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ABSTRACT: Due to its expression in various malignant
tumors, the neurotensin receptor 1 (NTS1R) has been sug-
gested and explored as a target for tumor diagnosis and therapy.
Animal model-based investigations of various radiolabeled NTS1R
ligands derived from the hexapeptide neurotensin(8−13)
(NT(8−13)), e.g. 68Ga- and 18F-labeled compounds for
PET diagnostics, give rise to optimize such radiotracers for
clinical use. As NT(8−13) is rapidly degraded in vivo; struc-
tural modifications are required in terms of increased meta-
bolic stability. In this study, the stabilization of the peptide
backbone of NT(8−13) against enzymatic degradation was
systematically explored by performing an N-methyl scan,
replacing Ile12 by tert-butylglycine12 (Tle12) and N-terminal
acylation. N-Methylation of either arginine, Arg8, or Arg9, combined with the Ile12/Tle12 exchange, proved to be most favorable
with respect to NTS1R affinity (Ki < 2 nM) and stability in human plasma (t1/2 > 48 h), a valuable result regarding the
development of radiopharmaceuticals derived from NT(8−13).
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The neuromodulator neurotensin (NT), a 13 amino acid
peptide (Figure 1), is found in the central nervous system

(CNS), mediating e.g. analgesic effects, as well as in the periph-
ery (primarily in the gastrointestinal tract).1,2 The carboxy-
terminal hexapeptide of NT (NT(8−13) (1), Figure 1), is
biologically equi-active to NT.3 The physiological effects of
NT are mediated by three cell-surface receptors: the NT
receptors 1 and 2 (NTS1R, NTS2R), both G-protein coupled
receptors,4 and the NTS3R, which belongs to the Vps10p-
domain receptor family.2,5 The NTS1R has increasingly gained
interest as a target for tumor diagnosis and therapy, as it was

reported to be (over)expressed in a variety of malignancies,
among them the prognostically poor pancreatic adenocarcinoma,
Ewing’s sarcoma, breast cancer, and colorectal carcinoma.6−9

Thus, radiolabeled NTS1R ligands harbor the potential of
being used as radiopharmaceuticals. The majority of such
compounds (e.g., 68Ga- and 18F-labeled for PET diagnostics,
177Lu-labeled for radioendotherapy) has been derived from the
agonist 1.10−19 Noteworthily, also NTS1R ligands derived from
nonpeptidic antagonists have been explored as radiodiagnostics
and radiotherapeutics.20,21 Recently reported data of a clinical
trial on the treatment of pancreatic adenocarcinoma in men
by 177Lu-labeled NTS1R antagonists give reason to develop
clinical trial candidates with improved properties.22 Therefore,
peptidic NTS1R ligands, such as radiolabeled derivatives of 1,
should be considered for clinical trials.
A major drawback of peptide 1 is its rapid degradation in

vivo by peptidases (see Figure 1).23,24 Enzymatic degradation
of 1 occurs at three major sites: the Arg8−Arg9 bond, the
Pro10−Tyr11 bond, and the bond between Tyr11 and Ile12 (cf.
Figure 1).24,25 The predominant approaches to stabilize the
backbone of 1 are N-methylation of Arg8 or Arg9, N-terminal
acylation, and the exchange of Ile12 by tert-butylglycine
(Tle).10−15,17,26−38 However, for some interesting analogs
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Figure 1. Amino acid sequences of neurotensin, 1 (NT(8−13), in
blue) and 2, as well as major enzymatic cleavage sites (in red) of
1.3,24,25 EC 3.4.24.15: metalloendopeptidase 24.15, EC 3.4.24.16:
metalloendopeptidase 24.16, EC 3.4.24.11: neutral endopeptidase
24.11, EC 3.4.15.1: angiotensin converting enzyme (ACE).24,25
aBarroso et al.41 bKeller et al.42
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of 1, such as N-methylated derivatives, investigations on the
stability are lacking.33,39 It is worth mentioning that described
derivatives of 1, containing Tle12 instead of Ile12, include addi-
tional structural modifications throughout;10−12,29,31,32,38,40 that
is, [Tle12]NT(8−13) (2, cf. Figure 1) has not been reported to
date to the best of the authors’ knowledge. Therefore, it is
difficult to estimate the impact of the Ile12/Tle12 exchange on
the stability of Tle12-containing derivatives of 1.
Aiming at a systematic study on the stabilization of the

NT(8−13) core structure, we synthesized compound 2, per-
formed an N-methyl scan of 1, combined N-methylation with the
Ile12/Tle12 exchange, and, additionally, prepared N-terminally
acylated derivatives of 1. All compounds were studied with
respect to NTS1R binding and plasma stability.
Peptides 2, 3,34 4,33 5,33,39 6,33 7, 8, and 933 were prepared
by solid-phase peptide synthesis (SPPS) according to the
9-fluorenylmethoxycarbonyl (Fmoc) protecting group strategy
using 1-hydroxybenzotriazole (HOBt)/O-(1H-benzotriazol-1-yl)-
N,N,N′,N′-tetramethyluronium hexafluorophosphate (HBTU)
and diisopropylethylamine (DIPEA) for amide bond formation
(Scheme 1). Coupling of Fmoc-protected amino acids to the sec-
ondary amino group of N-methylated amino acids turned out to
be the yield limiting factor in the cases of 5, 6, and 9 (overall yields
18%, 15%, and 20%, respectively). The N-terminally propionylated
derivative 11 was obtained by treatment of the respective resin-
bound, side chain-protected, but N-terminally deprotected
precursor peptide with succinimidyl propionate (10) followed by
cleavage off the resin and side chain deprotection. By contrast, the
N-terminally propionylated peptide 12 was prepared by solution
phase treatment of 2 with compound 10 (Scheme 1).
NTS1R binding data (Ki values) were determined for 1−9,

11, and 12 by competition binding with [3H]UR-MK30042

([3H]13, for structure see Figure S1, Supporting Information)
at intact hNTS1R expressing HT-29 colon carcinoma cells
(Table 1). The replacement of Ile12 by Tle12 in 1 (compound 2)
resulted in a minor decrease in NTS1R affinity (Ki values of 1
and 2: 0.33 vs 1.17 nM, cf. Table 1). Regarding the N-methyl
scan of 1 (peptides 3−6 and 9), methylation at Arg8 or Arg9

(3, 4) did not affect NTS1R affinity (Ki < 0.5 nM, Table 1).
By contrast, N-methylation of Tyr11, Ile12, or Leu13 (5, 6, 9) led to
a considerable decrease in NTS1R affinity (Ki values: > 1,000 nM,
60 nM and 880 nM, respectively, cf. Table 1). As expected, the
combination of the N-methylation at Arg8 or Arg9 with the

Scheme 1. Syntheses of the NT(8−13) Derivatives 2−9, 11,
and 12a

aReagents and conditions: (I) Fmoc strategy SPPS using HBTU/HOBt
and DIPEA, solvent: DMF/NMP (80:20 v/v), 35 °C, 2 × 1 h or 2 × 2 h,
Fmoc-deprotection: 20% piperidine in DMF/NMP (80:20 v/v), rt, 2 ×
8−10 min; (II) (1) hexafluoro-2-propanol (HFIP)/CH2Cl2 (1:3 v/v), rt,
2 × 20 min, (2) TFA/H2O (95:5 v/v), rt, 3 h; (III) DIPEA, solvent:
CH2Cl2, 35 °C, 14 h; (IV) DIPEA, solvent: DMF/NMP (80:20 v/v), rt,
1 h; overall yields 77% (2), 67% (3), 56% (4), 18% (5), 15% (6), 42%
(7), 38% (8), 20% (9), 56% (11), 85% (12).

Table 1. Peptide Sequences and NTS1R Affinities of 1−9, 11, and 12, as Well as Stabilities of 1−9, 11, and 12 in Human
Plasma/PBS (1:2 v/v) (37 °C)

% intact peptide in plasmab after the specified incubation times:

compd sequence Ki [nM] NTS1R
a 10 min 30 min 1 h 2 h 6 h 24 h 48 h

1 Arg-Arg-Pro-Tyr-Ile-Leu 0.33 [0.35, 0.31] (lit. 0.14c) 23.1 ± 0.2 n.d. <1 n.d. n.d. <1 <1
2 Arg-Arg-Pro-Tyr-Tle-Leu 1.17 [1.17, 1.17] 10.8 ± 0.5 n.d. <1 n.d. n.d. <1 <1
3 N(Me)-Arg-Arg-Pro-Tyr-Ile-Leu 0.223 ± 0.005(lit. 0.29d) 92.1 ± 0.1 88.2 ± 0.2 79.7 ± 0.1 70.8 ± 0.1 n.d. n.d. n.d.
4 Arg-N(Me)-Arg-Pro-Tyr-Ile-Leu 0.29 ± 0.03(lit. 0.51e) >99 93.6 ± 0.1 83.7 ± 0.3 66.4 ± 0.1 n.d. n.d. n.d.
5 Arg-Arg-Pro-N(Me)-Tyr-Ile-Leu >1,000(lit. 5,100e) 22.9 ± 0.2 <1 <1 <1 n.d. n.d. n.d.
6 Arg-Arg-Pro-Tyr-N(Me)-Ile-Leu 60 ± 5(lit. 160e) 2.6 ± 0.5 <1 <1 <1 n.d. n.d. n.d.
7 N(Me)-Arg-Arg-Pro-Tyr-Tle-Leu 0.88 ± 0.13 n.d. n.d. >99 n.d. >99 98.3 ± 0.8 86.8 ± 0.3
8 Arg-N(Me)-Arg-Pro-Tyr-Tle-Leu 1.6 ± 0.1 n.d. n.d. >99 n.d. >99 >99 >99
9 Arg-Arg-Pro-Tyr-Ile-N(Me)-Leu 880 ± 260(lit. 190e) 39.9 ± 0.9 <1 <1 <1 n.d. n.d. n.d.
11 Propionyl-Arg-Arg-Pro-Tyr-Ile-Leu 1.0 ± 0.2 >99 84.0 ± 0.1 71.8 ± 0.2 32.4 ± 0.1 n.d. n.d. n.d.
12 Propionyl-Arg-Arg-Pro-Tyr-Tle-Leu 18 ± 2 n.d. n.d. >99 n.d. >99 >99 92.5 ± 0.9

aDetermined by radioligand competition binding with [3H]13 at HT-29 cells; mean values from two (1, 2), three (3, 4) or four (6−9, 11, 12)
independent experiments, each performed in triplicate (for n > 2 Ki values are given ± SEM; in the case of n = 2 individual Ki values are given in square
brackets). bThe initial concentration of the peptides in plasma/PBS (1:2 v/v) was 100 μM; presented are mean values ± SEM from three independent
experiments (SEM not given if no decomposition was observed). cKeller et al.42 dOrwig et al.34 eHar̈terich et al.33 n.d. = not determined.
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replacement of Ile12 by Tle12 (peptides 7 and 8) resulted in
NTS1R affinities comparable to that of 2 (Table 1). The
N-terminally propionylated analogs of 1 and 2 (compounds 11
and 12) exhibited Ki values (NTS1R) of 1.0 and 18 nM,
respectively.
Figure 2 illustrates a general decrease in NTS1R affinity

caused by the replacement of Ile12 by Tle12 in 1, 3, 4, and 11,

giving 2, 7, 8, and 12, respectively, and a dependency of the
extent of the decrease in affinity on the primary structure of the
peptides. This is in agreement with reported NTS1R binding
data of derivatives of 1 containing Tle12.10,11,27,31,38,40

In order to investigate the effect of N-methylation (3−9),
Ile12/Tle12 exchange (2, 7, 8, 12), and N-terminal acylation
(11, 12) on the stability of the peptides against enzymatic

cleavage, the stability of all compounds was investigated in
human plasma at 37 °C for up to 48 h (Figure 3, Table 1).
Whereas N-methylation of Arg8 or Arg9 in 1 (compounds 3
and 4) significantly enhanced the peptide stability in plasma
compared to 1, methylation of Tyr11, Ile12, and Leu13 (5, 6, 9)
did not lead to higher plasma stabilities. Strikingly, peptide 2,
which differed from 1 only with respect to the replacement
of Ile12 by Tle12, proved to be as unstable as 1 (Figure 3, Table 1).
However, the combination of the Ile12/Tle12 exchange with
N-methylation of Arg8 or Arg9 (7, 8) resulted in significantly
higher plasma stabilities (t1/2 > 48 h) compared to 3 and 4.
These results confirmed that both N-terminal (cleavage between
Arg8 and Arg9) and C-terminal (cleavage between Tyr11 and
Ile12) degradation are highly relevant, and they revealed that the
former occurs faster than the latter. As in the case of N-terminal
methylation of 1 (peptide 3), N-terminal propionylation of 1
(peptide 11) resulted in a moderate increase in enzymatic sta-
bility compared to 1 (t1/2 of 11 between 1 and 2 h, cf. Table 1).
The combination of N-terminal propionylation with an Ile12/
Tle12 exchange (compound 12) led to an excellent plasma
stability as also observed in the case of combining N-terminal
methylation with an Ile12/Tle12 exchange (peptide 7) (Figure 3,
Table 1).
Figure 4 provides an overview of the major degradation

fragments identified by LC-HRMS. The Arg8−Arg9, Pro10−
Tyr11, and Tyr11−Ile12 bonds were identified as the major
cleavage sites (Figure 4), being in agreement with reported
data on the metabolic stability of 1.24,25 As outlined above, the
present study suggests that cleavage of Arg8 in 1 occurs faster
than its C-terminal degradation. This is, on the one hand, in
agreement with reports in the literature;24 on the other hand, it
is in disagreement with other reports, which suggest an Ile12/
Tle12 exchange as the most crucial structural modification with
respect to metabolic stabilization.27,28

In conclusion, the synthesis and investigation of N-methylated
derivatives of NT(8−13) (1), N-terminally acylated derivatives of
1, and analogs containing Tle12 instead of Ile12 revealed that only
the combination of appropriate N-terminal (e.g., N-methylation

Figure 2. Decrease in NTS1R affinity (increase in Ki) resulting from
the exchange of Ile12 by Tle12 in 1, 3, 4, and 11 (black bars) giving 2,
7, 8, and 12 (gray bars), respectively. Note: the scales of the Y-axes
are different.

Figure 3. Stabilities of 1−9, 11, and 12 in human plasma/PBS (1:2 v/v) at 37 °C investigated for up to 48 h. Data represent mean values ± SEM
from three independent experiments.
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of Arg8) and C-terminal (replacement of Ile12 by Tle12)
structural modifications in 1 affords highly stable (plasma half-
live >48 h) congeners of 1 (compounds 7, 8, and 12). Fortunately,
two of the most stable compounds (7, 8) exhibited the highest
NTS1R affinities of the investigated analogs of 1. This work
answers open questions concerning the controversially dis-
cussed impact of various structural modifications of 1 on the
enzymatic stability, thus supporting the development of stable
radiolabeled derivatives of 1, which harbor the potential of
being used as radiopharmaceuticals.
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M.; Hübner, H.; Kuwert, T.; Gmeiner, P.; Prante, O. Labeling and
Glycosylation of Peptides Using Click Chemistry: A general approach
to 18F-glycopeptides as effective imaging probes for positron emission
tomography. Angew. Chem., Int. Ed. 2010, 49, 976−979.
(15) Alshoukr, F.; Prignon, A.; Brans, L.; Jallane, A.; Mendes, S.;
Talbot, J.-N.; Tourwe,́ D.; Barbet, J.; Gruaz-Guyon, A. Novel DOTA-
neurotensin analogues for 111In scintigraphy and 68Ga PET imaging of
neurotensin receptor-positive tumors. Bioconjugate Chem. 2011, 22,
1374−1385.
(16) Maschauer, S.; Ruckdeschel, T.; Tripal, P.; Haubner, R.;
Einsiedel, J.; Hübner, H.; Gmeiner, P.; Kuwert, T.; Prante, O. In vivo
monitoring of the antiangiogenic effect of neurotensin receptor-
mediated radiotherapy by small-animal positron emission tomog-
raphy: a pilot study. Pharmaceuticals 2014, 7, 464−481.
(17) Jia, Y.; Shi, W.; Zhou, Z.; Wagh, N. K.; Fan, W.; Brusnahan, S.
K.; Garrison, J. C. Evaluation of DOTA-chelated neurotensin analogs
with spacer-enhanced biological performance for neurotensin-
receptor-1-positive tumor targeting. Nucl. Med. Biol. 2015, 42, 816−
823.
(18) Maschauer, S.; Einsiedel, J.; Hübner, H.; Gmeiner, P.; Prante,
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(37) Held, C.; Plomer, M.; Hübner, H.; Meltretter, J.; Pischetsrieder,
M.; Gmeiner, P. Development of a metabolically stable neurotensin
receptor 2 (NTS2) ligand. ChemMedChem 2013, 8, 75−81.
(38) Mascarin, A.; Valverde, I. E.; Mindt, T. L. Structure-activity
relationship studies of amino acid substitutions in radiolabeled
neurotensin conjugates. ChemMedChem 2016, 11, 102−107.
(39) Bittermann, H.; Einsiedel, J.; Hübner, H.; Gmeiner, P.
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Mollereau, C.; Wifling, D.; Svobodova, J.; Bernhardt, G.; Cabrele, C.;
Vanderheyden, P. M.; Gmeiner, P.; Buschauer, A. Mimicking of
Arginine by functionalized Nω-carbamoylated arginine as a new
broadly applicable approach to labeled bioactive peptides: high
affinity angiotensin, neuropeptide Y, neuropeptide FF, and neuro-
tensin receptor ligands as examples. J. Med. Chem. 2016, 59, 1925−
1945.

ACS Medicinal Chemistry Letters Letter

DOI: 10.1021/acsmedchemlett.9b00122
ACS Med. Chem. Lett. 2019, 10, 960−965

965

http://dx.doi.org/10.1021/acsmedchemlett.9b00122

