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Does big data require a methodological
change in medical research?
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Abstract

Background: Use of big data is becoming increasingly popular in medical research. Since big data-based projects
differ notably from classical research studies, both in terms of scope and quality, a debate is apt as to whether big data
require new approaches to scientific reasoning different from those established in statistics and philosophy of science.

Main text: The progressing digitalization of our societies generates vast amounts of data that also become available
for medical research. Here, the big promise of big data is to facilitate major improvements in the treatment, diagnosis
and prevention of diseases. An ongoing examination of the idiosyncrasies of big data is therefore essential to ensure
that the field stays congruent with the principles of evidence-based medicine. We discuss the inherent challenges and
opportunities of big data in medicine from a methodological point of view, particularly highlighting the relative
importance of causality and correlation in commercial and medical research settings. We make a strong case for
upholding the distinction between exploratory data analysis facilitating hypothesis generation and confirmatory
approaches involving hypothesis validation. An independent verification of research results will be ever more
important in the context of big data, where data quality is often hampered by a lack of standardization and structuring.

Conclusions: We argue that it would be both unnecessary and dangerous to discard long-established principles of
data generation, analysis and interpretation in the age of big data. While many medical research areas may reasonably
benefit from big data analyses, they should nevertheless be complemented by carefully designed (prospective) studies.
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Background
The progressing digitalization of our societies generates
vast amounts of data that are also made available for
secondary, mostly opportunistic, use by third parties.
Already in the late 1990s, the term ‘big data’ was coined
for this type of “high-volume, high-velocity and/or high-
variety information assets that demand cost-effective,
innovative forms of information processing that enable
enhanced insight, decision making, and process automa-
tion” [1]. Regardless of the legitimacy of the latter
assertions, it is indisputable that big data has pushed the
boundaries in terms of data quality, analysis, manage-
ability and interpretability as well.
Today, the analysis of big data is commonplace in the

information and trading industry and starts to reach

medical research as well. In medicine, big data is ex-
pected to facilitate major improvements of the treatment,
diagnosis, and prevention of diseases. The Institute of
Medicine (IOM) of the US National Academies of Science,
Engineering, and Medicine referred to these developments
as ‘Learning Healthcare Systems’, thereby succinctly sum-
marizing the IOM’s vision of how “to transform the way
evidence on clinical effectiveness is generated and used to
improve health and health care” [2].
Since medical research classically proceeds through

studies designed to answer specific questions, it is often
hampered by high costs, long timescales, and insufficient
sample sizes. By drawing upon resources that are readily
available, big data appears to circumvent such bottle-
necks and to reduce the success requirements to mere
computing power. At the same time, it is widely pre-
sumed that, owing to the mere size of the technical and
logistic challenges, the use of big data requires different
scientific methodology or, as the IOM put it, “alternative
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research methodologies” [3]. We disagree with this
assertion and will discuss below whether, from a philoso-
phy of science point of view, a paradigm shift is apt in
medical research, and whether long-established princi-
ples of data generation, analysis, and interpretation
should be questioned - or even discarded - in the age of
big data. Trying to put things into perspective, we will
consider some fundamental methodological aspects of
big data analysis in medical research and highlight how
the latter contrasts with applications in industry. As we
shall see, what benefits online companies does not auto-
matically benefit science, and several precautions must
be taken in our view to render big data analysis mean-
ingful in the context of medical research.

Main text
Big data analysis may facilitate hypothesis generation
Scientific hypotheses arise through either deduction or
induction. Deduction uses available knowledge, and
sometimes empirical observations, to derive a new hy-
pothesis by way of strictly deductive logic. A typical
example in medicine is the expectation of a particular
effect of a particular drug, based upon physiological and
pharmacological theory. Induction, by contrast, draws
solely upon past experience in that it combines current
knowledge, actual observations, and subjective (as op-
posed to logical) reasoning to create new hypotheses.
“We reason inductively when we infer that all Xs are Ys
because all past observed Xs were also Ys.” [4] One con-
sequence of this constraint is that universal statements
(such as “All Xs are Ys.”) can never be verified by induc-
tion alone.
The above notwithstanding, inductive reasoning has

played a central role in scientific research in the past,
and its significance may well extend to big data. In fact,
its conceptual relatedness to inductive reasoning ex-
plains why big data analysis is sometimes referred to as
‘hypothesis-neutral’ research [5]. On the other hand,
since the use of big data in scientific research is often
tantamount to agnostic searches of heterogeneous and
unstructured data, the results therefore often lack the
self-suggesting nature of the outcome of classical hy-
pothesis generation.

Every hypothesis requires evaluation
Regardless of its origin, every newly derived hypothesis
must stand up to empirical scrutiny. Even though this
requirement applies to scientific research in general, it
appears particularly appropriate for hypotheses arising
from big data analysis because “a research finding is less
likely to be true […] when effect sizes are smaller; when
there is a greater number and lesser preselection of
tested relationships; where there is greater flexibility in
designs, definitions, outcomes, and analytical modes”

[6]. Undoubtedly, all these characteristics are more or
less typical of big data. Moreover, since big data are ‘big’,
they are easily misunderstood as automatically providing
better results through smaller sampling error. That the
gain in precision drawn from larger samples may well be
nullified by the introduction of additional population
variance and bias is then often not appreciated.
Popper highlighted that, for a hypothesis to count as

scientific, it must be falsifiable [7]. His view has since be-
come the formal cornerstone of statistical testing, where
researchers aim to reject null hypotheses for the benefit
of alternative hypotheses constituting their own scien-
tific conviction. If a hypothesis cannot be falsified in
repeated attempts, our belief increases that it might be
true. Even then, however, the hypothesis is not proven
because a proof would require use of external informa-
tion. Note that this constraint only applies to universal
statements (“All swans are white.”) which are, by far, the
more interesting and important ones in medical re-
search. Existence statements (“There are black swans.”)
can of course be confirmed empirically.
To test universal hypotheses, researchers must design

studies that render falsification possible or, even better,
likely (Fig. 1). The chance of falsification depends critic-
ally upon the specificity of the study design, the rele-
vance and representativeness of the study subjects, and
the quality of the data. It is therefore not surprising that
experimental studies are the gold standard of scientific
research, especially in disciplines such as physics and
chemistry, which are founded upon experiments. In
medicine, however, experimental studies are often
logistically, legally, or ethically problematic if not impos-
sible [8]. In such instances, well-designed observational
studies are the next best option for the evaluation of
hypotheses. Both approaches are, however, fundamen-
tally different from the analysis of big data that originate
outside the realm of control by the researcher and,
hence, lack approved quality. In consequence, the bulk
of scientific hypotheses derived through big data ana-
lyses require follow-up and validation by classical scien-
tific studies before they can be deemed practically or
theoretically relevant (Fig. 1).

Causality versus correlation
“Correlation supersedes causation” [9] is one of the
mantras of big data and, indeed, detecting and quantify-
ing correlations may be a worthwhile exercise in various
contexts. An online company, for example, would greatly
benefit from knowing that customers who buy product
X are also inclined to buy product Y. Whether this rela-
tionship is causal or not is irrelevant for the company to
be economically successful. Similarly, in scientific re-
search, being able to accurately predict an outcome of
interest from correlated measurements can be useful, for
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example, because this may (i) point towards unknown
causal mechanisms, (ii) help refining existing models of
causality and (iii) provide a ‘reality check’ to the rele-
vance of theories [10]. Moreover, as Mayer-Schönberger
and Cukier [11] noted, “correlations may not tell us pre-
cisely why something is happening, but they alert us that
it is happening.” Not surprisingly then, an area of medi-
cine where correlation matters is the prediction of dis-
ease outbreaks. Even though the identification of causal
effectors is an important goal of epidemiology, from a
public health perspective, indirect but reliable outbreak
markers may already be of great practical value.
The above notwithstanding, it is safe to say that the

majority view in medical research ranks causality more
important than correlation. In the words of Pearl [12],
“most studies in the health sciences aim to answer causal
rather than associative questions.” If a certain treatment is
associated with a certain side effect, it is critical to know
whether this relationship is causal because, otherwise, a
change of therapy may be in vain. Similar reasoning
applies to epidemiology where, despite the uncontested
usefulness of prediction, the identification of causal risk
factors is an important cornerstone of sensible public
health policies. In most medical settings, correlation is
therefore only the first step towards a mechanistic under-
standing of disease development and therapeutic effects.
Causality cannot be inferred from observational data

alone but requires additional information or knowledge.
From a purist point of view, only “discovering an under-
lying mechanism proves the truth of the causal hypothesis
in question” [13]. It should be emphasized, however, that

this extreme position is neither helpful nor necessary. In
epidemiology, in particular, causality can often be inferred
from observational data with reasonable certainty [13] and
the Bradford-Hill criteria, first proposed > 50 years ago,
still provide a good guide to transforming correlation into
likely causality by way of combining different lines of
evidence [14].

The litmus test of big data: quality and quantity
Image analysis plays an important role in medical re-
search where computer and magnetic resonance tomog-
raphy scans, for example, easily qualify as big data, at
least in terms of volume and velocity (two of the
classical three Vs of big data, the other being variety).
However, while processing of single images is an inter-
esting research subject in its own right, particularly with
a view to the use of machine learning and artificial
intelligence techniques, the medically relevant content of
an image often manifests at much lower levels of com-
plexity. In the end, an image may comprise myriads of
pixels, but is still one ‘measurement’. For instance, the
task of classifying a mammogram as ‘tumour present’ or
‘tumour absent’ may require complex and computationally
challenging algorithms, but the resulting diagnosis is
essentially binary. Thus, inference making via medical
image analysis may well draw upon big data, but most
often it does not represent big data analysis sensu stricto.
In other research areas, particularly in clinical medi-

cine, epidemiology and public health, big data are only
of low to moderate quality because they are observa-
tional, uncontrolled, and only seemingly complete, of

Fig. 1 Comparison of big data studies and controlled clinical trials. Whereas big data studies (left inset) usually benefit from the opportunistic use
of existing data resources, controlled clinical trials (CCT, right inset) follow a hypothesis-driven study design that determines the type, amount
and provenance of the data to be collected. The subsequent data analyses may be methodologically similar or even identical, but the results of
the two study types serve rather different purposes: The outcome of a big data study, at best, is a new hypothesis that would require verification
in a CCT or controlled experiment to count as ‘scientific’ (dotted arrow). A CCT, by contrast, allows validation (i.e. falsification or verification) of the
initial hypothesis, potentially stimulating further studies geared at the solidification, modification or diversification of this hypothesis

Caliebe et al. BMC Medical Research Methodology          (2019) 19:125 Page 3 of 5



mixed origin and were not specifically collected for re-
search purposes. In the context of biomedical research,
Leonelli [15] identified three stages of the development of
big data, namely de-contextualisation, re-contextualisation,
and re-use. The author observed that “big data that is made
available through databases for future analysis turns out to
represent highly selected phenomena, materials and contri-
butions. […] What is worse, this selection is not the result
of scientific choices. […] Rather, it is the serendipitous re-
sult of social, political, economic and technical factors,
which determines which data get to travel in ways that are
non-transparent and hard to reconstruct […].” Note that
this type of provenance is fundamentally different from
what can be achieved in carefully designed clinical trials or
experimental studies.
For big data, the famous idiom “garbage in, garbage

out” may easily worsen to “big garbage in, big garbage
out”. Data quality is an issue in medical research because
of a frequent lack of standardization and structuring.
Hence, any sensible use of big data in medical research
critically depends upon the extent to which these data
are ‘good data’ in the sense that everything possible has
been done to sustain their quality. A fourth letter V was
therefore proposed as an amendment of the three Vs of
big data. The fourth V stands for veracity and for the
challenge to ensure adequate care and diligence in big
data analyses [16]. It is also worth emphasizing that
small is sometimes beautiful in that ‘more data’ does not
always imply ‘more information’, and that data reduction
can be a sensible way to enhance data quality.
It seems paradoxical at first glance to regard insuffi-

cient sample size as a potential problem of big data.
However, ‘big data’ often refers to large numbers of attri-
butes but not necessarily to large numbers of independ-
ent observations of these attributes. In most commercial
applications, such a limitation does not play a role because
the data in question are gathered opportunistically from
thousands of people anyway, usually as a by-product of
internet-based services. In medical research, however, big
data may comprise millions of attributes measured in a
few patients, typically with the aim to provide them with
‘personalized medicine’. Schork [17] advocated this
approach in a Nature commentary entitled “Personalized
medicine: Time for one-person trials”. His views reflected
the author’s particular professional interest in genomics,
where millions of DNA variants are assessed in individual
patients. However, it is a wide-spread albeit unfortunate
misunderstanding that such ‘in-depth’ investigations of
small samples ever lead to generalizable results. Instead,
they should be deferred to the realm of case studies. The
latter, however, are known to represent a low evidence
level only and therefore have confined themselves mostly
to hypothesis generation since the advent of evidence-
based medicine in the 1990s.

Conclusion: no change required
According to Kuhn [18], a paradigm shift involves a
“crisis” and “pronounced failure” of prevailing theory,
which is then “discarded” and “replaced” by new theory.
As regards scientific reasoning, the introduction of big
data into medical research clearly does not fall into this
category. As was argued above, big data analysis may
provide a means to potentially expand our scientific
knowledge, but there is no reason why it should not
comply with the established principles of scientific
research. Unsustainable promises and unfulfillable ex-
pectations should be avoided in the context of big data
and replaced by realistic views and evidence-based
conclusions. Occasionally, the use of big data has been
announced to take medical research “beyond evidence-
based medicine” [19]. We do not subscribe to this view
and believe that big data does not require an epistemic
change in medical research.
That our considerations are not just mind games is

exemplified by a much-noticed recent study by Khera et
al. [20], published in the journal Nature Genetics, of so-
called ‘polygenic risk scores’ (PRS). PRS are distilled
from the summary statistics of large-scale genetic studies
of common human disorders, in this case type 2
diabetes, coronary artery disease, inflammatory bowel
disease, atrial fibrillation and breast cancer. Even though
none of the scores was properly validated, neither pro-
spectively nor by drawing upon existing long-term stud-
ies, and despite their obvious lack of predictive power
[21], clinical use of the PRS for individual disease predic-
tion has since been strongly advocated, both by the
authors themselves [20] and by others [22].
In summary, we are adamant that obviating diligence

and thoroughness in medical research with big data is a
prospect that is apocalyptic, rather than paradisiac, and
we would be wise to avoid it.
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