Skip to main content
. 2019 Jun 17;12:87. doi: 10.1186/s12920-019-0519-2

Table 3.

Model Performance

NLSVR PCR LNSVR ANN
NFS DEG LIM NFS DEG LIM NFS DEG LIM NFS DEG LIM
BLM .207 .202 .202 .239 .208 .208 .151 .1 .209 .147 .17 .21
BTZ .38 .404 .365 .422 .399 .354 .332 .326 .232 −.009 .299 .24
CIS .05 .08 N/A −.009 .047 N/A .03 .079 N/A −.066 .034 N/A
CYT .313 .32 .279 .32 .281 .256 .337 .291 .269 .226 .266 .291
DTX .422 .44 .408 .367 .409 .382 .357 .319 .359 .185 .318 .207
DOX .273 .27 .117 .243 .285 .106 .27 .226 .103 .115 .173 .096
ETP .289 .302 .294 .248 .291 .263 .238 .219 .273 .209 .195 .246
GEM .143 .139 .166 .153 .117 .143 .07 .063 .165 .131 .119 .134
MTX .461 .455 .462 .431 .435 .433 .417 .388 .338 .411 .391 .322
MMC .237 .302 .244 .264 .269 .25 .27 .224 .239 .203 .153 .248
PTX .32 .27 .198 .287 .282 .159 .233 .170 .191 −.106 .211 .177
VBL .44 .403 .399 .408 .398 .37 .398 .339 .371 .112 .302 .363
VOR .509 .495 .486 .5 .487 .439 .484 .471 .404 .445 .42 .42
SN-38 .383 .417 .409 .379 .391 .443 .397 .404 .429 .01 .327 .402
5-FU .463 .464 .40 .455 .484 .354 .451 .438 .337 .309 .409 .365
AVG .326 .331 .316 .314 .319 .297 .285 .27 .28 .144 .252 0.266

Average spearman correlations across six different testing sets for all regression and feature selection methods. This data is graphically displayed in Fig. 3