated on set CASP with different configurations.
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TABLE 6

CONFIGURATION OF RESNET IN RESLOOPER METHOD AFTER TRAINING ON SET CASP

Configuration Value

Learning rate 0.1 -> 0.01 (250 epochs)
-> 0.001 (375 epochs)

Number of epochs 500

Number of hidden layers 20

Batch size 8

Training / Validation ratio 90% / 10%
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TABLE 7

LOOP RECONSTRUCTION RESULTS FOR THE 8-RESIDUE LOOP DATASET SET 8RES

PDB NGK Galaxy
PS1

Galaxy
PS2 NearLooper ConLooper HyLooper1 ResLooper HyLooper2

135l 3.9 3.7 4.3 0.6 1.5 (0.21) 0.6 1.7 (0.68) 0.6

1alc 1.3 1.4 1.4 0.2 0.4 (0.06) 0.2 0.9 (0.32) 0.2

1btl 0.4 1.3 0.9 0.2 1.4 (0.11) 0.2 0.5 (0.04) 0.2

1cex 2.1 2 1.8 3.3 3 (0.27) 3.3 3.3 (0.09) 3.3

1clc 0.4 0.4 0.3 4.5 4.3 (0.17) 4.5 4.6 (0.05) 4.5

1ddt 3.7 2 1.5 4.1 3.4 (0.24) 3.3 3.4 (0.23) 3.5

1ezm 4.3 4.2 3.8 0.9 1.7 (0.51) 0.9 0.7 (0.11) 0.9

1hfc 0.7 1 0.9 3.6 3.5 (0.26) 3.5 3.6 (0.07) 3.6

1iab 1 2.2 1.8 0.6 1.9 (0.19) 0.6 0.7 (0.09) 0.7

1ivd 2.7 3.6 2.2 0.5 1.5 (0.32) 0.5 1.1 (0.13) 0.5

1lst 1.2 1.1 1.1 0.3 1.5 (0.49) 0.3 1.5 (0.18) 0.3

1nar 1.4 2.1 1.8 2.4 2.9 (0.3) 2.4 2.8 (0.24) 2.4

1oyc 1.1 1.6 1.7 2.3 2.2 (0.1) 2.3 2.3 (0.02) 2.3

1prn 8.3 6.9 8.8 3 2.7 (0.16) 3 3.0 (0.13) 2.9

1sbp 0.9 0.8 0.8 1.4 1.6 (0.21) 1.4 1.0 (0.13) 0.9

1tml 1.1 1.1 0.6 0.2 2.3 (0.46) 0.2 0.5 (0.10) 0.2

2cmd 1.9 4 2.3 0.2 1.1 (0.38) 0.2 0.3 (0.13) 0.2

2exo 1.5 1 1.1 0.4 1.2 (0.46) 0.4 0.8 (0.10) 0.8

2sga 1.7 1.2 1.3 0.5 1.2 (0.42) 0.5 3.3 (0.12) 0.5

5p21 1.7 1.9 1.9 1.6 0.9 (0.1) 1 0.6 (0.05) 0.6

Average 2.07 2.18 2.02 1.54 2.01 1.47 1.83 1.45

Std. dev. 1.84 1.57 1.87 1.46 1.01 1.39 1.32 1.4

RMSD scores are used to compare performances among methods. For ConLooper and ResLooper, the experiment is executed 10 times to get the 
average RMSD and standard deviation for each protein. All the numbers are in Å.
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TABLE 8

LOOP RECONSTRUCTION RESULTS FOR THE DATASET SET 12RES

PDB NGK Galaxy
PS1

Galaxy
PS2 NearLooper ConLooper HyLooper1 ResLooper HyLooper2

1a8d 3.7 4.5 3.1 2.8 2.6 (0.38) 2.8 2.8 (0.14) 2.8

1arb 1.7 2.1 1.9 0.4 1.2 (0.78) 0.4 1.1 (0.21) 0.4

1bhe 1.7 2.3 3.5 4.6 3.7 (0.28) 3.4 3.5 (0.71) 3.3

1bn8 1.1 4.3 1.1 4.8 4.4 (0.22) 4.8 5.7 (0.4) 4.8

1c5e 1.2 2.2 1.5 1.7 2 (0.71) 1.7 3.6 (0.22) 1.7

1cb0 0.9 5.7 0.9 6 5.8 (0.65) 6 5.9 (0.4) 5.9

1cnv 6.3 6.4 6.5 1.1 2.4 (0.9) 1.1 1.2 (0.16) 1.1

1cs6 1.1 1.7 1.6 2.3 2.3 (0.29) 2.3 2.4 (0.23) 2.3

1dqz 7.5 1.5 3.3 0.2 1.3 (0.94) 0.2 1.2 (0.23) 0.2

1exm 1.1 3 1.3 4.2 3.4 (0.25) 4.2 3.9 (0.3) 3.8

1f46 2.6 4.5 3.8 4.4 3.5 (0.59) 3 3.7 (0.75) 4.4

1i7p 1.9 2.8 1.7 4.3 3.4 (0.25) 4.3 4.3 (0.9) 4.3

1m3s 3.2 4.3 2.7 0.9 2.5 (0.54) 0.9 1.5 (0.33) 0.9

1ms9 1.8 1.8 1.8 5.2 4.7 (0.64) 5.2 5 (0.11) 5.2

1my7 0.9 2.4 1 0.5 1.6 (0.45) 0.5 0.7 (0.8) 0.7

1oth 0.8 1.1 0.9 1.6 2 (0.43) 1.6 1.4 (0.16) 1.4

1oyc 0.7 2.7 1.2 3.1 3 (0.27) 3.1 3 (0.3) 3.1

1qlw 6 2.5 2.9 4.2 5.1 (0.59) 4.2 5.1 (0.72) 4.2

1t1d 1.3 2.5 1.5 0.9 1.8 (0.64) 0.9 1.1 (0.21) 0.9

2pia 0.7 4.5 0.7 2.5 2.9 (0.3) 2.5 2.1 (0.45) 2.5

Average 2.31 3.14 2.15 2.79 2.98 2.65 3.01 2.69

Std. dev. 2.03 1.46 1.4 1.82 1.27 1.73 2.67 1.74

RMSD scores are used to compare performances among methods. For ConLooper and ResLooper, the experiment is executed 10 times to get the 
average RMSD and standard deviation for each protein. All the numbers are in Å.
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TABLE 9

LOOP RECONSTRUCTION RESULTS FOR THE DATASET SET TBM

PDB NGK Galaxy
PS1

Galaxy
PS2 NearLooper ConLooper HyLooper1 ResLooper HyLooper2

1a49a_463–472 5 2.3 2.7 0.8 2.2 (0.43) 0.8 3.2 (0.7) 0.8

1a49a_86–94 4.6 3.8 4.2 0.5 1.8 (0.97) 0.5 1.2 (0.5) 0.5

1asza_313–322 2.9 2.3 1.9 0.3 2.3 (0.41) 0.3 0.7 (0.15) 0.3

1avk_20–29 1.2 1.2 1.5 2.9 3.4 (0.34) 2.9 3.4 (0.13) 2.9

1buca_61–68 5.3 3.9 3.2 4.5 3.3 (0.63) 3.3 3.2 (0.63) 3.2

1csn_216–223 6.5 8.8 6.1 2.1 1.7 (0.73) 1.8 1.5 (0.37) 1.3

1d2ka_349–354 1.9 4 5.7 1.2 2.4 (1.32) 1.2 2.5 (0.28) 1.2

1e0ca1_53–60 3.8 6.7 5.9 2 2.7 (0.27) 2 2.0 (0.45) 1.8

1esl_40–48 3 3.2 2.4 2.6 2.3 (0.23) 2.2 3.5 (0.16) 2.6

1esl_54–59 1.8 2.6 1.5 0.2 1.8 (0.57) 0.2 1.2 (0.76) 0.2

1f3g_123–131 4 3.5 3.3 2.6 2.4 (0.31) 2.6 2.7 (0.39) 2.6

1gpb_261–271 4.3 4.4 3 3.7 3.3 (0.66) 3.7 3.8 (0.66) 3.7

1iala_32–42 6.8 4.6 4 0.5 2.8 (0.51) 0.5 2.9 (0.16) 0.5

1kbt_26–31 3.9 3.4 3.5 2.1 2.7 (0.43) 2.8 2.2 (0.5) 2.1

1lxa_102–107 3.6 3.8 4.7 0.7 2.7 (0.53) 0.7 1.9 (0.5) 0.7

1qdlb_59–67 4.2 2.7 2.8 3.7 2 (1.67) 2.1 3.4 (0.21) 3.2

1qu9a_93–98 7 6.6 6.3 2.8 2.8 (0.27) 2.6 2.6 (0.2) 2.8

1rsy_74–79 4 3 3.1 1 2 (1.07) 1 0.5 (0.13) 0.5

1tml_45–50 5.4 4.7 5.1 2 2.3 (0.89) 2 2.2 (0.11) 2.2

2oata_347–353 2.7 3 5 1.4 2.5 (0.28) 1.4 2.1 (0.23) 1.4

2pola2_23–32 2.8 4.3 3.7 1.6 1.8 (0.96) 1.6 1.3 (0.42) 1.1

3fib_40–47 2.8 2.8 2.6 1.7 1.9 (0.52) 1.7 1.8 (0.1) 1.7

Average 3.97 3.89 3.73 1.85 2.41 1.72 2.26 1.69

Std. dev. 1.57 1.69 1.46 1.19 0.5 1 0.94 1.07

RMSD scores are used to compare performances among methods. For ConLooper and ResLooper, the experiment is executed 10 times to get the 
average RMSD and standard deviation for each protein. All the numbers are in Å.
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