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Abstract
Eukaryotic initiation factor 5A2 (eIF5A2), as one of the two isoforms in the
family, is reported to be a novel oncogenic protein that is involved in multiple
aspects of many types of human cancer. Overexpression or gene amplification of
EIF5A2 has been demonstrated in many cancers. Accumulated evidence shows
that eIF5A2 initiates tumor formation, enhances cancer cell growth, increases
cancer cell metastasis, and promotes treatment resistance through multiple
means, including inducing epithelial–mesenchymal transition, cytoskeletal
rearrangement, angiogenesis, and metabolic reprogramming. Expression of
eIF5A2 in cancer correlates with poor survival, advanced disease stage, as well as
metastasis, suggesting that eIF5A2 function is crucial for tumor development and
maintenance but not for normal tissue homeostasis. All these studies suggest that
eIF5A2 is a useful biomarker in the prediction of cancer prognosis and serves as
an anticancer molecular target. This review focuses on the expression, subcellular
localization, post-translational modifications, and regulatory networks of eIF5A2,
as well as its biochemical functions and evolving clinical applications in cancer,
especially in human digestive system neoplasms.
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Core tip: Eukaryotic initiation factor 5A2 (eIF5A2) is one of only two cellular proteins
that contain the unusual amino acid hypusine. eIF5A2 initiates tumor formation,
enhances cancer cell growth, increases metastasis, and promotes treatment resistance
through inducing epithelial–mesenchymal transition, cytoskeletal rearrangement,
angiogenesis, and metabolic reprogramming. Isoform eIF5A2 represents a promising
target for treatment of human digestive system cancer. Our objective was to consolidate
the current literature to better understand the expression, subcellular localization, post-
translational modifications, and regulatory networks of eIF5A2, as well as its
biochemical functions and evolving clinical applications in human digestive system
cancer.

Citation: Meng QB, Peng JJ, Qu ZW, Zhu XM, Wen Z, Kang WM. Eukaryotic initiation
factor 5A2 and human digestive system neoplasms. World J Gastrointest Oncol 2019; 11(6):
449-458
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INTRODUCTION
In 2000, EIF5A2 was first sequenced and isolated as a novel candidate oncogene from
human chromosome 3q26.2[1,2]. Eukaryotic initiation factor 5A2 (eIF5A2) is one of only
two eIF5A family members that undergo an unusual post-translational hypusine
modification[3].  Unlike isoform eIF5A1,  which is  ubiquitously expressed,  eIF5A2
protein is normally not detected and its mRNA is expressed in a tissue-dependent
manner in human tissues[1]. eIF5A2 protein has been shown to be overexpressed in
many cancers, including cervical cancer[4,5], ovarian cancer[6-8], colorectal cancer[9,10],
gastric cancer[11,12],  liver cancer[13,14],  melanoma[15,16],  lung cancer[17],  nasopharyngeal
carcinoma[18], bladder cancer[19,20] and esophageal squamous cell carcinoma (ESCC)[21].
Accumulated evidence shows that  eIF5A2 plays  important  roles  as  a  regulatory
molecule in many biological processes, including tumor formation, cancer cell growth,
metastasis, maintenance of cancer stem cells (CSCs) and treatment resistance through
multiple means including epithelial–mesenchymal transition (EMT),  cytoskeletal
rearrangement, angiogenesis, and metabolic reprogramming.

In  this  article,  we review eIF5A2-related studies,  particularly  those  about  the
discovery, subcellular location, functions, upstream and downstream regulation, and
modification of eIF5A2, as well as its role as a biomarker and its therapeutic potential
for human digestive system cancer.

LITERATURE SEARCH
A literature search was conducted using PubMed Library for “eIF5A2”, “eIF-5A2”,
“eIF-5A-2”,  “eIF5A-2”,  “EIF5A2”,  “eukaryotic  translation initiation factor  5A2”,
“eukaryotic initiation 5A2” or “human eukaryotic initiation factor 5A2”.

PROPERTIES AND EXPRESSION
Human eIF5A2  is  a  small  (approximately  17  kDa)  universally  conserved  acidic
protein  that  contains  153  amino acids  and is  encoded by EIF5A2  gene,  which is
located on chromosome 3q26.2; a chromosomal region that is frequently amplified in
several human cancers[2,3]. Multiple forms of EIF5A2 mRNA (5.6, 3.8, 1.6 and 0.7 kb,
with one at 3.8 kb being the major form) are the products of one gene with various
lengths  of  3’-untranslated  region  (UTR),  resulting  from  the  use  of  different
polyadenylation (AAUAAA) signals in various human cancer cell lines[22]. In short, for
the structure of eIF5A2, the C-terminal domain consists of a three-turn α-helix α2 and
five strands of β7-β11 and the N-terminal domain is dominated by β-strands[23].

WJGO https://www.wjgnet.com June 15, 2019 Volume 11 Issue 6

Meng QB et al. EIF5A2 in human digestive system neoplasms

450



Unlike EIF5A1, which is ubiquitously expressed, EIF5A2 is normally not detected
and its mRNA is expressed in a tissue-dependent and cell-type-specific manner, and
is mainly found in testes, parts of adult brain, human cancer tissues (such as primary
ovarian cancers) and some cancer cell lines (such as SW480 and UACC-1598)[1,2,24].
Clement et al[3] described the identification of eIF5A2 protein in human colorectal (SW-
480) and ovarian (UACC-1598) cancer cell lines, and were first to report that eIF5A2
has an important role in eukaryotic cell survival similar to that of the ubiquitous
eIF5A1. Overexpression of  EIF5A2  and/or eIF5A2 protein is  observed in several
human cancer tissues and/or cell lines such as cervical cancer[4,5,25], ovarian cancer[7,8],
colorectal  cancer[9,10,26-28],  gastric  cancer[11,12,29,30],  ESCC[21,31],  liver  cancer[13,14,32-35],
nasopharyngeal cancer[18], oral squamous cell carcinoma[36,37], pancreatic cancer[38-40],
non-small  cell  lung cancer[17,41-43],  melanoma[15,16],  bladder cancer[34,44,45],  and breast
cancer[46,47]. In contrast, eIF5A2 is not generally overexpressed in glioblastoma[48] and
chronic myeloid leukemia[49]. These observations suggest that eIF5A2 overexpression
is  not  an invariable  hallmark of  cancer.  Pällmann et  al[50]  reported high levels  of
EIF5A2  mRNA in brain, epididymis, lung, prostate and testis tissues of wild-type
mice, as assessed by quantitative real-time polymerase chain reaction.

POST-TRANSLATIONAL MODIFICATIONS

Hypusine modification and activation of eIF5A2
In  humans,  isoforms eIF5A1 and eIF5A2 are  the  only  two cellular  proteins  that
experience  a  post-translational  hypusination  by  two  essential  enzymatic  steps
involving deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH),
which  selectively  catalyze  the  polyamine  spermidine-  to  finish  eIF5A  hypusi-
nation[22,51-53]. eIF5A exists mainly as the fully hypusination form in mammalian tissues
and cells[54].  First, the 4- aminobutyl moiety of spermidine are transferred to the -
amino  group  of  Lys50  to  form  a  deoxyhypusine-containing  intermediate  by
DHS[3,22,51,55]. Second, DOHH catalyzes the hydroxylation of the deoxyhypusine residue
to generate hypusine-containing eIF5A and activates it[22,51]. It has been reported that
the  endogenous  activity  of  DHS  and/or  DOHH  appears  to  be  insufficient  for
modification  of  the  excess  precursors  of  mature  eIF5A2  and  eIF5A1[22],  and
exogenously expressed eIF5A2 and eIF5A1 is largely unhypusinated, and can be
hypusinated only when DHS and DOHH are coexpressed[56,57]. Therefore, transfection
studies  with  eIF5A2  expression  vectors,  such  as  our  previous  study [11]  and
others[7,9,13,26,27,31],  should  be  re-assessessed  by  evaluating  the  real  changes  in  the
concentrations of the hypusinated eIF5A2 or its precursor to determine the true cause
of the biological effects. Hypusine modification not only activates eIF5A2, but also
regulates  its  subcellular  localization.  However,  in contrast  to DHS- and DOHH-
mediated hypusination of eIF5A1, which is crucial for embryonic development as well
as for viability in adult mice, the cancer-associated isoform eIF5A2 is dispensable for
embryonic development and viability in adult organisms[50].  Future work will  be
needed to determine the contribution of hypusine biosynthetic enzymes of eIF5A2 in
tumorigenesis and metastasis.

Acetylation modification
In addition to unique hypusination, eIF5A2 also undergoes reversible acetylation
modification at Lys-47, like eIF5A1 does[56,57]. Histone deacetylase 6 and sirtuin 2 have
been identified as the major deacetylases of eIF5A2[56]. Acetylation of eIF5A2 at Lys-47
plays  an  important  role  in  its  subcellular  localization.  It  is  also  reported  that
acetylation of the hypusine side chain in the N-terminal domain by a key polyamine
catabolic enzyme, spermidine/spermine-N1-acetyltransferase 1 (SSAT1) inactivates
eIF5A,  which  suggests  regulation  of  eIF5A  activity  by  reversible  acetylation/
deacetylation at this site though SSAT1 catalysis[58].

Other modifications
eIF5A  can  be  modified  by  phosphorylation[59,60],  ubiquitination[61]  and  trans-
glutaminylation[62], but clear effects on its activity have not been fully detected. eIF5A
dephosphorylation is required for translation arrest in stationary phase cells[60]. Shang
et  al[61]  reported  that  the  carboxyl  terminus  of  Hsc70-interacting  protein  (CHIP)
functions  as  a  negative  regulator  of  eIF5A  to  mediate  its  ubiquitination  for
degradation. This was the first report on regulation of eIF5A protein stability via a
protein degradation mechanism. It is likely, therefore, that the CHIP–eIF5A2 axis
mediates ubiquitination of eIF5A2 for degradation in human cancers. The potential
role of eIF5A2 in human cancer development and metastasis has been found in recent
years;  therefore,  the importance of eIF5A2 post-translational modifications in its
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oncogenic properties should be elucidated in the future.

SUBCELLULAR LOCALIZATION OF eIF5A2
The  nuclear  membranes  force  nucleocytoplasmic  exchange  to  proceed  through
nuclear pore complexes (NPCs)[63]. The NPC permeability barrier -allows free passage
to small molecules, while limiting larger molecules that approach or exceed a limit of
> 30kDa in mass or > 5nm in diameter[64]. Most evidence demonstrates s that eIF5A2,
as  a  shuttling  protein,  is  responsible  for  regulating  protein  translation  in  the
cytoplasm, and only a few studies have shown that it is located and works in the
nucleus[15,21,65]. More studies are necessary to address its role in the nucleus. eIF5A2 has
an invariably  small  molecular  mass  of  only  17  kDa and can thus cross  the  NPC
permeability barrier rapidly, even without the help of an importin. The nuclear export
of eIF5A may be mediated by the nuclear exporter exportin (XPO)4, which belongs to
the importin-β family of nuclear transporters, in a hypusine-dependent manner[66,67]. In
addition,  the  N-terminal  19  amino  acids  of  eIF5A  serve  as  a  signal  for  nuclear
localization of  eIF5A[68].  Knockdown of  XPO4 in murine hepatoma cells  leads to
nuclear accumulation of eIF5A2 as well as eIF5A1[65].

Post-translational modifications including acetylation at Lys-47 and hypusination
at  Lys-50  of  eIF5A2  direct  its  subcellular  localization[56].  Acetylation  acts  as  a
molecular switch for eIF5A2, allowing it to exert distinct functions in the cytoplasm
and nucleus. The acetylated form of eIF5A2 is primarily enriched in the nucleus,
suggesting that acetylation at Lys-47 induces nuclear accumulation[56]. In addition, the
study also showed that unhypusinated eIF5A2 is highly acetylated but is significantly
deacetylated  upon  hypusination,  implying  crosstalk  between  acetylation  and
hypusination[56].  Hypusination  can  reduce  acetylation  in  eIF5A2,  leading  to  its
localization in the cytoplasmic compartment where it is required for protein synthesis.
Inhibition of  the  deacetylases  or  impaired hypusination increases  acetylation of
eIF5A2, leading to nuclear accumulation. These findings provide strong evidence that
cytoplasmic  location  of  eIF5A2  requires  not  only  hypusination  but  also  hypo-
acetylation.

REGULATION OF EIF5A2 EXPRESSION IN HUMAN
DIGESTIVE SYSTEM NEOPLASMS
Although the mechanisms of EIF5A2 gene upregulation in tumor cells are not clear
yet, most researchers believe that the main reason is genomic instability caused by
copy number variation. To date, EIF5A2 has been frequently found, but not always, to
be amplified in human cancers and cancer cell lines[2,8,10,17,19,21,69]. Although tumors that
exhibit gene amplification typically exhibit high eIF5A2 expression, many have high
eIF5A2  levels  without  gene  amplification,  and  thus  other  mechanisms,  such  as
transcriptional regulation and/or post-transcriptional regulation, must exist in eIF5A2
upregulation. It  has been demonstrated that K-ras activation upregulates eIF5A2
expression as well as hypusination via  transcriptional regulation during the early
stages of pancreatic ductal adenocarcinoma (PDAC) progression[38]. Another study has
reported that hypoxia increases EIF5A2  RNA levels,  at  least  in part  via  hypoxia-
inducible factor (HIF)-1α in ESCC cells[21].

Many  studies  have  demonstrated  that  miRNAs  (miRs)  target  the  3’-UTR  of
cytoplasmic mRNA of EIF5A2 to post-transcriptionally regulate mRNA and protein
levels[70] (Table 1). EIF5A2 is a putative target for miR-203, miR-30b, miR-9, miR-125b,
miR-599 and miR-588, which are predicted by the bioinformatic algorithm TargetScan
(www.targetscan.org). miR-203 suppresses growth and invasion of colorectal cancer
cells  (SW620  and  LOVO),  at  least  partly,  by  binding  the  3’-UTR of  EIF5A2  and
repressing EIF5A2  expression at both the mRNA and protein levels[26].  miR-30b[29],
miR-599[71] and miR-588[72] suppress gastric cancer cell metastasis via binding to the 3’-
UTR of EIF5A2  and repressing eIF5A2 expression. miR-125b inhibits tumorigenic
properties of hepatocellular carcinoma (HCC) cells via suppressing eIF5A2 expression,
through binding to the 3’-UTR of EIF5A2[73]. miR-9 enhances sensitivity to cetuximab
in epithelial phenotype HCC cells through regulation of eIF5A2[74].

Zender et al[65] has reported that eIF5A2 is a key downstream effector of XPO4 in
tumor inhibition, and XPO4 is a negative regulator of eIF5A2, which may play a role
in inhibiting cell proliferation in the nucleus. In murine hepatoma cells, knockdown of
XPO4 leads  to  accumulation  of  eIF5A1  and  eIF5A2  in  the  nucleus[65].  The  sonic
hedgehog-GLI  family  zinc  finger  1  signaling  pathway  upregulates  eIF5A2  in
pancreatic cancer cells[28]. Moreover, hypoxia can induce eIF5A2 upregulation and
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Table 1  miRNA action in regulation of EIF5A2 gene expression

miRs Ref. Materials Function

miR-203 Deng et al[26] CRC cells (SW620 and LOVO) Suppressing growth and invasion via miR-203/EIF5A2 axis

miR-599 Wang et al[71] GC cells (BGC823 and MKN-45) Inhibiting metastasis and EMT via miR-599/EIF5A2 axis

miR-588 Zhou et al[72] GC cells (MGC803) Regulating invasion, migration and EMT via miR-588/EIF5A2 axis

miR-30b Tian et al[29] GC cells (AGS and MGC803) Downregulation of EIF5A2 by miR-30b inhibits EMT

miR-9 Xue et al[74] HCC cells (Hep3B and Huh7) Enhancing sensitivity to cetuximab via miR-9/EIF5A2 axis

miR-125b Tsang et al[73] HCC tissue and cells Inhibiting tumorigenic properties via miR-125b/EIF5A2 axis

CRC: Colorectal cancer; GC: Gastric cancer.

promote eIF5A2 translocation from the cytoplasm to the nucleus in ESCC cell lines
(KYSE140, KYSE180, KYSE410, KYSE510 and EC109)[21].

FUNCTIONS OF eIF5A2 IN HUMAN DIGESTIVE SYSTEM
NEOPLASMS
The cancer-associated isoform eIF5A2 is not essential for normal development and
viability, which has been confirmed in vivo[50].  Accumulating evidence shows that
eIF5A2  plays  important  roles  in  tumor  proliferation [ 1 1 ] ,  metastasis [ 1 3 ] ,
EMT[9,11,13,28-29,35,75,76],  cytoskeletal  rearrangement[13],  angiogenesis[21],  metabolic
reprogramming[14],  maintenance of CSCs[31,77]  and drug resistance[33,38,74,75,78-80]via  its
subsequent signaling pathways. Additionally, eIF5A2 is associated with survival of
many digestive cancer patients[9,11,12,14,21,32] (Figure 1).

eIF5A2 and EMT
Over the past 10 years, many studies have evaluated the role of eIF5A2 in activating
EMT in human cancer cells. Tang et al[13] first reported that eIF5A2 induces EMT; an
important event in tumor invasion and metastasis that is chiefly characterized by
upregulation of mesenchymal markers (Vimentin,  fibronectin,  E-cadherin and α-
smooth muscle actin) and downregulation of epithelial markers (E-cadherin and β-
catenin) in HCC. Shek et al[35] and Lou et al[75] confirmed that eIF5A2 enhances the
aggressiveness of HCC cells by inducing EMT. Zhu et al[9] found that overexpression
of eIF5A2 also promotes colorectal carcinoma cell aggressiveness by upregulating
Metastasis-associated protein 1 through C-myc to induce EMT[76]. In addition, eIF5A2
induces EMT of other human digestive system neoplasms such as gastric cancer[11,29]

and pancreatic cancer[28].

eIF5A2 and cytoskeletal rearrangement
In HCC, eIF5A2 stimulates rearrangement of the cytoskeleton through activation of
the RhoA/Rac1 GTPase signaling pathway[13]. That study showed that overexpression
of  eIF5A2 in  human liver  LO2 cells  provokes  the  formation  of  stress  fibers  and
lamellipodia, without affecting expression level of Rho/Rac GTPase in the cells[13].
However,  the  precise  mechanism  underlying  EIF5A2-mediated  Rho-GTPase
activation requires further investigation.

eIF5A2 and angiogenesis
Increased expression of eIF5A2, via  hypoxia or gene amplification, contributes to
angiogenesis in ESCC via the HIF-1α-mediated signaling pathway[21]. In vitro and in
vivo  assays have both indicated that eIF5A2 increases angiogenesis by enhancing
matrix metalloproteinase 2 activity via activation of the p38 mitogen-activated protein
kinase  pathway,  and  eIF5A2  silencing  increases  tumor  vessel  wall  continuity,
increases blood perfusion, and improves tumor oxygenation in HCC[33].

eIF5A2 and metabolic reprogramming
A recent  study reported that  eIF5A2 triggers  cellular  metabolic  reprogramming,
including  glucose  metabolism,  by  promoting  aerobic  glycolysis  and  fatty  acid
biosynthesis via upregulation of FASN and ACSS2 in human liver cancer cells[14].

eIF5A2 and maintenance of stemness of cancer cells
CSCs are suggested to be responsible for driving resistance to conventional therapies
and  for  cancer  metastasis  and/or  recurrence.  It  has  been  reported  that  eIF5A2
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Figure 1

Figure 1  unctions and subsequent pathways of eukaryotic initiation factor 5A2 in human digestive system
neoplasms. Overexpression of Eukaryotic initiation factor 5A2 (eIF5A2) induces epithelial–mesenchymal transition
(EMT) by enhancing RhoA/Rac1-GTPase and ITP60 GNC5-MTA1 activity in hepatocellular carcinoma (HCC).
Overexpression of EIF5A2 also promotes colorectal carcinoma and gastric cancer cell aggressiveness by
upregulating the C-myc/MTA axis to induce EMT. Increased expression of eIF5A2 contributes to angiogenesis in
esophageal squamous cell carcinoma via the P38 MAPK/MMP2 pathway. eIF5A2 promotes cell proliferation and
triggers cellular metabolic reprogramming in HCC cells, including glucose metabolism and fatty acid biosynthesis via
upregulation of FASN and ACSS2. In HCC, eIF5A2 stimulates rearrangement of the cytoskeleton through activation
of the RhoA/Rac1 GTPase signaling pathway. eIF5A2: Eukaryotic initiation factor 5A2; EMT: Epithelial–mesenchymal
transition.

overexpression increases the stemness of ESCC cells (KYSE510)[31].  A recent study
showed that eIF5A2 also contributes to the maintenance of HCC CSCs (CD133+ HCC
cells) via the c-Myc/miR-29b axis[77].

eIF5A2 and survival of patients
Overexpression  of  cytoplasmic  eIF5A2  detected  by  immunohistochemistry  is
correlated  with  poor  survival  of  patients  with  digestive  system  malignancies,
including colorectal cancer[9], ESCC[21], gastric cancer[11,12] and liver cancer[14,32]. All these
studies suggest that a high level of eIF5A2 expression in the cytoplasm is a potential
prognostic indicator in many human cancers. However, a recent study demonstrated
that nuclear eIF5A2 expression is also an independent prognostic marker in human
melanoma[15].  Therefore,  nuclear  eIF5A2  may  have  the  potential  to  serve  as  a
therapeutic marker for some human cancers, and further study is needed to establish
the subcellular localization of eIF5A2.

Role of eIF5A2 in treatment resistance of human digestive system neoplasms
Primary or secondary anticancer drug resistance is a clinical problem shared by both
chemotherapy and targeted therapy. The development of resistance may be predicted
from pre-existing genomic and proteomic profiles in patients[78]. eIF5A2 can be used as
a biomarker for predicting drug resistance. N1-guanyl-1,7-diaminoheptane (GC7), an
inhibitor of DHS, enhances the therapeutic efficacy of doxorubicin in epithelial HCC
cells (Huh7, Hep3B and HepG2)[75,79]  by preventing the doxorubicin-induced EMT
through inhibition of eIF5A2 activation. GC7 can also enhance the sensitivity of oral
cancer cells to cisplatin[37]. eIF5A2 promotes resistance to doxorubicin via regulation of
EMT in colon cancer cells[27]. Downregulation of eIF5A2 increases tumor perfusion
and reduces tumor hypoxia, thus increasing the chemosensitivity of HCC cells to 5-
fluorouracil  by  remodeling  tumor  vessels[33].  eIF5A2  is  significantly  related  to
gemcitabine sensitivity in PDAC cells[38]. Recently, Xue et al[74] reported that eIF5A2 is
associated with cytotoxicity of cetuximab in epithelial HCC cells[80]. A high level of
eIF5A2 expression is related to drug resistance in many human digestive system
cancers.  However,  other studies have shown no significant relationship between
EIF5A2 expression and effects of preoperative radiotherapy in human rectal cancer[81].

CONCLUSIONS AND PERSPECTIVES
Basic research and clinical evidence show that EIF5A2 is a candidate oncogene and
may be a key biomarker for the prognosis of various human digestive system cancers.
There  is  growing  evidence  that  inhibition  of  hypusination  of  eIF5A2  inhibits
tumorigenesis.  Hypusine  modification  of  eIF5A by  DHPS and DOHH forms an
attractive platform for therapeutic intervention. Many studies have shown that GC7,
as an inhibitor of DHS, enhances the sensitivity of drugs through inhibition of eIF5A2
activation  in  many  kinds  of  human  cancer  cells[27,37,39,42,47,75,79,80,82,83].  However,
hypusination takes place in all eukaryotic cells and has been shown to be necessary
for proliferation of mammalian cell lines[52] and crucial for embryonic development as
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well as viability in adult mice[50]. So, important questions remain regarding how to
selectively target tumors and reduce adverse effects.

In contrast to EIF5A1, the of EIF5A2 is limited to tissue such as testes and a few
parts  of  the adult  brain,  but  it  is  abundant in many human cancers.  The eIF5A2
protein is associated with cancer metastasis by influencing the processes of EMT,
angiogenesis, cytoskeletal rearrangement, and metabolic reprogramming. Thus, the
isoform eIF5A2 represents a promising target for the treatment of malignant tumors.
Moreover,  in  contrast  to  DHS or  DOHH, the eIF5A2 isoform is  not  essential  for
embryonic development or for viability in an adult  organism. So,  we speculated
whether eIF5A2, which is only expressed in a few tissues in the normal human body,
but abundant in various tumor cells,  might represent a better target for therapy.
Therefore, we propose that specific inhibitors of eIF5A2 will exhibit selective toxicity
toward eIF5A2-dependent cancer cells. Better understanding of the physiological and
pathophysiological functions of eIF5A2 may lead to more effective management of
many human digestive system cancers with high expression of EIF5A2,  via  early
detection, precise prognostication, and molecular targeted treatment. A recent study
demonstrated  that  Mg(II)-catechin  nanocomposite  particles  (Mg(II)-Cat  NPs)
delivering siEIF5A2 inhibited bladder cancer cell growth in vitro and in vivo[45,84]. These
results  provide  preclinical  evidence  for  use  of  Mg(II)-Cat/siEIF5A2  combined
therapeutic methods in cancer.

However, it is also clear that more researches are needed to clarify the underlying
mechanisms that regulate eIF5A2 expression, for example, how does noncoding RNA
regulate the UTR of EIF5A2 and how is its promoter epigenetically modified. With
regard to the downstream pathway, the exact mechanism of eIF5A2 in regulating its
target and whether it can act as a transcriptional factor have not been elucidated.
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