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Abstract

Background: The availability and generation of large amounts of genomic data has led to the development of a
new paradigm in cancer treatment emphasizing a precision approach at the molecular and genomic level. Statistical
modeling techniques aimed at leveraging broad scale in vitro, in vivo, and clinical data for precision drug treatment
has become an active area of research. As a rapidly developing discipline at the crossroads of medicine, computer
science, and mathematics, techniques ranging from accepted to those on the cutting edge of artificial intelligence
have been utilized. Given the diversity and complexity of these techniques a systematic understanding of fundamental
modeling principles is essential to contextualize influential factors to better understand results and develop new
approaches.

Methods: Using data available from the Genomics of Drug Sensitivity in Cancer (GDSC) and the NCI60 we explore
principle components regression, linear and non-linear support vector regression, and artificial neural networks in
combination with different implementations of correlation based feature selection (CBF) on the prediction of drug
response for several cytotoxic chemotherapeutic agents.

Results: Our results indicate that the regression method and features used have marginal effects on Spearman correlation
between the predicted and measured values as well as prediction error. Detailed analysis of these results reveal that the
bulk relationship between tissue of origin and drug response is a major driving factor in model performance.

Conclusion: These results display one of the challenges in building predictive models for drug response in pan-cancer
models. Mainly, that bulk genotypic traits where the signal to noise ratio is high is the dominant behavior captured in
these models. This suggests that improved techniques of feature selection that can discriminate individual cell response
from histotype response will yield more successful pan-cancer models.
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Background
The introduction of cDNA microarrays launched a new era
of genomic studies in biological systems [1, 2]. This revolu-
tionary new technology allowed researchers to collect vast
amounts of data to characterize the genomic landscape
fundamental to biological processes. The power of this
technology was soon realized to have broad implications in

the study of cancer providing insight into the genomic na-
ture of the disease [3–5]. Over the past few decades there
has been a concerted community effort to collect both in
vivo and in vitro data characterizing the molecular blue-
prints for a variety of cancers [6, 7]. This work has spawned
countless new insights and has paved the way for a new
paradigm of cancer treatment involving precision
approaches [8].
The term “Big Data” refers to the collection and storage

of large amounts of information for analysis providing
insight for a variety of applications [9]. The mathematical,
statistical, and computational techniques to analyze and
extract this information from large sets of complex data
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encompasses the field of statistical learning having appli-
cation in science, business, and technology [10]. The abil-
ity of statistical learning theory to find useful information
in large, complex, and often noisy datasets make it a
popular biomedical research area with clear clinical appli-
cations [11] including several in cancer diagnostics and
treatment [9, 12, 13]. A specific area of research has fo-
cused on the utilization of statistical learning to predict
successful treatment options based on patient and disease
specific clinical biomarkers [5, 14–16].
High throughput technologies have allowed researchers

to profile the genomics of tumor-derived cell lines and test
chemosensitivity to a variety of anti-cancer agents in vitro,
most notably the National Cancer Institute 60 (NCI60) and
the Genomics of Drug Sensitivity in Cancer (GDSC) cell
line panels. Several studies have indicated the ability of in
vitro data to predict patient response in multiple cancers
[17–20]. Therefore, in vitro drug response data offers a
simplified format to uncover clinically relevant cancer drug
relationships. Thus, models that can accurately capture
behavior of in vitro experiments are essential to elucidate
genomic signatures that can be further applied in more
complex clinical models.
To date, one of the most comprehensive analysis of

computational methods for predicting drug response
with in vitro data was a community based challenge
sponsored by the Dialogue on Reverse Engineering As-
sessment and Methods (DREAM) and National Cancer
Institutes (NCI) (referred to as the DREAM-NCI chal-
lenge) [21]. This challenge tasked 44 different research
teams to build and train a predictive algorithm given
gene expression, DNA methylation, mutation, copy
number, protein abundance, and drug response for 35
breast cancer cell lines for 28 different known
anti-cancer agents. The methods were then assessed on
their ability to predict drug response for the 28 agents
on 18 independent breast cancer cell lines. The resulting
models highlighted some of the most advanced and cut-
ting edge statistical learning techniques with the best
model using Bayesian multi-task multiple kernel learning
(MKL). However, the third best model differed in per-
formance by only 2.3% using only weighted Pearson cor-
relation between feature sets with drug response to
make predictions. Overall, the DREAM-NCI challenge
demonstrated the ability of statistical learning tech-
niques to capture and predict drug response in in vitro
environments.
The DREAM-NCI challenge illustrates the balancing

act between complexity and simplicity that often pre-
sents itself in computational modeling. As “Big Data”
takes off, more complex computational techniques will
be developed offering new opportunities in precision on-
cology. However, to fully utilize and develop these tech-
niques a firm understanding of how basic modeling

principles influence performance is essential. Biological
processes consist of complex dynamic interactions in a
high dimensional system. Non-linear methods have the
ability to capture complex interactions between players,
however, in high dimensional systems these methods
have a tendency to incorporate noise leading to over-fit-
ting. Alternatively, linear methods are more robust to
over-fitting but at the cost of potentially missing import-
ant non-linear interactions. Furthermore, the high
dimensional nature of biological data sets presents chal-
lenges in the ability to pinpoint covariates that are most
informative to the underlying processes being modeled.
Insights into the molecular nature of cancer has driven a

precision approach to cancer pharmacology by capitalizing
on specific driver mutations exhibited by certain cancers
[22–24]. This strategy had been successful in a number of
specific instances and continues to be an active area of re-
search and drug development [25, 26]. Cytotoxic chemo-
therapies were some of the earliest drugs developed for the
treatment of cancer and continue to play an important role
in cancer therapy [27–30]. However, the success of these
drugs, as with all therapies, still varies [31]. The toxicity as-
sociated with these drugs produce substantial side effects
and can diminish quality of life for many patients; thus, a
precision approach that can identify patients who would
benefit could greatly improve the quality and efficacy of
treatment. In vitro drug assays have become a standard ap-
proach to identifying compounds with potential therapeutic
benefit [17, 18, 20]. Opposed to targeted agents, mutations
are poor predictors of efficacy for cytotoxic agents [32] and
genomic signatures have proven to show promise as pre-
dictors in cytotoxic agents [33, 34]. Therefore, genomic
data driven models that can accurately predict chemosensi-
tivity to in vitro cell line assays of cytotoxic agents serve as
a foundation for improving predictive models in patients.
Here we describe a systematic, pragmatic approach to

identify the key components driving model performance
when using genomic profiles to predict drug response in
cytotoxic agents. While statistical learning offers a vast
amount of possible techniques we simplify the approach
by breaking down models into two fundamental aspects;
the trade off between linear and non-linear modeling
techniques and the influence of feature selection via fil-
ter based selection methods. While, our approach is by
no means an exhaustive survey of all possible techniques
and approaches, our studies illustrate how simple ap-
proaches to modeling can offer valuable insight. Mainly
we demonstrate that for a given population of cells the
association between histotype and drug response is indi-
cative of model performance. The dominance of these
traits have important implications when assessing model
performance and may prove instructive in the develop-
ment of new techniques for modeling drug response
across multiple cancers.
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Methods
Preprocessing
The Genomics for Drug Sensitivity in Cancer (GDSC) is
comprised of over a 1000 cancer cell lines with response
data to 138 anticancer drugs. The available CEL files
containing gene array data using Affymetrix Human
Genome U219 array were downloaded at [35]. Using the
“affy” R package the CEL files were normalized using
Robust Multi-Array Average (RMA) algorithm [36]. The
data was further corrected for batch variability using
COMBAT of the “sva” R package [37]. Cells that
occurred in duplicate were averaged resulting in a final
gene expression matrix with 968 cell lines and 49,386
genomic features. Likewise, for the NCI60, CEL files
containing gene array data from Affymetrix Human
Genome U133 2-plus array were downloaded from the
CellMiner database [38, 39]. A total of three CEL files
were available for each NCI60 cell line, again the data
was normalized using RMA [36] and batch corrected
using COMBAT [37] the resulting data was then aver-
aged over the three replicates to give a final gene expres-
sion value for each gene and cell. For our analysis in the
GDSC we chose 15 cytotoxic chemotherapies Table 1.
The IC50 data was downloaded from [35]. The NCI60
has 61 FDA approved cytotoxic agents [40], the drug re-
sponse data again downloaded from CellMiner. For the
majority of drugs multiple IC50 measurements were
made on multiple cell lines so the final IC50 represents
an average over all measurements. For several of the
drugs a significant number of the cell lines had the same
reported IC50 leading to minimal variability and as such

these drugs were discarded. This left a total of 39 drugs,
a list of which can be found in Additional files 1, and 14
were also had data in the GDSC. Several cell lines in
multiple drugs in the GDSC reported IC50 above the
maximum concentration experimentally tested and were
not included in any of the models. Given the final num-
ber of cell lines as reported in Table 1. 75% of cell lines
were randomly chosen and assigned to the training/val-
idation set and the remaining 25% were assigned to the
testing set. This was performed six times generating six
non-overlapping test-train/validation splits. Likewise, in
the NCI60 six random training/validation sets consisting
of 75% of the data with the remaining 25% left out for
testing. To ensure the presence of each histotype in both
testing and training sets, 75% of each histotype was re-
served for training and validation with the remaining
25% in the test set. Prostate cell lines were removed be-
cause measurements were limited. Both in the GDSC
and NCI60 these generated datasets were used on all
models within a given drug.
The choice to limit our analysis to cytotoxic chemo-

therapies was three-fold; first, as opposed to molecularly
targeted therapies, cytotoxic chemotherapies work
broadly to inhibit cell proliferation and the mechanisms
of action are not dependent on specific driver mutations
[22, 23]. This has been demonstrated in the NCI60
where mutation status was shown to be a poor predictor
of drug response in cytotoxic chemotherapies [32]. Sec-
ond, a study in “The Cancer Genome Atlas” concluded
that “the information content content from copy num-
ber aberrations, miRNA’s and methylation is captured at
the level of gene expression and protein function” [41].
Lastly, several analyses have suggested that gene expres-
sion data accounted for the majority of variability in pre-
dictive model outcomes [21, 42]. By restricting the study
to cytotoxic agents complications that arise from data
redundancy could be minimized while also eliminating
challenges in integrating different data types. Thus, vari-
ability in model performance could directly be attributed
to methodological experimental factors.

Model construction
Figure 1 outlines the basic procedure used to build all
models. Feature selection was performed on the training
data followed by model training after which the model
was validated using the independent test set. Four differ-
ent regression methods were used for model develop-
ment including two linear methods, Principle
Components Regression (PCR) and Support Vector Re-
gression with a linear kernel function, and two
non-linear methods including non-linear Support Vector
Regression (NLSVR) and Artificial Neural Networks
(ANN). We implemented 3 different feature selection
strategies with all four algorithms and an additional

Table 1 Cytotoxic Drugs and number of cell lines

Drug Abbreviation Number of Cell Lines

Bleomycin BLM 632

Bortezomib BTZ 331

Cisplatin CIS 146

Cytarabine CYT 515

Docetaxel DTX 555

Doxorubicin DOX 738

Etoposide ETP 643

Gemcitabine GEM 583

Methotrexate MTX 216

Mitomycin C MMC 759

Paclitaxel PTX 227

Vinblastine VBL 719

Vorinostat VOR 728

SN-38 SN-38 698

5-Fluorouracil 5-FU 409

15 Cytotoxic agents and the number of cell lines with experimentally
determined IC50’s for each drug. Training set comprises 75% of the total data
while the testing data accounts for the remaining 25%
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Fig. 1 General workflow: The general workflow used to build models

Table 2 Feature selection methods

Selection Method Description

No feature selection (NO FS) All probes used with a total of 49,386 probes.

Differentially Expressed genes (DEGs) Array probes that have a statistically significant Spearman correlation P < 0.05 with drug response

LIMMA Linear Empirical Bayes with a modified t-statistic as implemented in the LIMMA Bioconductor package
in R. Genes were selected by running LIMMA on the top and bottom 25% sensitive and resistance cell
lines. A false discovery rate of 5% was chosen as a cutoff.

Bonferroni Correction (BC) Bonferroni Correction ρBC ¼ α
m where α is significance level of 0.05 and m is the number of features tested,

49,386. ρBC = 1.0 x 10−6

DEG Bootstrap (BS) Array probes which have a statistically significant Spearman correlation P < 0.05 in fifty random subsets
containing 75% of the training data

Histotype specific Bootstrap (BS-Hist) 50 subsets of the training data were generated such that each subset contained only one cell from a
specific histotype. Probes that have a significant Spearman correlation P < 0.05 in 50% of the splits were
selected. ** Data not shown, reported Additional file 2

Maximum Relevance Minimum
Redundancy (MRMR)

Maximum Relevance Minimum Redundancy. 1000 Probes are chosen such that they have a maximum
correlation with drug response with minimal cross-correlation with other chosen probes.

Control 1 (CTR1) Probes are randomly selected from all 49,836 probes equal to the number of DEGs for each model/trial. For
example, bleomycin dataset 1 yielded 5377 DEGs in DEG feature selection thus 5377 probes are selected
randomly in control 1 experiments.

Control 2 (CTR2) The compliment of DEGs. For example, for bleomycin dataset 1 control 2 genes would include 38,009 probes
excluded form the 5377 probes selected as DEGs.

Random Control (RCTR) A number, N, of probes equal to the number of DEGs are randomly selected. This gives N vectors with
each entry corresponding to a cell line in the training set. This vector is then shuffled randomly such
that the original value is no longer associated with the same cell yielding a feature matrix that is arbitrary.

Histotype Only (HIST) Each cell line is associated with a 55 dimensional vector where the nth entry is 1 if the cell comes from
the corresponding histotype and 0 otherwise. (One hot encoded)

A summary and definition of the different feature selection methods discussed in the results section. The abbreviations that will be used in the text to refer to
these methods are in prentices
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seven on our best performing linear model (PCR) and
non-linear model (NLSVR). These feature selection
methods are summarized in Table 2 Feature selection
was performed in python 2.7 and a generic python 2.7
script was used to read, organize, and write the model
output. PCR was implemented in R version 3.2.4 using
the PLS package with the number of components chosen
by 10-fold Monte Carlo cross validation. Both NLSVR
and SVRLN were implemented with scikit-learn version
18.1 [43]. For NLSVR parameter optimization was per-
formed on three separate parameters amounting to 210
different three parameter combinations using 10-fold
Monte Carlo cross validation. Likewise, SVRLN was op-
timized over two parameters for 30 different combina-
tions using 10-fold Monte Carlo cross validation. A
single layer ANN with 20 hidden nodes was imple-
mented using the Keras package in python. To combat
over-fitting dropout was implemented using 10-fold
Monte Carlo cross validation with dropout rates 0,10,25,
and 50% of total nodes chosen by 10-fold Monte Carlo
cross validation. All parameter optimization and model
training was performed using only the training data and
the independent testing data was used to assess model
performance.
Gene expression data is inherently high dimen-

sional, presumably, a given biological response, such
as drug response, is influenced by a subset of the
total genes. Feature selection provides a means to re-
duce the number of covariates systematically favoring
features that are most relevant to the problem. This
often leads to more favorable outcomes by eliminating
features that only contribute to noise leading to a
more robust signal and a decrease in over-fitting. Fil-
ter based feature selection attempt to associate a
given feature (gene) to a targeted output (drug re-
sponse) based on statistical inference. Many such of
these algorithms exist for gene expression data [44]
and contextually amount to looking at two or more
populations (i.e. drug resistant, drug sensitive cells)
and determining if a given feature is statistically dif-
ferent between groups. Such methods are often ap-
plied to classification problems but can be generalized
to continuous responses by looking at populations
with distinct responses. However, this method re-
quires reformatting the problem into a binary classifi-
cation problem and assuming it can be generalized to
a continuous response. Alternatively, correlation based
feature selection methods (CBF) are more aptly suited
to continuous processes by looking at the statistical
relationship between a covariate and target variable
based on correlation [45].
To asses the affects of reducing features in our models

we use several CBF feature selection methods. First we
implemented the non-parametric Spearman correlation

using a cutoff of p < 0.05 to determine as set of differen-
tially expressed probes (DEGs) using the statistics pack-
age in scipy 0.17.0. We compare this to a standard
method of isolating probes with distinct difference be-
tween the 25% of cells with the greatest IC50s (resistant)
and the lowest IC50 (sensitive) using the R Limma pack-
age [46] with a false discovery rate q = 0.05. In order to
assess the influence of feature selection we performed
three control experiments. For the first control (CTR1) we
randomly selected a number of probes that corresponded
to the the same number of DEGs for a given experiment.
The second control (CTR2) consists of all probes that are
not selected as DEGs. Lastly, we perform a random control
(RCTR) by shuffling the gene array matrix leaving the
response vector untouched and then random selecting the
same number of probes used in DEGs and CTR1. We
address multiple testing by using a Bonferroni correction
for p cutoff in the spearman correlation. Additionally, we
explore a bootstrapping method to decrease false discovery
rate (FDR). Lastly we apply a maximum relevance mini-
mum redundancy (MRMR) algorithm [47]. All feature
selection methods were applied to the training set prior to
model fitting. A summary of the different feature selection
methods as summarized in Table 2.

Analysis
The performance of each model was assessed using the
Spearman correlation coefficient between the predicted
and measured IC50 values in the testing set using the
scipy statistics package version 0.17.0, p values were
calculated within the statistics package using a student’s
t distribution. Additionally, we also calculated a Mean
Absolute Difference metric (MAD). The MAD scores
were generally reflective of the Spearman correlation,
therefore, we have chosen to report the Spearman cor-
relation, as it better highlights particular patterns in the
data in the main paper but MAD values for all models
can be found in the Additional file 2 K-means clustering
was performed using the clustering package in
scikit-learn [43]. The ability of a given set of genes to as-
sign cells of the same histotype to the same cluster was
determined using Clustering Entropy, Sc [48], which is
defined and conceptually illustrated in Fig. 2 Sc has a
minimum value of 0 when histotypes are perfectly clus-
tered together. A theoretical maximum Sc occurs when
each cluster contains a uniform distribution of samples
from different histotypes, however, since samples are not
uniformly distributed across histotypes and each dataset
contains a different distribution of histotypes the max-
imum value was estimated using the random control for
each dataset and the values reported are normalized
consisting of the Sc of the given dataset divided by the Sc
of the random control. Note that by this definition the
normalized Sc can be greater than one.
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Results
Regression models
Individual Spearman correlations between measured and
predicted IC50 values ranged from 0.64 to − 0.345 with
51–84% percent of the models showing significance (P <
0.05). While NLSVR (0.316–0.331) yielded higher aver-
age Spearman correlations than PCR (0.297–0.316)
and SVRLN (0.27–0.285), the difference on a per drug
basis was minimal (Fig. 3a). ANN showed significant
drops in performance (0.144–0.266) compared to the
other three methods especially when no feature selec-
tion was performed, while, the gap narrowed upon
the introduction of feature selection, performance was
still substantially less, most notably when compared
with NLSVR and PCR (Fig. 3a, Table 3).
Correlation based feature selection (P < 0.05)

decreased the number of features by an average of
77% (range 39 to 96%) with the fewest features for
cisplatin and most for vorinostat Table 4 Model per-
formance was increased for ANN (63%) increasing
the average Spearman correlation by 63% with only a
modest increase for NLSVR (1.5%) and PCR (1.6%).
The decrease in features had a minor negative impact
on SVRLN (9%) performance. Feature selection by
use of the R package Limma was substantially more
restrictive than the DEG criteria, leading to an 99%
decrease feature number, yielding no features for

cisplatin. Despite this substantial decrease in genes,
only a 9% average decrease in correlation was ob-
served with similar effects to NLSVR, PCR, and
SVRLN (~ 11%) and minimal effects to ANN (1.6%)
in comparison to the top performing feature selection
method.

Feature selection and model performance
The results from BC, BS, and MRMR models for NLSVR
and PCR in (Fig. 4a and b). Compared to DEG and NO
FS models, all three methods yielded lower average
Spearman correlations. BC criteria reduced features
by and average of 98.6% with no selected features for
cisplatin datasets as well as two datasets for bleo-
mycin and a single dataset for doxorubicin (Table 4).
The use of BC selected features decreased the overall
average Spearman correlation by 11.4% (0.3513 to
0.3112) for NLSVR and 12.2% (0.3406 to 0.2991)
across identical datasets using DEG selected features.
The most dramatic decreases in performance was
seen in bleomycin, cytarabine, doxorubicin, and
5-Fluorouracil (Fig. 4a and b). A small increase in
performance was seen for methotrexate in NLSVR
models. Despite the decreased performance 80% of
the models had significant correlations (P < 0.05)
between experimental and predicted IC50 values.

Fig. 2 Cluster Entropy: Illustration of how cluster entropy, Sc, is calculated. It is a measure of cluster homogeneity, in this case, how many cells of
the same histotype are placed in the same cluster
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Bootstrap methods resulted in an average 95% de-
crease of features. Performance decrease was slightly
less than that of BC selected genes with an average
decrease of in NLSVR (3.4%) and PCR (4.4%) models.
A substantial decrease in performance was observed
for cisplatin while an increase in performance was
seen in etoposide, gemcitabine, and paclitaxel in com-
parison with DEG models for both NLSVR and PCR

(Fig. 4). Likewise, the modified MRMR algorithm was
used to select 1000 features, representing a 98% de-
crease in features. The drop in performance was simi-
lar to that seen with both BC and BS for NLSVR
(6.3%) and PCR (6.9%). The general decrease in per-
formance correlated directly with the reduction in the
number of genes; however, even a maximum 98.6%
decrease in features only resulted in 11.4% drop in

Table 3 Model Performance

NLSVR PCR LNSVR ANN

NFS DEG LIM NFS DEG LIM NFS DEG LIM NFS DEG LIM

BLM .207 .202 .202 .239 .208 .208 .151 .1 .209 .147 .17 .21

BTZ .38 .404 .365 .422 .399 .354 .332 .326 .232 −.009 .299 .24

CIS .05 .08 N/A −.009 .047 N/A .03 .079 N/A −.066 .034 N/A

CYT .313 .32 .279 .32 .281 .256 .337 .291 .269 .226 .266 .291

DTX .422 .44 .408 .367 .409 .382 .357 .319 .359 .185 .318 .207

DOX .273 .27 .117 .243 .285 .106 .27 .226 .103 .115 .173 .096

ETP .289 .302 .294 .248 .291 .263 .238 .219 .273 .209 .195 .246

GEM .143 .139 .166 .153 .117 .143 .07 .063 .165 .131 .119 .134

MTX .461 .455 .462 .431 .435 .433 .417 .388 .338 .411 .391 .322

MMC .237 .302 .244 .264 .269 .25 .27 .224 .239 .203 .153 .248

PTX .32 .27 .198 .287 .282 .159 .233 .170 .191 −.106 .211 .177

VBL .44 .403 .399 .408 .398 .37 .398 .339 .371 .112 .302 .363

VOR .509 .495 .486 .5 .487 .439 .484 .471 .404 .445 .42 .42

SN-38 .383 .417 .409 .379 .391 .443 .397 .404 .429 .01 .327 .402

5-FU .463 .464 .40 .455 .484 .354 .451 .438 .337 .309 .409 .365

AVG .326 .331 .316 .314 .319 .297 .285 .27 .28 .144 .252 0.266

Average spearman correlations across six different testing sets for all regression and feature selection methods. This data is graphically displayed in Fig. 3

A B C

D E

Fig. 3 Model performance by method and Drug: a Average spearman correlation coefficients for four different regression methods over three
different methods of feature selection. b-e Predicted versus Measured IC50 values for each of the fifteen drugs using DEG genes. b NLSVR, c PCR,
d SVRLN, e ANN
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performance for NLSVR and 12.2% for PCR. Add-
itional methods of feature selection that attempted to
take the histotype into account yielded similar perfor-
mances (Additional file 2).

Influence of CBF feature selection
In order to gain insight into the overall influence of cor-
relation based features we tested several sets of control
features on the datasets, designed to address the follow-
ing questions. First, what was the benefit of using DEGs
compared to the same number of randomly selected
genes (CTR1)? Second, how influential was the inclusion
of correlation based features, thus, what would be the
effect of using those genes that had no significant rela-
tionship to drug response (CTR2)? Lastly, were these re-
lationships simply an artifact that was introduced during
the collection, preprocessing, and normalization of the
data, and thus what happens if all causal relationships
are removed (Random Control)?
The use of CTR1 genes resulted in a decreased perform-

ance < 1% (0.331 to 0.329) for NLSVR and a 3.1% (0.319
to 0.309) for PCR in average Spearman correlation. With
respect to DEGs in NLSVR, CTR1 genes led to compar-
able average Spearman correlations for each drug and
exceeded DEGs in certain drugs such as methotrexate,
paclitaxel, vinblastine, and vorinostat (Fig. 4c.). Likewise,
for PCR, small increases in average Spearman correlation
was seen for bleomycin, bortezomib, cytarabine, and gem-
citabine while a minimal decrease for other drugs (Fig. 4d.).
Surprisingly, removing features with a-priori significant
statistical relationships with drug response had little over-
all negative effects on the average performance of NLSVR

models (4.8%) with cisplatin, gemcitabine, paclitaxel, and
vorinostat yielding better average performances than the
same DEG models (Fig. 4c.). However, the performance of
CTR2 models in PCR dropped significantly by 26% (0.319
to 0.236) compared to DEG models, however, 64% of the
models had significant correlations. Nonetheless, compar-
able performances were observed in several drugs includ-
ing bortezomib, docetaxel, methotrexate, vorinostat,
5-fluorouracil, and gemcitabine while other drugs such as
bleomycin, docetaxel, cisplatin, and SN-38 saw dramatic
decreases in performance (Fig. 4d.). Lastly, by randomly
assigning expression values to cell-lines (Random Control),
there was a significant loss in the predictive ability of the
model with average Spearman correlations of 0.0185 for
NLSVR and − 0.007 for PCR (Fig. 4c and d.). The loss in
predictive capability when the gene-cell line relationship is
removed demonstrates that our models are clearly captur-
ing a genomic signature that is indicative of drug response.

Histotype is linked to drug response
Several of the drugs cell line predictions of the same his-
totype tended to cluster together as illustrated with vori-
nostat (Fig. 5d.) suggesting that histotype might be
predictive of drug response. In order to ascertain if there
was an actual differential drug response between histo-
types, we performed pairwise F-tests between drug re-
sponses categorized by histotype. The number of
significant pairwise comparisons ranged from a low of
5.1% for bleomycin (Fig. 5a.) to 52.6% for vorinostat
(Fig. 5b.) with an average of 24.1%. Furthermore, the
Spearman correlation between the percentage of signifi-
cant F-tests and the average Spearman correlation for

Table 4 Feature Selection and number of features

Drug DEG Limma BC BS BS Hist

BLM 5216.5; 4414; 6314 18.2; 11; 32 2.5; 0; 6 178.3; 117; 298 8.7; 6; 15

BTZ 11522.2; 10087; 12191 233.3; 124; 414 93.3; 52; 132 1626.5; 1208; 1888 442.5; 820; 144

CIS 2354.8; 1835; 2890 NA NA 20.5; 11; 32 188.8; 103; 329

CYT 12954; 8675; 16,844 371.8; 123; 826 174.5; 12; 414 2063.1; 714; 3704 571.8; 104; 1374

DTX 15292; 13054; 16938 330.5; 127; 549 398.8; 147; 625 2979.8; 1958; 3718 794.7; 585; 955

DOX 4983.3; 4469; 5368 12.8; 8; 18 2.5; 0; 6 167.8; 145; 201 27.5; 50; 13

ETP 11271.5; 10707; 12744 178.7; 91; 284 45.8; 32; 63 1254; 1024; 1720 146.8; 22; 269

GEM 5728.7; 4099; 7423 7; 2; 17 3.2; 1; 8 185.2; 82; 342 34.2; 5; 79

MTX 15727.3; 13692; 18906 130; 15; 203 398.8; 11; 687 3153.5; 2010; 4378 2329.3; 2748; 1372

MMC 6515.8; 4936; 8485 30.8; 8; 95 6.7;3; 14 332.2; 127; 629 26.5; 5; 116

PTX 6175.2; 4997; 7344 12; 4; 20 4.7; 1; 8 295; 465; 162 293; 136; 392

VBL 15207.7; 12488; 17196 201.8; 114; 284 447.33; 124; 716 3094.8; 1830; 4142 510; 231; 809

VOR 29935.2; 29461; 30337 5796.7; 4971; 6284 8165.2; 7274; 8690 15931.3; 14934; 16,448 4107; 3213; 5604

SN-38 13501.5; 11919; 16510 190.8; 108; 424 315.3; 153; 738 2577.2; 1761; 4286 193.5; 28; 149

5-FU 16218.8; 14888; 17706 236.5; 142; 320 333; 208; 480 3240.8; 2595; 3928 773.7; 550; 1084

The number of by feature selection method. Each cell contains the mean, maximum, and minimum number of features (Mean; Minimum; Maximum)
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the two control models was 0.85 and 0.88 for NLSVR
and 0.84 and 0.86 for PCR on CTR1 and CTR2 datasets
respectively.
To establish the influence of histotype on model per-

formance it had to be shown that histotype could predict

drug response, and that any feature selection methods
yielded features with the equal ability to distinguish one
histotype from another. To accomplish this a 55 dimen-
sional feature matrix was developed to encode cell line
identity to one of the 55 possible histotypes represented
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Fig. 4 Feature selection methods and controls: a-b Spearman Correlation Coefficients for different feature selection methods NLSVR (a), PCR (b).
c-d Spearman Correlation Coefficients for control models NLSVR (c), PCR (d) the placement of the symbol indicates the mean with the ends
representing the range. e Cluster Entropy (Sc), indicative of how well cell lines of the same histotype cluster using k-means. Comparable Sc as
well as little difference in r indicate that histotype recognition drives model performance. Sc is relative to the random control (RCTR) where Sc = 1,
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(black indicates is was significant compared to all other methods), using a non parametric Wilcoxon match-paired rank test. The calculated p
values can be found in Additional file 3
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Fig. 5 Histotype influence on drug response. a-b P values for pairwise F-tests between histotype IC50 for Bleomycin (a) and Vorinostat (b). c-d
Measured vs Predicted IC50 using DEGs for Bleomycin (c) and Vorinostat (d). e-f Measured vs. Predicted IC50 for Hist models in Bleomycin (e) and
Vorinostat (f). Each symbol color combination indicates a different histotype
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in the data using one hot encoding. Then using this fea-
ture matrix NLSVR and LSQR were applied to predict
drug response. In both NLSVR and LSQR there was a
significant drop in the average Spearman correlation,
0.2193 for NLSVR and 0.2218 for LSQR. However, 61–
62% of the models gave significant correlations in both
NLSVR and LSQR (Fig. 4c and d). For several drugs,
such as bortezomib, cisplatin, docetaxel, gemcitabine,
methotrexate, paclitaxel, and vorinostat gave comparable
results. Whereas for others, such as bleomycin, doxorubi-
cin, 5-fluorouracil, and SN-38 substantially lower correla-
tions were obtained. The ability of histotype to predict
response is best illustrated between bleomycin (Fig. 5a, c,
and e.) and vorinostat (Fig. 5b, d, and f.). Bleomycin has
minimal differential drug response between histotypes
(Fig. 5a.) as a result, when given nothing but histotype as
input the model will have a tendency to predict the average
IC50 values of a given histotype. In the case of bleomycin
the average IC50 values of different histotypes do not ex-
hibit a great amount of variability and thus the predictions
collapse to the overall average of the data (Fig. 5e.). Alterna-
tively, for drugs such as in vorinostat, the histotype average
IC50 values exhibit a greater amount of variability (Fig. 5a.)
and as a result this variability is reflected in the predictions
(Fig. 5f.). Furthermore, the variability of average histotype
responses is roughly captured when the features are re-
duced to only indicators of histotype in drugs such as vori-
nostat (Fig. 5d.) where this is absent in bleomycin (Fig. 5c.)
To explore the ability of a given set of features to identify

histotype we used k-means clustering to cluster the cells
into one of 55 groups and then used cluster entropy, Sc, to
quantify the consistency of which cells of the same
histotype were placed in the same cluster. A pairwise
non-parametric Wilcoxen paired T-test showed that there
was no significant difference between DEG, CTR1, and
CTR2 genes, and while Sc for NO FS was statistically sig-
nificant it is not apparent if there is a meaningful difference
as the average absolute difference was only 8.5% (Fig. 4e.).
Additionally, while BS, BC, and MRMR had higher average
Sc, 100% of BS models, 98.8% of MRMR models, and 86.7%
of BC models clustered by histotype better than a random-
ized model. Therefore, the data suggests that the predictive
ability of the model is partially dictated by the ability of a
set of features to recognize similar histotypes as well as the
variability between drug responses between histotypes.

Model performance, number of features, histotype
recognition
To determine how the number of genes affected the per-
formance, if genes statistically linked to drug response
became a bigger factor as the number of features de-
creased, and how both of these affected the ability to
cluster cells based on histotype, we constructed models
for both NLSVR and PCR using 10, 55, 250, 500,1000

randomly selected features from DEGs, CTR1, or CTR2
as well as performing k-means clustering.
As expected, a decrease in overall performance was

observed as the number of features decreased. However,
the magnitude of performance drop was considerably
different depending on the feature selection method. In
NLSVR the performance of DEG models dropped by
36%, CTR1 models dropped by 61%, and CTR2 models
dropped by 71% (Fig. 6a, b, c, and g.). Likewise, PCR
models decreased by 35.2, 51 and 70% in DEG,
CTR1and CTR2 models respectively (Fig. 6d, e, f, and
h). Furthermore, DEG feature selection in both PCR and
NLSVR models are reasonably robust down to 250 fea-
tures, with NLSVR exhibiting only a 7.5% difference and
PCR only 9.1% at 250 features compared to 1000 fea-
tures (Fig. 6a, d, g, h). Likewise, in CTR1 models, only a
7.1% decrease in NLSVR and 11.9% decrease in PCR
(Fig. 6b, e, g, and h). CTR2 models exhibited a decrease
approximately twice as great (14.4% NLSVR and 26%
PCR) as that seen with DEGs or CTR1 features (Fig. 6e,
f, g, and h).
For NLSVR models the difference in Sc is minimal

down to 500 features for all three feature selection
methods and down to 250 genes for DEG and CTR1
features. As a result, there is not a substantial differ-
ence in performance down to 500 or less features
(Fig. 6g). Additionally, for DEG and CTR1 genes the
difference in Sc is only about 7% going from 1000 to
250 features (Fig. 6g). The drop in Sc reflects a loss
in a given set of features to identify histotype and is
coupled directly to a loss in performance. Further-
more, substantial performance differences between
DEG and CTR1 features began to occur at 55 genes
which is also marked by a substantial increase in Sc
between DEG and CTR1 genes, and begins happening
at 250 CTR2 features (Fig. 6g). PCR models exhibit a
clear discrepancy between all three feature selection
methods; however, as the difference in Sc increases
between methods the difference in performance grows
as well consistent with the idea that Sc, and therefore,
histotype, has a substantial influence on model per-
formance (Fig. 6h). Lastly, as the number of features
is dropped considerably, DEG features maintain more
histotype specificity which suggest that features which
are highly correlated to drug response are also highly
correlated with histotype.

Comparison with DREAM
The DREAM-NCI project assessed the performance of
each model using a modified concordance index which
they called the weighted-probability concordance index
(wpc-index). Given the vast diversity of models evaluated
we wanted to determine if the models we used were
comparable using the wpc-index. The average wpc-index
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was 0.576 with a range from 0.552 to 0.582 for NLSVR
and 0.569 for PCR ranging from 0.552 and 0.58 (Table 5).
For Both NLSVR and PCR methods the models with the

highest wpc-index were DEG models while the lowest
performing model were the histotype-only models. The
Spearman correlation of the wpc-index with average
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Spearman correlation was 0.9833 (p = 0) for NLSVR
models and 0.95 (p = 0) for PCR models. The top models
in the DREAM-NCI paper have wpc-index scores of
0.583, 0.577, and 0.57, and the minimum score was cal-
culated to be 0.485. While, based on wpc-index, we had
no models out-perform the top performing model, four
NLSVR models had wpc-index scores that would place
them in second place, and all, with the exception of the
HIST model, scored within the top three. Likewise, PCR,
had two models that scored above the second place model
and six that placed above the third place model Table 5.
The DREAM-NCI project consisted only of a single

cancer histotype (breast) and thus, the histoytpe phe-
nomena driving the performance of our models is not a
contributing factor in their models. The testing set for
the DREAM-NCI project consisted of 18 cells lines, the
number of cells of a single histotype did not exceed 20
and was often below 10 for any test split. However,
non-small cell lung carcinoma adenocarcinoma
(NSCLC-adenocarcinoma) was represented with 10 or
greater cells in 10 of the 15 drugs and 43% of the total
testing data sets. Thus, in order to gauge if the models
were picking up some cell specific drug response within
a histotype we used the WPC index to score DEG,
CTR1, CTR2, and No FS models. Compared to wpc
scores for our pan-cancer models and several models in
the DREAM project the WPC index was smaller ranging
from 0.5346 for DEG Models to 0.5084 for CTR2
models (Table 3). Considering the variable number of
cell lines for each dataset, we assessed the significance
by creating a null distribution of 3000 randomly con-
structed permutations of the modeled data. DEG and
No-FS had wpc scores that significantly differed (p <
0.05) from what would be expected by random permuta-
tion with a wpc value of 0.5. This suggests models which

include genes relevant to drug response have some abil-
ity to pick up variability in individual histotypes, while
genes with no apparent significantly statistical relation-
ship with drug response fail to pick up that variability in-
dicated by having a wpc score consistent with a random
permutation of the data.

Modeling the NCI60
The NCI60 results were highly variable due to the low
sample size, but many of the trends that emerged in the
GDSC were also evident in the NCI60, mainly, there was
not a significant difference in performance between
NLSVR and PCR, and minimal difference between selected
features (NOFS: 0.4, DEG: 0.403, CTR1: 0.399, CTR2:
0.351) for SVR and (NOFS: 0.412, DEG: 0.406, CTR1:
0.382, CTR2: 0.35) for PCR. One of the more interesting
points is that models performance still has a significant re-
lationship with histotype as evidenced by significant correl-
ation histotype models and models constructed with
genomic feature with correlation ranging 0.4114 to 0.4576
for NLSVR and 0.2988–0.4547 for PCR (Fig. 7 A. and B.)
This is relationship is even stronger in the GDSC
(NLSVR:0.6878–0.7341, PCR: 0.663–0.733) due to the
increased number of cell lines and histotypes (Fig. 7 C. and
D.). It is also important to note that the GDSC and NCI60
share 38 cell lines, however, the range is smaller in the
drugs we modeled [7–30]. For the 14 common drugs with
data in the NCI60 and GDSC only 7 had significant corre-
lations in drug response for identical cell lines.

Additional Models
In addition to the models discussed we implemented an
Elastic Net model in the GDSC, which did not show any
significant difference in results. The results of this model
can be found in the Additional file 2 Furthermore, we
further explored how sampling techniques, and how the
non-uniform representation of histotypes possibly could
impact results in a select subset of models (Additional
file 2).

Discussion
The development of molecular tools allows for a unique
look into the molecular nature of cancer inspiring a
community effort to collect data with the potential for
significant clinical impact. Given the complexity and
amount of data that is available and continues to be gen-
erated, computational approaches are necessary to fully
utilize the available information present in the data. As
these computational techniques become more advanced,
a basic understanding of the factors that influence model
performance are essential. We have taken a systematic
approach to characterize the influence of basic model
complexity in terms of the linearity of the the model and
basic CBF feature selection methods to predict in vitro

Table 5 WPC Index

FS Method NLSVR PCR NLSVR NSCLC-AD p NSCLC-AD

NO FS 0.581 0.578 0.528 0.009

DEG 0.582 0.579 0.535 0.001

CTR1 0.581 0.576 0.519 0.056

CTR2 0.576 0.559 0.508 0.248

MRMR 0.579 0.575 NA NA

BS 0.58 0.576 NA NA

BC 0.575 0.571 NA NA

Hist 0.552 0.552 NA NA

Random Control NA 0.498 NA NA

WPC Index for NLSVR and PCR models as well as values for non small cell lung
cancer adenocarcinoma (NSCLC-AD) in select drugs. The-value for NSCLC-AD
was calculated by 3000 random permutations of the test data to construct a
null distribution. For example, there is a .01% chance of obtaining a higher
WPC score randomly for NLSVR DEG models on NSCLC-AD. Note that a wpc
score cannot be calculated for the random control for NLSVR due to a
variance of 0 which results in division by 0 incalculated wpc scores
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drug response across a number of cancer cell lines in
the GDSC and NCI60. Our results suggest that the com-
plexity of the model and the method of feature selection
have marginal effects on the performance of the model
with performance largely dictated by the relationship

between histotype and drug response [See Additional file
2: Figure S5].
With the exception of ANN, it is not straightforward

to establish which model is superior as it is certainly rea-
sonable that more thorough parameter optimization and
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different data splits might lead to fractional improve-
ments for one method over others changing the relative
rank of each model while having insignificant meaning-
ful quantitative gain. Likewise, there is no substantial
gain by eliminating features that do not significantly
correlate with drug response. The control experiments
(CTR1 and CTR2) as well as the histotype models sug-
gest that histotype has a major influence on predictive
capability of model. More rigorous criteria as imposed
by Bonferroni correction and bootstrap methods tend to
decrease model performance slightly and this is accom-
panied by a similar decline in selected features ability to
cluster cell lines by histotype as evidenced by a larger Sc.
Attempts to remove redundancy in features using
MRMR results in higher Sc values suggesting that the
histoytpe signal can be somewhat mitigated by removing
redundant features but is also accompanied by a de-
crease in overall performance. Furthermore, even at 500
random features a diffuse histotype signature is main-
tained which maintains the majority of drug-response
information sufficient for producing predictive models.
Our best performing model consisted of Support

Vector Regression using a radial basis function. How-
ever, the improvement over the best performing linear
model, PCR, was only a 3.8% increase in average
Spearman correlation. Likewise, the DREAM competi-
tion concluded that non-linear models performed
slightly better than linear models; however, the per-
formance increase between their top non-linear model
and top linear model was only 1.5% with several lin-
ear models performing better than many other
non-linear models developed [21]. Artificial neural
networks performed consistently the worst, for com-
parison, Menden et al. used ANN to build predictive
drug response models for 608 cell lines and 111 drugs
in the GDSC using genomic and chemical properties
of drugs reporting an overall Pearson correlation of
0.85 across all drugs. However, the individual drug
correlations ranged roughly from − 0.15 to 0.5 similar
to the results we achieve [49]. The discrepancy in
Menden’s work between the overall correlation and
the individual drug correlations is most likely due to
the spread of IC50’s across drugs as different drugs
have distinct ranges of IC50 values, this can clearly
be seen in (Fig. 3 B-E) demonstrating how inherent
data structure, i.e. different ranges of drug response
for different drugs, can introduce artifacts that can
potentially affect both the construction and analysis
of models. Other modeling strategies in the GDSC
that have focused on targeted agents have produced
average spearman correlations slightly higher, (ap-
proximately 10%) [50] while models incorporating
Bayesian components have led to significantly lower
average Spearman correlations (around 50%) [51].

Our results show that neither the linearity of the re-
gression method nor features used have a strong influ-
ence on performance with the single most influencing
factor being the identity of the drug. Furthermore, this is
consistent across multiple data-bases and over many
cytotoxic agents despite inconsistencies seen among cell
lines shared by the GDSC and NCI60 that could prove a
barrier to using the GDSC to train and validate a model
and test on the NCI60 or likewise the NCI60 to train
and validate testing on the GDSC. This phenomenon re-
sults from the tendency that cancers from the same
histological background respond similarly to certain
drugs. This is reflected in our results; predictive out-
comes can be achieved in most drugs simply by identify-
ing the histotype. Consequently, any gene set that has
the ability to differentiate histotype also can generate
predictive models as demonstrated with our control
models. Often the identification of histotype is an essen-
tial step into determining specific approaches to success-
ful treatment, clearly not all cancers of the same
histotype respond precisely the same to a given drug.
The range of responses might have important conse-
quences when it comes to determining effective PKPD
parameters for clinical applications. Furthermore, with
respect to modeling, this “histotype” effect potentially
shields features that have significant predictive capability
across all histotypes where the signal to noise ratio is
significantly less compared to features that have strong
associations with histotype.
Several successful models have been built to classify

tumors histologically using genomic profiling [3, 5, 52,
53] demonstrating the ability of statistical learning tech-
niques to learn tissue specific features. Thus, given the
differential drug response of cancers with similar histo-
logical background the prediction of response loosely
defaults to a classification exercise. This simultaneously
presents opportunity and challenge. Knowing the histo-
type, therefore, gives a significant amount of information
about the drug response. However, histotype accounts
for a large amount of genomic variation as well as vari-
ability in drug response. Therefore, feature selection re-
sults in the convolution of three possible categories:
features that account for variability in histotype having
no influence on actual drug response, features that ac-
count for variability in histotype and drug response, and
lastly features in which variability is exclusively a result
of drug response. This is a challenging task, filter
methods, such as CBF and mutual information, tend to
pick more robust signals associated with drug-histotype
interactions. The ability to extract drug response within
a histotype and then leverage that information across
histotypes, such as ensemble methods, might be a rea-
sonable approach. For example, a filter based feature se-
lection method could be applied on each histotype
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independently then those features present in all histo-
types could be pooled. Additionally, a multiple kernel
learning (MKL) method where each individual kernel is
applied to a distinct histotype might be an effective way
to pool multiple histotype based models into a more
generalized pan cancer model. However, number of
samples of each histotype in most databases, such as
the GDSC, could be a limiting factor for producing
robust features in a filter based method or parameter
optimization in a MKL setting. Databases such as the
NCI60, GDSC, Cancer Therapeutics Response Portal
(CTRP), and Cancer Cell Line Encyclopedia (CCLE)
would provide for a broader diversity of data. How-
ever, several studies have shown inconsistency in drug
response among cell lines derived from the same
source [54–56].

Conclusion
The ultimate goal for these types of predictive models is
to become a clinical tool that practitioners can utilize to
improve the treatment of cancer patients or to inform
clinical trials. While the jump from an in vitro cancer
cell line to a tumor and then eventually a patient is a
considerable progression these in vitro based experi-
ments certainly add insight to the problem. Previous
studies that have leveraged in vitro data to inform tumor
based predictions have approached drug response as a
binary variable, sensitive or resistant [15, 16]. However,
in such an approach valuable quantitative insight might
be lost that could be critical to successful clinical appli-
cations. For example, an in vitro cell line might exhibit
an IC50 that is much lower in comparison to other cell
lines, implying sensitivity, but the concentration of drug
needed to achieve a comparable exposure in a patient
might not be reasonable due to pharmacokinetic or tox-
icity constraints. Thus, to more effectively use cell line
drug exposure the ability to first accurately capture in
vitro drug response is critical. What our models suggest
is that similar pan-cancer cell based models might over
emphasize a relationship between histotype and drug re-
sponse thus could be misleading when applying such
techniques to tumor data by effectively only capturing a
broad histotype response failing to be applicable to more
inter-tumor variability. Therefore, it is paramount that
drug-histotype response is considered to improve model
performance and utility.
Biological systems are inherently complex, noisy, and

high dimensional which makes modeling their behavior
a difficult task. Statistical learning allows for the extrac-
tion of valuable insights from large sets of data without
direct knowledge of the intrinsic mechanisms that are
influencing the properties of the system. For this reason,
statistical learning provides several tools that are directly
applicable to cancer diagnosis and treatment and it has

been an active area of cutting edge research in cancer
biology, mathematics, statistics, and computer science.
Therefore, as the field moves forward it is absolutely im-
perative to understand how fundamental modeling con-
siderations influence model performance on large
complex biological datasets. Systematic approaches with
well thought out control experiments are paramount to
fully understand the complexities that arise when con-
sidering different modeling strategies.

Additional files

Additional file 1: Spearman correlations and MAD values of the 39
Drugs modeled in the NCI60. (XLSX 248 kb)

Additional file 2: This file incudes data for additional feature selection
methods and elastic net models as well as model results reported as mean
absolute difference. Additionally this file includes discussions about cross
validation and histotype distribution. (DOCX 4430 kb)

Additional file 3: P values for information entropy reported in Figure
4e. (XLSX 28 kb)

Additional file 4: Spearman correlations for ANN models reported in
Results section A. and B and illustrated in Fig. 3. (XLSX 26 kb)

Additional file 5: MAD for ANN models reported in Results section A.
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